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1. INTRODUCTION 

 
Tropical cyclogenesis (TCG), although an 

already well researched area, remains a highly 
debatable and unresolved topic.  While 
considerable attention has been paid to tropical 
cyclone formation, little attention has focused on 
observational studies of the very early stages of 
TCG, otherwise referred to as the genesis stage.  
In the past, the early stages of TCG were 
unverifiable in surface observations, due to the 
paucity of meteorological data over the tropical 
oceans.  The advent of wide swath scatterometers 
helped alleviate this issue by affording the 
scientific community with widespread 
observational surface data across the tropical 
basins.  One such instrument is the SeaWinds 
scatterometer, aboard the QuikSCAT satellite, 
which infers surface wind speed and direction.  
Launched in 1999, this scatterometer has 
encouraged various studies regarding early 
identification of tropical disturbances (Liu et al. 
2001; Katsaros et al. 2001; Sharp et al. 2002).  
These studies, though operational in intent, 
hypothesized the potential for SeaWinds data to 
be applied towards research applications (i.e., 
genesis stage research).  The main goal of this 
study is to develop an objective technique that will 
detect the early stages of TCG in the Atlantic 
basin using SeaWinds data. 

Liu et al. (2001), Katsaros et al. (2001), and 
Sharp et al. (2002) demonstrated the ability to 
identify tropical disturbances, discrete weather 
systems of apparently organized convection that 
maintain their identity for 24 hours or more and are 
too weak to be classified as tropical cyclones (i.e., 
tropical depressions, tropical storms, or 
hurricanes), by the National Hurricane Center 
(NHC).  Each technique utilized surface wind data 
obtained by the SeaWinds scatterometer.  
However, the criteria that defined their 
identification method differed.  Sharp et al. (2002) 
employed vorticity in their detection condition, 
whereas Liu et al. (2001) and Katsaros et al. 

(2001) relied upon closed circulations apparent in 
the scatterometer data.  Using a threshold of 
vorticity over a defined area, Sharp et al. (2002) 
identified numerous tropical disturbances and 
assessed whether or not they were likely to 
develop into tropical cyclones.  Detection was 
based on surface structure, requiring sufficiently 
strong vorticity averaged over a large surface 
area.  Unlike Sharp et al. (2002), Katsaros et al. 
(2001) and Liu et al. (2001) concentrated on 
disturbances that would develop into classified 
tropical cyclones.  They examined surface wind 
patterns and looked for areas of closed circulation, 
successfully detecting tropical disturbances before 
designation as depressions.  These studies 
illustrated the usefulness of SeaWinds data 
towards tropical disturbance detection, with the 
intent of improving operational activities.  The 
early identification of surface circulations 
presented in these studies suggests an 
opportunity to detect the early stages of TCG, 
setting the basis for this paper.   

The detection technique described herein has 
the potential for applications in the scientific and 
operational communities.  In operational 
applications, the forecasting community can 
implement the detection technique as an 
additional observational tool.  In doing so, the 
technique can enhance the current observing 
system employed to identify and monitor tropical 
weather systems, thereby reducing the time 
forecasters spend examining the tropics for 
incipient systems.  In research applications, 
identification of the early stages of TCG can 
enhance understanding in regions where little 
research has been conducted due to the lack of 
surface observations, prior inability to conclusively 
locate TC precursor disturbances, and 
consequently the lack of observation studies 
(Reasor et al. 2005) on the establishment of the 
initial surface vortex.  This study focuses on the 
Atlantic basin, but the detection technique can be 
applied to other tropical regions, such as the 
Pacific basin, after adjusting the threshold values 
to account for regional differences in TCG 
mechanisms.   

