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1. INTRODUCTION 
 
     Although some modest improvement has been made 
in operational tropical cyclone intensity forecasting in 
the past few years, the skill of the National Hurricane 
Center (NHC) intensity forecasts is only ½ to 1/3 that of 
the track forecast skill at 12-120 h (DeMaria et al 2005, 
hereafter D05). Because of the inherent difficulty in 
predicting intensity changes, statistical forecast methods 
such as the Statistical Hurricane Intensity Prediction 
Scheme (SHIPS) remain competitive short-range (12-72 
h) forecast models. This is not the situation for track 
forecasting, where the accuracy of three dimensional 
prediction systems exceeded that of the simpler 
statistical techniques more than a decade ago (DeMaria 
and Gross 2003).  
     D05 showed that small improvements to the SHIPS 
model were obtained by including predictors from GOES 
channel 4 (10.7 μm) imagery and oceanic heat content 
(OHC) estimated from satellite altimetry data. Two 
simple GOES predictors were found to be statistically 
significant predictors of intensity change, including the 
percent of the area in the annular region from 50 to 200 
km from the storm center with channel 4 brightness 
temperature (TB) colder than -20oC, and the standard 
deviation of TB around an azimuth, radially averaged 
from 100 to 300 km. In this paper, an investigation is 
performed to determine if additional predictive skill can 
be obtained from GOES predictors that represent the 
radial structure of TB, and from objective analyses of 
aircraft reconnaissance data. The underlying prediction 
equation assumed by the SHIPS model is also 
described, and a more general model is proposed.  
 
2. THE SHIPS MODEL 
 
       The 2003 version of the SHIPS model is described 
in detail in D05. Sixteen independent variables that 
include climatology, persistence, atmospheric 
parameters such as vertical shear, and sea surface 
temperature (SST) are used to predict intensity changes 
(maximum sustained surface wind changes) from 12-
120 h. An experimental version was also run in 2002 
and 2003, where satellite input provide a correction to 
the basic SHIPS prediction when they were available.  
___________________ 
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The satellite version was declared operational by NHC 
in 2004 and become the version provided to the 
forecasters. Most of the forecasts since 2004 included 
the satellite data. 
     Four changes were made to SHIPS for 2005. The 
empirical decay model was found to have a low bias 
(too much decay) for storms that moved over islands 
and narrow land masses. A revised decay model was 
implemented in 2005 to help correct this problem 
(DeMaria et al 2006).  The second change is that 
prediction equations were developed for forecasts at 6 h 
intervals, rather than at 12 h intervals. Thus, separate 
regression equations were derived for forecast periods 
of 6, 12, 18, …, 120 h. The 6 h intervals were added to 
the dependent dataset as well, which doubled the 
sample size (although the effective sample size was not 
doubled due to serial correlations between the intensity 
changes separated by 6 h).  The third change is that the 
database was extended back to 1982, which was the 
first full year when the Reynold’s SST analyses were 
available. Previous versions of SHIPS used data back to 
1989. The 1982-2004 sample includes 6554 cases with 
at least a 6 h forecast. The fourth change is that the 
SST was adjusted using an empirical eye wall ocean 
cooling parameterization developed by Joe Cione. The 
adjusted SST better matches what actually affects the 
surface fluxes near the storm center. This modification 
was implemented only in the Atlantic version of SHIPS.  
 
3. GOES AND RECONNAISSANCE DATA 
 
      The GOES data are the same as described in D05. 
The TB values relative to the storm center are 
azimuthally averaged on a 4 km radial grid, which 
extends from the storm center to the nearest edge of the 
sector over which the data were collected.  The radial 
grid nearly always reaches at least 400 km. The 
standard deviations of TB at each radial point are 
calculated from the azimuthal values on this same grid. 
The GOES data were obtained from the CIRA IR 
archive (Zehr 2000), which includes most tropical 
cyclone cases in the Atlantic and east Pacific back to 
1995.  
     The flight level data from all available U.S. Air Force 
Reserve reconnaissance flights since 1995 were also 
collected. The data for each storm were divided into 6 h 
intervals to match the other SHIPS data.  A three hour 
overlap was included to allow enough aircraft data to 
perform an objective analysis. For example, for a 6 UTC 
analysis, all of the data from 00 to 09 UTC were 
included.  
     The aircraft data for each 6 h period were put in 
storm relative coordinates and objectively analyzed to 



