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1. Introduction

As Tropical Cyclones (TC’s) move poleward out of
the tropics toward the midlatitudes, they move into a
region of colder temperatures and associated higher
wind shear. The interaction between the TC and
an increasingly baroclinic regime is referred to as
Extratropical Transition (ET). As the TC moves into
the increasing baroclinic environment, it weakens,
as measured by a rising central sea-level pressure.
If it interacts favorably with midlatitude upper-level
trough then it can reintensify as an extratropical
cyclone or it eventually dissipates. Because ET is a
highly variable process, the end result of this transi-
tion, either dissipation or intensification, is very hard
to predict even with full physics capable systems
(Jones et al. (2003)). Recent research by Ritchie
and Elsberry (2005) has indicated that the outcome
of the transition depends on the midlatitude pattern
that the TC moves in, and the phasing between
the TC and midlatitude upper-level troughs embed-
ded within the large-scale midlatitude circulation.
Figures 1 and 2 show Typhoon (TY) Peter (1997)
and Supertyphoon (STY) Ivan (1997) with two
different outcomes, intensification and dissipation,
respectively. The analysis fields are from the U.S.
Navy’s Operational Global Atmospheric Prediction
System (NOGAPS).

Harr et al. (2000) used Empirical Orthogonal Func-
tion (EOF) analysis to capture the spatial variation
in 500-mb geopotential height analyses from NO-
GAPS. EOF analysis is a technique that can be used
to reduce the dimensionality of a data set without
compromising the explained variance among data
classes. Harr et al. (2000) classified ET cases into
two characteristic circulation patterns, northeast and
northwest, based on the technique. Singular Value
Decomposition (SVD) is a similar technique that can
be used on two different fields to isolate coupled
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modes of variability. Leuliette and Wahr (1999), Wal-
lace et al. (1992) and Bretherton et al. (1992) used
SVD as a coupled pattern analysis technique on
sea surface temperature and sea surface height
variables to explain the covariance between the two
fields. Both EOF and SVD analyses are Projection
Pursuit (PP) applications. Projection Pursuit is
defined as the projection or projections from high to
lower dimensional space by numerically maximizing
a certain objective function called the projection
index (Huber (1985)). PP algorithms are thus very
useful as they reduce the dimensionality of the
original observation space, usually by linear and/or
nonlinear mapping or projection strategies.

Because Harr et al. (2000) found 500-mb analyses
to be good indicators of different ET patterns, we
also use them to capture the variability information
both in the midlatitude upper-level troughs and TCs.
We propose an algorithm composed of PP stages
to predict whether an extratropical transitioning TC
will reintensify or dissipate. We present two different
methods involving multistage PP algorithms to
identify the differences between intensifying and dis-
sipating storms before ET time. We either combine
the results obtained at spatial analysis at individual
times (spatial technique) or combine the data from
different times to take advantage of the variability
information in time (spatiotemporal technique).

In the paper, we first describe the data in Section 2,
and then characterize dimensionality reduction steps
of the technique in Section 3. In Section 4, we
present the results of the forecasting tool proposed
at individual times, and spatiotemporal results are
shown in Section 5. We conclude mentioning future
plans in Section 6.

2. Data and Definitions

We used 12-h 500-mb geopotential height analyses
from the Navy Operational Global Assimilation
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Figure 1: Positive Case (Peter 1997) in Northwestern Pacific: 500-mb Equipotential Height Analyses from NOGAPS for Typhoon Peter in 1997 at (a) June
27, 12Z, before ET (b) June 28, 12Z, at ET (c) and June 30, 00Z, after ET. Arrows indicate the location of the TC remnants

(a) (b) (c)

Figure 2: Null Case (Ivan 1997) in Northwestern Pacific: 500-mb Equipotential Height Analyses from NOGAPS for Super Typhoon Ivan in 1997 at (a)
October 21, 00Z, before ET (b) October 22, 12Z, at ET (c) and October 24, 00Z, after ET. Arrows indicate the location of the TC remnants
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Figure 3: Organization of the classifier with Eigenanalysis and Projection Pursuit stages.
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and Prediction System (NOGAPS). A total of 85
TCs underwent ET in the western North Pacific
during 1997-2004. After removing missing data, 80
cases were retained for the study. The training set
compared 53 storms from years 1997-2002, and 27
storms from years 2003-2004 constituted the test
set. A common time (called ET+00h or the transition
time) was determined for each TC as the first time
that the TC first appears as an open wave in the
500-mb trough. This time is very close to the end
of stage 1 of extratropical as defined by Klein et al.
(2000). The NOGAPS analyses were interpolated
to a 61◦ longitude × 51◦ latitude grid at 1◦ resolution
centered on the TC location starting 48-h prior to
the ET+00h time to 48-h afterwards. This interval
was chosen in order to ensure that the time interval
covered the time when the storm was still a TC
until well after the time of reintensification in positive
cases. The TC location was determined using the
Joint Typhoon Warning Center (JTWC) best track
data when it was available and by examining the
sea-level pressure data from the NOGAPS analysis
when it was not. Sensitivity to domain was tested
by reducing the resolution to 2◦ and trimming the
domain, and this caused no significant change in
performance.