The ability to detect the early stages of TCG 
provides an opportunity to classify tropical 
disturbances in the Atlantic basin based on the 
source of initial surface cyclonic vorticity.  
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Following categorization by Bracken and Bosart 
(2000) these sources include disturbances 
associated with: (i) monsoon troughs or the 
intertropical convergence zone (Riehl 1954, 1979), 
(ii) an easterly wave (Carlson 1969; Burpee 1972, 
1974, 1975; Reed et al. 1977; Thorncroft and 
Hoskins 1994 ab), (iii) a stagnant frontal zone 
originating in the midlatitudes (Frank 1988; Davis 
and Bosart 2001), (iv) mesoscale convective 
systems (MCSs; Bosart and Sanders 1981; 
Ritchie and Holland 1997; Simpson et al. 1997; 
Bister and Emanuel 1997; Montgomery and 
Enagonio 1998), and (v) upper-level cut-off lows 
that penetrate to lower levels (Avila and Rappaport 
1996).  Among these, our research in the Atlantic 
basin affords the possibility to investigate cases 
associated with easterly waves.  Of great interest 
is the prospect to examine the connection 
between a cold-core wave disturbance in the 
tropical easterlies and a warm-core tropical 
cyclone, which remains an unresolved issue in 
TCG research. Easterly waves are of great 
importance since approximately 63% of tropical 
cyclones in the Atlantic basin originate from 
African easterly waves (Avila and Pasch 1992).  

Another fundamental issue with TCG involves 
the formation of the surface vortex prior to the 
onset of the Wind Induced Surface Heat Exchange 
(WISHE) intensification mechanism of Rotunno 
and Emanuel (1987).  The generation of surface 
vorticity and its interaction within regions of deep 
cumulonimbus convection has been hypothesized 
in recent numerical (Hendricks et al. 2004; 
Montgomery et al. 2006) and observational 
(Reasor et al. 2005) studies to lead to the 
establishment of the initial surface vortex.  The 
fine details of this surface vorticity organization 
process cannot be resolved with SeaWinds data.  
However, SeaWinds data may resolve the general 
evolution of vorticity and provide estimates of 
vorticity available at the surface prior to TCG, 
which are needed for numerical model initialization 
and validation.  

 
2. DATA 

 
Ocean wind vectors are obtained from the 

SeaWinds scatterometer for the Atlantic basin.  
QuikSCAT has slightly less than twice-daily 
coverage over this area and, hence, provides 
infrequent temporal sampling.  To provide 
continuity of the track and verification of tropical 
disturbances between the relatively sparse 
QuikSCAT overpasses, GOES infrared images are 
acquired and compiled into animations.  These 
animations allow cloud features that are 

associated with the surface vorticity signatures to 
be tracked.  The conjunction of QuikSCAT and 
GOES is discussed in more detail in section 3.3. 

 
2.1  Scatterometer Data 

The scatterometer data that is used in this 
study is the simplified Ku2001 dataset produced 
by Florida State University’s Center for Ocean-
Atmospheric Prediction Studies (COAPS).  It 
contains wind vectors, rain flags, locations, and 
times.  The geophysical model function (GMF) 
used to obtain this data is the Ku2001 product 
developed by Remote Sensing Systems (RSS).  
The Ku2001 product is currently the most accurate 
GMF for most meteorological conditions 
(Bourassa et al. 2003).  It performs far better near 
nadir, swath edges, and rain than either the 
science quality product from Jet Propulsion 
Laboratory (JPL) or the near real-time product 
from NOAA/NESDIS.  This improved vector wind 
retrieval algorithm provides a fully integrated 
stand-alone rain flag and the capability to retrieve 
winds up to 70 m/s (Wentz et al. 2001).  The 
scatterometer winds are calibrated to equivalent 
neutral winds at a height of 10 meters above the 
local mean water surface (Bourassa et al. 2003). 

 
2.2  GOES Imagery 

GOES-8 and GOES-12 infrared images are 
obtained from the NOAA/NESDIS Comprehensive 
Large Array-data Stewardship System (CLASS) 
for our 15 tropical cyclone cases during the 1999-
2004 Atlantic hurricane seasons.  Images are 
acquired approximately every three hours and 
compiled into separate animations, with a 
backward and forward-in-time progression. 
 