an evenly spaced cylindrical grid using the variational 
analysis system described by Mueller et al (2006). The 
analysis grid has a radial spacing of 4 km out to 200 km 
and an azimuthal spacing of 22.5o.  The variational 
analysis fits the data to the grid with smoothness 
constraints, after application of a quality control routine. 
The quality control automatically determines whether 
the data coverage is adequate for an analysis.  
     The advantage to using a cylindrical system is that 
more smoothing can be applied in the azimuthal 
direction than in the radial direction, which is consistent 
with the data coverage. The Air Force Reserve typically 
flies an alpha pattern with four radial legs. For the post-
processed 10 second aircraft data, the radial spacing is 
about 2 km, while the azimuthal spacing is about 90o. In 
real time, the data is only available at 30 s intervals. The 
radial smoothing is chosen to be consistent with what is 
available in real time.  
     Figure 1 shows an example from Hurricane Jeanne 
(2004) of the 30 s flight level data from the real time 
data feed at NHC after it is put in storm-relative 
coordinates. The objectively analyzed wind field is 
shown in Figs. 2-3.  There are 808 wind fields available 
from 1995-2004 that also had corresponding satellite 
data. An additional 169 cases were obtained from the 
2005 season. The analyses for the 1995-2004 cases 
utilized the post-processed 10 s data. The 2005 cases 
used the 30 s winds from the NHC real time data feed 
because the post-processed data are not available yet. 
As will be described later, the 2005 cases will be used 
for an independent evaluation of the algorithm 
developed from the 1995-2004 cases.  
 
 

 
 
Figure 1. The flight level winds in storm-relative 
coordinates for the objective analysis of Hurricane 
Jeanne on 26 Sep 2004 at 06 UTC. For display 
purposes, only every 5th wind vector of the 30 s data is 
plotted.  
 

 
 
Figure 2. The objectively analyzed flight level winds for 
the Hurricane Jeanne case example.   
 

 
 
Figure 3. The istotachs (kt) of the objectively analyzed 
flight level winds for the Hurricane Jeanne example. 
 
4. STATISTICAL ANALYSIS 
 
     As described by D05, the satellite data is included in 
the operational SHIPS model by applying a correction to 
the forecast based upon the basic 16 predictors. This 
method was used because the developmental sample 
with the satellite data was much smaller than the total 
sample. Thus, a second regression was performed with 
the satellite predictors as the independent variables, 
and the residuals from the fit from the basic SHIPS 
model with the 16 predictors as the dependent variable. 



As described by Thomas et al (2006) in a study of the 
inclusion of predictors from microwave satellite imagery 
with SHIPS predictors, the residual approach reduces 
the impact of the additional information. Also, since the 
sample with reconnaissance data is even smaller than 
the set with GOES data, it would be necessary to 
predict the residuals of the residual model. To avoid 
these problems, the approach taken is to develop a 
completely independent prediction model using only 
those cases for which GOES and reconnaissance data 
are available. This system will be referred to as the 
GOES and Recon Intensity Prediction (GRIP) model.  
      For the GRIP model development, the sample 
includes the 808 cases from 1995-2004 that include 
GOES and reconnaissance data. Because these cases 
also include the OHC data from satellite altimetry, that 
information is also included in the GRIP model.  
     The starting point for the statistical development is 
the 16 basic SHIPS predictors and the OHC averaged 
along the storm track. These are supplemented by the 
additional predictors from the GOES data and objective 
analyses of the reconnaissance data. Tables 1 and 2 list 
the additional predictors from the GOES and recon data. 
The first two GOES variables in Table 1 are already 
included in the operational SHIPS model through the 
residual correction method, but their contribution may 
change when they are included directly. The other 
variables in Table 1are related to the radial structure of 
the GOES data. The 10th variable in Table 2 was 
motivated by the observation that storms tended to 
intensity more rapidly when they are small. When the 
KE becomes larger than the average for a given 
maximum wind storms tend to intensity less (Maclay 
2006).  
 