For the purpose of this study, the storms were clas-
sified as either positive or negative cases using the
minimum central pressure trace during ET from the
NOGAPS analyses. If the sea-level pressure (SLP)
of the storm decreased by more than 3 mb after the
ET+00h time, it was called positive. Storms whose
SLP values did not meet this criterion were classed
as negative storms.

3. Analysis

The steps included in the classifier algorithm are
summarized in Figure 3. Each step of the algorithm
involves a reduction in the dimensionality of the orig-
inal data set. A single NOGAPS 500-mb analysis,
for the purposes of our study, contains 61 × 51 =
3111 points. Our training set comprises 53 cases of
ET. Thus, each time of our analysis (9 in all, every
12-h from ET-48h to ET+48h) there are 53 × 3111
data points. This is considered a high-dimensional
data set. Thus, we put the the data through a
series of projection pursuit algorithms to reduce the
dimensionality while retaining the information in the
data that discriminates positive from negative cases.

The first step in the algorithm is an EOF analysis
(Demirci et al. (2004)) that was applied to the train-
ing set every 12 hours from ET-48h to ET+48h. The
output of the EOF analysis is a decomposition into

53 Principle Components (PCs) and their associated
61 × 51 dimensional EOFs.
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Figure 4: Distribution of the 53 storms in 1997-2002 in a 3D scatter plot at
ET+00h. Positive storms are represented with circles and negative storms
are represented with triangles. The coordinates of points are PCs. Max-
imum separation direction, u, is represented with the line. The two ends
and middle of the line are indicated with *.

The next step is to observe each storm in ”PC-
space”. The storms are represented with the first
three PC’s in Figure 4 for visualization purposes
only. The PCs are ordered by the amount of vari-
ance they represent in the original data set with
PC1 explaining the largest portion (> 50%). The first
20 PCs explain over 98% of the variance and are
retained with all higher-order PCs being thrown out.
As higher-order PCs tend to result in over-fitting of
the data, this step serves to increase the stability
of our system as well as decreasing the processing
time and computational load. This reduces our
original 61 × 51 dimensional data set first to 53-D
and then 20-D.

Next, an optimization step is used to find the direc-
tion, û, that maximized the separation of the positive
and negative storm distributions. Various directions
in 20-D PC space are examined and PCs of each
storm are projected on each direction with a dot
product operation. The details of the optimization
step to find the û direction in D-dimensional space
are explained by Demirci et al. (2006). The 10
PCs, which carried more information in terms of
separation, among the first 20 are then selected
considering the û direction found in the previous
optimization step. Next, the same optimization step
is repeated in the new 10 dimensional space and
another û direction maximizing the separation of two
storm distributions is found. The storm coordinates
are projected onto this û direction found and each
of the storm observations is represented with a
projection distance value.
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In order to use this method as a prediction tool,
signal detection theory is used to decide whether
a forecast storm belongs to the positive or the
negative distributions, Poor (1994). The investigated
storm is projected onto û direction in the same
fashion and a threshold value or minimum level of
certainty has been used. We can then compute
Detection rate (PD) (i.e., probability of deciding that
storm is an positive one when it really comes from
the positive storm distribution), and a False Alarm
rate (PFA) (i.e., probability deciding that storm is a
positive when it actually comes from the negative
storm distribution). Estimates of each of these two
probabilities can be computed and used to separate
sensitivity from response bias. The Receiver Op-
erating Characteristic (ROC) curve for the training
data in Figure 6 shows the relationship between PD

and PFA for all possible threshold values for the
specific distribution in Figure 5.
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Figure 5: Histogram of positive and negative storm projection distances
on maximum separation line at ET+00h. Positive storm frequencies were
represented by filled diamonds and negatives by open diamonds. The dis-
tributions were represented by Gaussians. Vertical line shows a possible
threshold.
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Figure 6: ROC curve obtained at ET+00h

The algorithm was applied to the data every 12
hours. The improvement in the training data ROC
curves with time is summarized in Figure 7. We find
that the separation distance and detection rates get
better with time as the two distributions separate.
The separation index, d′, increases rapidly with time

beginning at time ET-24h until ET+48h. Although
the performance before ET and after ET differ
significantly, rapid increase in d′ before ET+00h
is a promising sign that the classification can be
successfully done before ET. At ET-12h, a PD of
80% is obtained with PFA of 25% using a training
set of storms from 1997-2002. The same predic-
tion rate is achieved with PFA of 15% with NOGAPS.
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Figure 7: Separation index with time

4. Forecasting Tool

The real purpose of our research is developing
a forecasting tool that predicts prior to ET+00h
whether a storm is a positive or a negative ET
case. To do this, we project our forecast storm onto
the training data and objectively decide whether it
is positive or negative based on where it falls. A
forecast test was run using 27 Northwestern Pacific
ET cases from 2003-2004 using the 53 cases from
1997-2002 as a training set.