3. METHODOLOGY 

 
3.1  Detection Technique 

The vorticity-based detection technique used 
in this study is a variation of the method developed 
by Sharp et al. (2002).  This technique calculates 
relative vorticity within the SeaWinds swaths and 
applies a mean vorticity threshold over a specified 
spatial area (Sharp et al. 2002).  Different criteria 
are utilized than those of Sharp et al. (2002), 
permitting earlier identification of tropical 
disturbances.   

The spatial scale for averaging vorticity within 
the SeaWinds swaths is a 100 km by 100 km area.  
Individual vorticity values are calculated from wind 
observations, defined by 4 [2 x 2] adjacent 
scatterometer vectors, by determining the 
circulation around each box and then dividing 
through by the area (Sharp et al. 2002).  This 



method enables the vorticity to be calculated at 
the same spatial density as the wind observations.  
In each calculation a minimum of 3 wind vectors 
out of the 4 in a square are required (if only 3 wind 
vectors exist, the square becomes a triangle).  The 
wind vector data we use in this approach includes 
rain-flagged data, which are prone to ambiguity 
removal errors (reversal of wind direction).  
Incorporation of rain-flagged data can affect the 
vorticity calculation, resulting in noise.  How this 
noise compares to the signal varies across the 
QuikSCAT vorticity-based track of tropical 
disturbances and is discussed in section 5.  

The criteria that define the detection technique 
consist of three components.  These criterion 
require that at the specified spatial scale (100 km 
by 100 km area): the average vorticity must 
exceed a minimum vorticity threshold, and the 
maximum rain-free wind speed must exceed a 
minimum wind speed threshold.  The third criterion 
is that these conditions be met for at least 80% of 
the overlapping 100 by 100 km boxes centered on 
the vorticity points within 50 km of the vorticity 
points being tested.  If these criteria are met, then 
the system under consideration is deemed a 
tropical disturbance, which may develop into a 
tropical cyclone.  For this study, the 15 cases 
chosen are classified tropical cyclones and, 
hence, are known to develop.  The thresholds 
used here are greatly reduced from those of Sharp 
et al. (2002). 
 
3.2  Threshold Determination 

The threshold values defined in our detection 
technique are determined using research-quality 
SeaWinds data for 15 tropical cyclones during the 
1999-2004 Atlantic hurricane seasons.  In 
preliminary examples we applied a speed and 
vorticity threshold of 4.0 ms-1 and 2.0x10-5 s-1, 
respectively.  Results showed that 65 wind fields 
sampled by the overpasses fit these criteria; 
however, some of the vorticity signatures identified 
were indistinguishable from noise (i.e., false 
alarms).  Therefore, it was determined that these 
threshold values were too small.  To reduce the 
number of false alarms found in our preliminary 
example, a categorical score is computed for a 
range of vorticity and wind speed thresholds to 
determine appropriate values. 

The categorical score considered in this study 
is the probability of detection (POD), which 
evaluates the effectiveness of detection 
techniques.  It is defined as:  

! 

POD =
H

H +M
                       (1) 

where H is the number of hits and M is the number 
of misses.  Using the GOES imagery, the cloud 
cluster broadly associated with each of the 15 
classified tropical cyclones is traced back in time.  
In QuikSCAT overpasses, a “hit” is a vorticity 
signature that fulfills the detection technique’s 
criteria within close proximity (175 km) to the 
identified relevant cloud cluster center, and a 
“miss” is a vorticity signal that does not meet the 
detection technique’s criteria within this close 
proximity.  The POD score measures the ability of 
our technique to accurately identify tropical 
disturbances in the correct locations.  A score of 1 
indicates perfect detection (all vorticity signatures 
in the QuikSCAT overpasses are hits), whereas, a 
score of zero represents negligible detection (all 
vorticity signatures in the QuikSCAT overpasses 
are misses).  
 

Figure 1.  Probability of Detection (POD) graph.  
Lower threshold values result in a higher 
probability of detection and increased false 
alarms.  Higher threshold values result in detection 
of stronger systems (more misses) and, hence, 
less false alarms. 
 