Table 1. Potential predictors from the GOES data 
____________________________________________ 
 
1. 100-300 km radially averaged TB standard deviation  
2. Percent area from r=50 to 200 km with TB < -20oC 
3. Maximum TB from 0 to 30 km (eye temperature) 
4. Radius of maximum TB from 0 to 30 km  
5. Minimum TB from 20 to 120 km (eyewall “cold ring”  
    temperature) 
6. Radius of minimum TB from 20 to 120 km 
____________________________________________ 
 
 
     The OHC and the 16 variables in Tables 1 and 2 
were added to the basic 16 SHIPS variables, and the 
usual backward stepwise regression method was 
applied. Variables were removed until all remaining 
predictors were statistically significant at the 1% level for 
at least one forecast interval. This procedure resulting in 
five variables that significantly added predictive 
information, relative to the basic 16 SHIPS variables as 
shown in Table 3. The first three variables in Table 3 are 
those that are already included in the operational SHIPS 
residual model. The GOES eye and eyewall variables 
from Table 1 provided no additional predictive 
information. Two of the 10 recon variables from Table 2 
provided significant predictive information. The 

coefficients of the two recon variables in Table 3 had 
signs that were expected from physical considerations. 
When the tangential wind averaged around the radius of 
maximum wind is larger, the storm intensifies. When the 
KE deviation from the mean value is negative, 
intensification is predicted.  
 
Table 2. Potential predictors from recon analyses 
____________________________________________ 
 
1. Radius of maximum symmetric tangential wind  
    (RMSTW) 
2. Value of maximum symmetric tangential wind 
3. Radius of maximum wind 
4. Value of maximum wind 
5. Tangential wind gradient just outside the RMSTW 
6. 100-180 km average radial wind 
7. 100-180 km average tangential wind 
8. Radial wind averaged from r= -20 km to r=20 km from  
    the RMSTW 
9. Tangential wind averaged from r=-20 km to r=20 km  
     from the RMSTW 
10. Difference between the 0-200 km kinetic energy  

(KE) and the average KE of storms of the same 
intensity determined from the total recon sample 

____________________________________________ 
 

     To determine the relative contributions of each of the 
variables in Table 3 to the intensity prediction, each 
variable was removed one at a time, and the difference 
in the variance explained by the total model fit and the 
variance without that variable was calculated. This 
variance difference provides a measure of how much 
additional information is provided by the variable that 
was removed. The variance difference when all five 
variables in Table 3 were removed was also calculated.         
     Figure 4 shows the variance added by each variable 
in Table 3 at each forecast time. The explained variance 
increases by almost 10% at the shorter time periods 
with five extra predictors. The first recon variable (the 
tangential wind averaged near the RMSTW) and the 
second GOES variable (the Tb standard deviation) are 
the most important for the increase in the earlier time 
periods. At the later times, the OHC and the second 
recon variable (the KE deviation) are most important  
 
Table 3. The satellite and recon variables that provide 
additional intensity prediction information 
____________________________________________  
 
OHC      – The OHC averaged along the storm track 
GOES1  – 100-300 km radially averaged TB standard   
                 deviation 
GOES2  -  Percent area from r=50 to 200 km with TB < - 
                 20oC 
RECON1 - Tangential wind averaged from r=-20 km to  
                   r=20 km from the RMSTW 
RECON2 - Difference between the 0-200 km KE and  
                  the average KE of storms of the same  
                  intensity determined from the total recon  
                  sample 
____________________________________________ 



     The mean absolute errors of the fit of the model to 
the intensity changes with the basic 16 variables and 
with the additional 5 variables from Table 3 were 
calculated. Figure 5 shows that the additional five 
variables in the GRIP model improves the mean 
absolute error by up to 11% relative to the basic 16 
SHIPS predictors, with the maximum impact for the 48 h 
forecast. The improvements in Fig. 5 are much larger 
than those in the residual SHIPS model described by 
D05. This increased improvement is due to the 
additional predictive information from the recon data, 
and because the new variables are included directly 
with the 16 basic SHIPS predictors.  
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Figure 4. The increase in variance explained when the 
satellite and recon predictors in Table 3 are included.  
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Figure 5. The percent improvement (reduction in mean 
absolute intensity error) due to the inclusion of the 
satellite and recon data in the GRIP model.  

5. INDEPENDENT EVALUATION  
 
     Although the results in Fig. 5 are encouraging, the 
true evaluation of the model is its performance on 
independent cases, and under operational conditions 
with track errors, and where the atmospheric predictors 
are determined from GFS model forecasts, rather than 
from analyses. To further test the GRIP model, all of the 
2005 cases were run using purely operational input, and 
the results were compared to the operational SHIPS 
forecasts (which already includes the GOES and OHC 
information using the residual method). Two sets of 
GRIP model coefficients were tested. The first were 
those developed from the 1995-2004 sample, which 
provides a purely independent test. As described 
previously, the 2005 sample of cases with recon data 
was very large (169 cases). The GRIP model 
coefficients were re-derived with those cases added, 
which increased the sample size by more than 20%. 
This second set of coefficients does not provide a valid 
operational evaluation, but helps to demonstrate the 
impact of a larger sample size. 
     Figure 6 shows the improvements in the GRIP model 
relative to SHIPS for the 2005 cases. With the 
independent coefficients, the forecasts were improved 
at 12 and 24 h, but were degraded at the longer time 
periods. This degradation is probably due to the small 
sample size, which does not provide an adequate fit to 
the basic 16 SHIPS predictors. With the dependent 
coefficients, the GRIP model forecasts are improved out 
to about 72 h, with little difference after that time. This 
result shows that the satellite and recon data can 
provide additional short term intensity predictive 
information. The accuracy of the model at the longer 
time periods will continue to improve as a larger sample 
of recon cases becomes available.  
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Figure 6. The improvements in the GRIP model relative 
to SHIPS for the 2005 Atlantic forecasts for the case 
with independent and dependent coefficients.  
 
6. AN ALTERNATE PREDICTION EQUATION  
 
The intensity forecast from the SHIPS model can be 
written as 



 
                 V6   =  V0 + ΔV6   
                 V12  =  V0 + ΔV12                                    (1) 
                   !        !       ! 
                 V120  = V0 + ΔV120 
 
where ΔV6  ΔV12 , …,  ΔV120 are estimated from the 
predictors using the multiple regression relationships. 
Note that the intensity change over the entire forecast 
interval is estimated, and the regressions for each 
interval are completely independent. Thus, it would be 
possible to make the 120 h forecast without first 
calculating any of the earlier ones.  Equations (1) can be 
rearranged to give 
 
                      V j+1 = V j + αj+1/2 Δt                           (2) 
 
where 
 
                       αj+1/2 = (ΔV j+1-ΔVj)/Δt                       (3) 
 
and j=1, 2, …, 20 for Δt=6 h. Equation (2) is a finite 
difference form of the differential equation given by 
 
                                dV/dt = α(t)                             (4) 
 
Thus, the SHIPS model can be interpreted as fitting the 
parameter α in (4) to observations of related variables 
such as SST and vertical shear. This parameter should 
be a very complex and nonlinear function of all the 
factors that control intensity changes. In the SHIPS 
model it is assumed to be a linear or quadratic function 
of the some of the factors related to the intensity 
tendency. Because many different types of processes 
are lumped together in α, it is not hard to understand 
why a very large sample size would be needed to 
estimate the functional form of this parameter. As 
described above, the small sample size is probably the 
main reason why the GRIP model (developed from 808 
cases) did not improve on the operational SHIPS 
prediction (developed from 6554 cases) beyond 24 h. 
     A natural question to ask is whether an equation that 
is more general equation than (4) could be used as the 
starting point for fitting a model to observations.  One 
possibility is to start with an equation that directly 
accounts for the maximum potential intensity (MPI). 
Several theoretical studies (Miller 1958; Bister and 
Emanuel 1998) have suggested that the maximum 
intensity that a tropical cyclone can reach is limited by 
the SST, the upper level environmental temperature and 
the lower level atmospheric moisture. The SHIPS model 
already includes an empirically derived MPI that is a 
function only of SST, which will be denoted by VSST. An 
alternative to (4) is to consider the evolution of the 
maximum wind to be governed by 
 
                   dV/dt = κV – βV(V/VSST)n                   (5) 
 
where VSST is known from the SST along the storm 
track, the parameters β and n are assumed to be 
constant for all storms, and the parameter κ is a time 

dependent function that can be estimated from the 
SHIPS input parameters. Equation (5) is a slightly more 
general form of a differential equation that is often used 
to model species population growth (e.g., Boyce and 
DiPrima 1969). The first term on the right represents the 
species reproductive rate, and the second term on the 
right represents the mortality due to a limited food 
supply when the species population becomes large. For 
a constant VSST, (5) has an analytic solution, and for 
variable VSST, it can be solved numerically.  
     The behavior of (5) can be understood by 
considering two asymptotic forms. First, when V << VSST 
the second term on the right can be neglected, and the 
solution is simple exponential growth or decay, 
depending on the sign of κ. For positive κ, V eventually 
becomes close to VSST and a steady state (Vsteady) is 
reached (dV/dt = 0), which is given by 
 