In order to examine this method, a POD plot is 
produced that assesses the contributions from 
both wind speed and vorticity thresholds in 
regards to our preliminary example (Fig. 1).  This 
plot illustrates that low threshold values result in a 
higher probability of detection (albeit more false 
alarms), whereas, high thresholds result in a lower 
probability of detection.  A POD score of 1 is most 
desirable since it represents perfect detection; 



however, the test cases include two examples that 
are indistinguishable from noise.  Through 
analysis, the 96% POD contour is chosen based 
on its large gradient and high sensitivity area, as 
well as its reduction of false alarms.  Threshold 
values associated with this contour include a 
vorticity and wind speed threshold of 5.0x10-5 s-1 
and 6.3 ms-1, respectively.  Utilization of these 
values within our detection technique shows that 
62 wind fields sampled by the overpasses meet 
our criteria.  
 
3.3 Track Assessment 

The combination of QuikSCAT’s four-day 
repeat cycle and approximate twice-daily coverage 
(globally averaged) affords the Atlantic basin with 
infrequent temporal samplings, which proves 
problematic in regards to studies based purely on 
QuikSCAT.  As previously mentioned, 62 
QuikSCAT overpasses contain tropical 
disturbances that fulfill the detection technique’s 
criteria.  Though substantial in number, the time 
period between these overpasses is anything but 
adequate, with a range from 11 to 36 hours. These 
temporal gaps may not be a problem for detection 
of existing tropical cyclones or tropical 
disturbances near classification; however, they are 
significant for identification of tropical disturbances 
associated with the early stages of TCG.  Gaps 
between detection generate uncertainty regarding 
a tropical disturbance’s track and positioning in 
time.  To provide continuity of the track, which is 
used to validate the vorticity signatures identified 
by the detection technique, the combination of 
GOES and QuikSCAT is necessary.  

GOES infrared images provide supplementary 
observational guidance between the relatively 
sparse QuikSCAT overpasses.  For the 15 cases, 
GOES animations are created with a backward 
and forward-in-time progression.  These 
animations allow the cloud mass associated with a 
tropical disturbance to be tracked, providing 
insight into the position and track extent of the 
tropical disturbance.  For a large, organized cloud 
mass, the location of the corresponding surface 
vorticity signature is evident within QuikSCAT-
derived relative vorticity swaths.  However, 
through the pre-tropical cyclone tracks of our 15 
cases, it is apparent that the cloud masses go 
through phases of intensification and de-
intensification (i.e., maturing and dissipating cloud 
masses).  Categorization of these phases is 
dependent upon spatial size, organization, and 
convective features.  If the cloud mass associated 
with a tropical disturbance is going through de-
intensification it may separate into numerous cloud 

clusters, making it difficult to pinpoint a specific 
cloud cluster and, hence, a position to use in 
testing the detection algorithm.  The use of 
QuikSCAT and GOES together greatly reduces 
the ambiguity in determining which cloud system 
to track. 

 
4.   RESULTS 
 

Results for the 15 tropical cyclones during the 
1999-2004 Atlantic hurricane seasons are listed in 
Table 1.  These systems are chosen because their 
coverage is adequate for reasonable study in the 
Atlantic basin.  Ten of the 15 tropical cyclones 
originate as tropical waves off the coast of Africa 
(i.e., African easterly waves).  These include Floyd 
(1999), Debby (2000), Nadine (2000), Jerry 
(2001), Dolly (2002), Danny (2003), Isabel (2003), 
Juan (2003), Nicholas (2003), and Alex (2004).  
The other five cases originate from sources other 
than tropical waves, such as upper-level cut-off 
lows and stagnant frontal zones.  These include 
Florence (2000), Michael (2000), Karen (2001), 
Noel (2001), and Gustav (2002).   
 
Table 1. Results for 15 tropical cyclones during 
the 1999-2004 Atlantic hurricane seasons. The 
last column signifies the hours elapsed between 
the NHC initial classification and our earliest 
tropical disturbance identification (i.e., tracking 
time). 

Storm Year NHC Initial 
Classification 

Tracking 
Time 

Floyd 1999 Tropical 
Depression 

46 

Debby 2000 Tropical 
Depression 

95 

Florence 2000 Subtropical 
Depression 

67 

Michael 2000 Subtropical 
Depression 

38 

Nadine 2000 Tropical 
Depression 

50 

Jerry 2001 Tropical 
Depression 

101 

Karen 2001 Extratropical Low 19 
Noel 2001 Subtropical Storm 62 
Dolly 2002 Tropical 

Depression 
53 

Gustav 2002 Subtropical 
Depression 

25 

Danny 2003 Tropical 
Depression 

38 

Isabel 2003 Tropical 
Depression 

101 



Juan 2003 Tropical 
Depression 

26 

Nicholas 2003 Tropical 
Depression 

64 

Alex 2004 Tropical 
Depression 

79 

 
Tropical disturbances associated with the 

early stages of TCG are found for these cases 
within a range of 19 hours to 101 hours before 
classification as tropical cyclones by the NHC 
(Table 1).  The average tracking time for these 
systems is approximately 58 hours, where tracking 
time is defined as the time elapsed between the 
NHC initial classification and our earliest tropical 
disturbance identification.  Some examples of the 
technique in identifying the early stages of TCG 
are illustrated in Figs. 2 and 3.  These figures 
show QuikSCAT-derived relative vorticity overlaid 
with solid black contours, signifying the locations 
where the detection technique’s criteria are met 
within 175 km from the cloud cluster center in the 
associated GOES infrared image.  Though we 
have cases for a variety of sources, primary focus 
centers on those cases associated with easterly 
waves.  These cases are chosen due to the ability 
of our detection technique to track the tropical 
disturbances associated with these tropical 
cyclones back to the coast of Africa where they 
originate as easterly waves.   

 

 
 

Figure 2. Noel, 26 hours before classification as a 
subtropical storm. The vorticity signature shown is 
associated with the non-tropical occluded low that 
produces Noel.   

 
 

Figure 3. Floyd, 46 hours before classification as 
a tropical depression.  The vorticity signature 
shown is associated with the easterly wave that 
spawns Floyd.  
 

The transition from an easterly wave to 
tropical cyclone is clearly evident in the pre-
tropical cyclone (pre-TC) tracks of the easterly 
wave cases.  This evolution is depicted through 
comparison of the wind and rain signatures in the 
areas where the detection technique’s criteria are 
fulfilled within 175 km from the cloud cluster 
center.  Based upon the relationship between the 
wind and rain signatures, the evolution is 
subdivided into stages (section 5). 
 
5.   DISCUSSIONS 

 
Results from the vorticity-based detection 

technique prove very effective in identification of 
tropical disturbances; however, the principal 
concern with this technique regards the ambiguity 
removal errors associated with rain-flagged data.  
These selection errors are evident for the majority 
of the 15 cases, but the cases more seriously 
affected are those originating in the tropics (i.e., 
easterly waves).  Disturbances connected with this 
origin exhibit lower wind speeds and high moisture 
content, contributing to the significant number of 
rain flags and, hence, ambiguity removal errors.  
In contrast, cases that develop from sources other 
than tropical waves, such as upper-level cut-off 
lows and stagnant frontal zones, are generally 
unaffected by the negative influences of rain (i.e., 



selection errors).  Systems associated with such 
sources have subtropical origins and therefore 
exhibit higher wind speeds and reduced moisture 
content.  A key example of a subtropical system 
that illustrates such features is the disturbance 
associated with pre-TC Noel on November 2 (Fig. 
2). 