                   Vsteady = VSST(κ/β)1/n                        (7) 
 
For the case where the growth rate (κ) and the 
relaxation time scale towards VSST (β) are equal, the 
storm intensity approaches its MPI.  
     To determine the applicability of (5) as the underlying 
model for intensity prediction, the 1982-2004 SHIPS 
sample with a least a 72 forecast (3281 cases) were 
used. The parameters β and n were assumed to be 
constant for all 3281 cases, and a single value of κ was 
chosen for each case to determine the best fit of the 
numerical solution of (5) to the best track maximum 
winds at t+6, t+12, …, t+72 h. This analysis showed that 
the best fit was obtained when n=2 and β-1 = 24 h. The 
average error of the model fit to the best track maximum 
winds from 6 to 72 h was only 4.8 kt, with the maximum 
error of 8 kt at 72 h. These errors are close to the noise 
level of the best track data, where the intensities are 
rounded to the nearest 5 kt.  
     Figure 7 shows examples of the fit of (5) for a case 
from Hurricane Mitch (1998) and Hurricane Erin (2001). 
In the Mitch case, the initial intensity was well below the 
MPI and the storm intensified rapidly until its maximum 
winds approached the MPI. In the Erin case, the MPI 
decreased due to movement over cold water, and the 
intensity decreased in response to the change.  
     The above analysis shows that even with κ held fixed 
over a 72 h period, the solution to (5) provides a very 
good fit to the best track intensities. The challenge for 
an operational forecast is to provide an accurate 
estimate of the parameter κ as a function of time, from 
the basic SHIPS predictors. Because the upper bound 
intensity is built into (5), it is expected that a smaller 
sample size can be used to determine κ empirically 
compared to determining α in (4). Several versions are 
being tested. First, a very simple form is being 
developed where κ is estimated only from the vertical 
shear and the initial value of κ, which can be estimated 
from the previous 12 h intensity change. This version 
uses the full SHIPS sample. A second version that uses 
the basic 16 SHIPS variables is being tested, and a third 
version that uses the smaller sample of cases with the 
satellite and recon data, are also being evaluated. 



Results of these tests will be reported in the conference 
presentation.  
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Figure 7. The 72 h solution to (5) with n=2 and β -1 = 24 
h (blue lines) for a Hurricane Mitch beginning at 00 UTC 
on 24 Oct 1998 (top) and for Hurricane Erin beginning at 
12 UTC on 12 Sep 2001(bottom). The best track 
intensities (red) and MPI (dashed black) are also shown. 
From the best fit, κ-1 = 29 h for the Mitch case and κ-1 = 
77 h for the Erin case.  
 
7. CONCLUDING REMARKS 
 
     Results from this work show that there is additional 
intensity prediction information in variables determined 
from satellite data and objective analyses of aircraft 
reconnaissance observations, relative to the basic 
SHIPS model. The impact of this data for the dependent 
sample is greater when the new predictors are directly 
combined with the other SHIPS predictors than for the 
case when satellite data was added using a residual 
method that is currently employed by the operational 
SHIPS model. The disadvantage of including the 

additional information directly is that the sample size is 
restricted to the cases where all data types are 
available. For the 1982-2004 SHIPS sample, there are 
6554 cases with at least a 6 h forecast, but only 808 
cases with satellite and reconnaissance data available.       
     A separate prediction model was developed that 
includes the satellite and recon input (the GOES and 
Recon Intensity Prediction, GRIP) model from the 808 
available cases from 1995-2004. An evaluation on 169 
independent cases from the 2005 season, which were 
run under fully operational conditions, showed that the 
GRIP model improved upon the SHIPS forecasts by 
about 5% at 12 and 24 h. However, the forecasts were 
degraded at later times. This result suggests that the 
GRIP model sample size was too small to adequately 
determine the prediction coefficients. The additional 
cases from 2005 will increase the sample size by more 
than 20% for testing during the 2006 season.  
     An analysis of the SHIPS prediction system shows 
that it can be interpreted in terms of a model fitting 
approach, where the underlying prediction equation is 
very simple. A more general prediction system is 
proposed that implicitly includes the effects of maximum 
potential intensity (MPI). With the MPI effects already 
included, the fitting of the other model parameters may 
not require as large of a sample size. Testing of this 
new underlying prediction system will continue during 
the 2006 hurricane season.  
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