Incorporation of these selection errors within 
the technique significantly impacts the vorticity 
calculation.  As previously mentioned, average 
vorticity is calculated within a 100 km by 100 km 
area using individual vorticity values, which are 
determined from wind observations via the 
circulation theorem (section 3.1).  Therefore, if the 
wind observations used to calculate vorticity at 
each grid cell include ambiguity removal errors on 
the outer bounds of the spatial domain, then the 
average vorticity is affected.  The location where 
these selection errors (i.e., incorrectly selected 
ambiguities) influence the averaged vorticity is 
approximately 100 to 140 km from the selection 
errors. 

Cases associated with easterly waves can be 
considerably affected by the ambiguity selection 
errors associated with rain-flagged data.  The rain-
related issues in these two case studies vary 
throughout the QuikSCAT vorticity-based track; 
however, a similar vorticity signal-to-noise pattern 
is evident through comparison of the wind and rain 
signatures (associated with vorticity signatures 
that met the detection technique’s criteria within 
175 km from the cloud cluster center).  The 
relationship between these signals (i.e., wind 
speed and rain) has been previously characterized 
(Weissman et al. 2002).   

The amount of backscattered power that is 
received by the scatterometer is a function of wind 
speed and rain characteristics (Weissman et al. 
2002).  If the wind signal is larger than that of the 
rain signal, then rain insignificantly affects the 
backscatter signal.  However, if the rain signal is 
larger than that of the wind signal, then rain 
influences the backscattered power.  The 
influence of rain distorts the scatterometer signal, 
potentially creating wind direction reversals in the 
data which affect the average vorticity calculation.  
In areas strongly dominated by rain, the 
scatterometer directions are perpendicular to the 
nadir track.   

Based upon the relationship between wind 
and rain signatures in the areas where the 
detection technique’s criteria are met (within 175 
km from the cloud cluster center), the pre-TC 
tracks of each easterly wave case are subdivided 
into stages.  These stages consist of an initial, 
intermediate, and near-TC phase.  The initial 

stage corresponds to the earliest vorticity 
signatures identified by the detection technique, 
the near-TC stage is associated with the vorticity 
signatures detected directly prior to NHC 
classification, and the intermediate stage 
constitutes the vorticity signatures between the 
initial and near-TC stages.  Each of these phases 
is discussed in detail in subsequent sections 
(sections 5.1-5.3).  These stages depict the 
transition of a tropical disturbance within an 
easterly wave to a tropical cyclone, and are further 
discussed in section 5.4. 

 
5.1  The Initial Stage 

The vorticity signatures that are identified by 
the detection technique are small in spatial extent 
and very weak.  These initial vorticity signatures 
correspond with rain-flagged wind vectors and few 
large ambiguity removal errors (i.e., wind direction 
reversals).  This situation implies that the wind 
signal is larger than the rain signal (Weissman et 
al. 2002).  Therefore, any vorticity modification that 
occurs as a result of selection errors is small when 
compared to the signal.   

 
5.2  The Intermediate Stage 

Relative to the initial stage, the vorticity 
signatures identified in the intermediate stage are 
stronger and have a larger spatial size.  The areas 
where the detection technique’s criteria are fulfilled 
(black solid contours) are inundated with 
numerous rain-flagged wind vectors and ambiguity 
removal errors, implying that the vertically 
integrated rain rates have increased relative to the 
initial stage.  The rain-flagged wind vectors are 
comparatively large in magnitude and exhibit an 
across swath direction, signifying rain 
contamination.  This situation implies that the rain 
signal has grown to dominate the wind signal.  
Medium to strong tropical storms also have this 
characteristic.  Thus, rain-related vorticity 
modification is equivalent or large when compared 
to the signal.  In these instances, several of the 
detected location areas appear to be a result of 
ambiguity selection errors.  In regards to this 
stage, the detection technique is pinning down the 
general area of the tropical disturbance and, 
though some identified signatures are byproducts 
of selection errors, the detection technique is 
effective.  In general, the intermediate stage is the 
development phase of the pre-TC tracks.  
Reasoning behind this stems from the beginning 
of a cyclonic circulation in the surrounding wind 
pattern and increase of vertically integrated rain 
rates. 
 



5.3  The Near-TC Stage 
Vorticity signatures associated with the near-

TC stage are approximately one to two days prior 
to NHC classification.  These signatures are very 
organized and have a large spatial size.  A large-
scale cyclonic circulation is present for each 
signature with strong wind speeds (strong in 
relation to the wind speeds in the initial and 
intermediate stages).  The near-TC vorticity 
signatures correspond with rain-flagged wind 
vectors and few ambiguity removal errors.  This 
situation implies the wind signal dominates the 
rain signal.  Therefore, any vorticity modification 
that occurs as a result of selection errors is small 
when compared to the signal.  Relative to the 
intermediate stage, the near-TC stage, with less 
rain-related problems, indicates that either the rain 
rate has been reduced (which we have not 
examined) or that the wind speeds have 
increased, the latter of which appears to be true.  

 
5.4  Pre-TC Track Transition 

The vorticity signal-to-noise pattern associated 
with the QuikSCAT vorticity-based tracks of the 
easterly wave cases clearly depict the transition of 
a tropical disturbance within an easterly wave to a 
tropical cyclone and the phases associated with 
this transition (initial, intermediate, and near-TC 
stage).  The initial stage is associated with very 
weak vorticity signatures that have small spatial 
scales.  These initial signals are often related to 
horizontal shear embedded in eastward winds and 
are insignificantly affected by rain.  The 
intermediate stage constitutes vorticity signatures 
that are greatly influenced by rain and rain-related 
problems, as well as the beginning of a large-scale 
cyclonic circulation.  The intermediate stage is of 
significant importance to the evolution of a tropical 
disturbance within an easterly wave to a tropical 
cyclone since it represents a development stage.  
As a result of this growth, the vorticity signatures 
corresponding to the near-TC stage are highly 
organized, with large spatial sizes, increased wind 
speeds, and large-scale cyclonic circulations.  The 
surface signatures of these tropical disturbances, 
as well as the cloud pattern, continue to 
strengthen and organize. 

 
6. CONCLUSIONS 

 
A vorticity-based detection technique is 

developed to identify and monitor tropical 
disturbances associated with the early stages of 
TCG in the Atlantic basin.  Calibration of the 
detection technique is based on visual inspection 
of GOES infrared images, as well as surface 

structure.  Herein, only disturbances that grew into 
tropical cyclones were examined.  From a 
sampling of 15 tropical cyclones during the 1999-
2004 Atlantic hurricane seasons, the technique 
identifies tropical disturbances approximately 19 to 
101 hours before classification by the NHC.  
Herein the minimum tracking time is associated 
with pre-TC Karen (2001); whereas, the maximum 
tracking time is associated with pre-TC Jerry 
(2001) and pre-TC Isabel (2003).  Smaller tracking 
times are associated with systems that develop 
from sources other than easterly waves, such as 
upper-level cut-off lows and stagnant frontal 
zones.  The shorter tracking times stem from land 
interference, which QuikSCAT lacks the ability to 
resolve since it only provides observations over 
water.  Larger tracking times correspond to cases 
that originate from African easterly waves.  Focus 
is primarily concentrated on such cases, due to 
approximately 63% of all Atlantic tropical cyclones 
being associated with tropical waves.   

Overall results for the 15 cases prove very 
successful.  Therefore, the vorticity-based 
detection technique described herein is an 
effective tool in identifying and monitoring tropical 
disturbances in the genesis stage.  For easterly 
wave cases, the detection technique has the 
ability to track tropical disturbances from near the 
coast of Africa.  The pre-TC tracks of these cases 
depict the evolution of a tropical disturbance within 
an easterly wave to a tropical cyclone and stages 
associated with this transition.  These stages 
consist of an initial, intermediate, and near-TC 
phase, which are related to spatial extent, wind 
speed, and precipitation characteristics.  Though 
there is room for improvements regarding 
scatterometer design and wind retrieval algorithms 
to better account for the influences of rain, it is 
reasonable to assume that this technique could be 
useful to scientific and operational communities. 
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