The predicted false alarm rates of 10%, 20%, 30%
and 40% have been calculated using the Gaussian
distributions (e.g. Figure 5) and the results obtained
for times ET-24h, ET-12h, ET+00h and ET+12h
for 2003-2004 storms are tabulated in Table 1.
Performance was poor for times earlier than ET-
24h, and for times after ET+12h intensification is
occurring for positive cases. The positive storms
are indicated with gray rows. The True-False pre-
dictions for each case are represented with 1 and
0, respectively. The resulting performances for all
storms, with PD and PFA rates are presented in the
last three rows. During ET-24h and ET+12h, our
prediction analysis gives success rates of 60-70%
according to the threshold chosen considering all
storms. We wanted to compare the performance
of the designed forecasting algorithm with that of
NOGAPS. For this purpose, NOGAPS analysis and
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prediction fields were generated for a time frame
of 84 hours beginning at ET-24h. Then the same
criterion explained in Section 2 was used to classify
the storms according to NOGAPS. The numerical
prediction system NOGAPS predicts 85% of these
test storms correctly (PFA = 18% and PD = 87%)
at ET-24h where predictions of 84 hours ahead are
considered, last column of Table 1. Table 1 also
shows that storms 4, 6, 9, 11 and 18 consistently
give True predictions. However, storms 1 and
14 are almost always predicted falsely. A more
detailed investigation of the test storms together
with possible reasons is presented in a future paper
that discusses the meteorological aspects of the
process.

Each of the storm observations has been projected
onto a one-dimensional direction in an effort to re-
duce the dimensionality of the data in a way that
maximizes separability of the two populations. Be-
cause the forecast decision is based on that projec-
tion distance, it is worthwhile understanding what the
projection distance corresponds to physically, and
how it helps our predictions. Therefore, we have
constructed the two storm observations that corre-
spond to the rightmost and leftmost end of the pro-
jection distance and present them at ET time in Fig-
ure 8. These correspond to our most negative (Fig-
ure 8(a)), our mean (Figure 8(b)), and most positive
(Figure 8(c)) storm observations, as indicated by the
asterisks on the line in Figure 4. Several features
are evident that separate the negative storm obser-
vation from the positive storm observation at this
time. These include more significant ridging ahead
of the positive transitioning storm in Figure 8(c) com-
pared with Figure 8(a), and a deeper embedding of
the positive storm remnants in the baroclinic zone.
There is a stronger zonal flow ahead of the negative
storm in Figure 8(a) compared even with the mean
image (Figure 8(b)) and the storm remnants exist as
an open wave ahead of the trough compared with the
mean image. These features correspond to some
of those identified in studies of ET storms (Ritchie
and Elsberry (2005), Harr et al. (2000)), and thus re-
flect that the algorithm is basing its prediction on real
physical patterns.

5. Spatiotemporal Analysis

It was indicated in Section 3 that the separation
distance between the two sets of storms increases
consistently between ET-24h and ET+12h. The
difference between the two distributions was utilized
at discrete times to produce the forecasts presented
in Section 4. However, the information we obtain
from the discrete times can be combined to produce

a forecasting tool that incorporates the change
in patterns with time. We designed two different
methods to incorporate the sequence of events into
the analysis to transform the spatial problem into a
spatiotemporal one.

5a. Coupled Pattern Analysis

The first of the methods which we used to improve
the spatial results is Coupled Pattern Analysis. We
apply the Singular Value Decomposition (SVD)
which has previously been used by Bretherton
et al. (1992) to isolate coupled modes of variability
between times series of two fields. The details of
the application are described at the end of the paper
in Section A. Spatial analysis used only one variable
and EOF analysis used the covariance matrix for
the corresponding analyses fields. The covariance
matrix in spatial analysis can be represented by
either HHT or V V T matrices in Figure 9 and these
were used separately. Though, two different fields
with possibly different dimensions can be used to
find the coupled patterns and the matrices V HT or
HV T could be used to find the variabilities between
the classes. We take 500-mb geopotential height
analysis from two consecutive times (ET-12h and
ET+00h, etc.) and regard them as two different
variables to utilize the information V HT or HV T

may include.

The corresponding results of 27 storms from the
years 2003-2004 are presented in the fifth, sixth
and seventh columns of Table 1. These columns
refer to the spatiotemporal results of ET-24h/ET-12h,
ET-12h/ET+00h and ET+00h/ET+12h, respectively.
The results indicate that coupled pattern analysis
performs better than only spatial analysis at most of
the chosen false alarm rates (Table 1).

5b. Combining the observations, ”simple spatiotem-
poral analysis”

In the second of these methods, the new observa-
tions are composed of 500-mb geopotential height
anomalies of each storm at two consecutive times, t1
and t2. The same analysis steps in Figure 3 are then
applied to the new anomaly field. The forecasting
results for the 27 storms from the years 2003-2004
are presented in the eighth, ninth and tenth columns
of Table 1. These columns refer to the spatiotem-
poral results of ET-24h/ET-12h, ET-12h/ET+00h and
ET+00h/ET+12h, respectively. It can be concluded
that the spatiotemporal results outperform the indi-
vidual time results presenting higher detection and
lower false alarm rates in almost all cases. This
can better be confirmed comparing the correspond-
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Table 1: True-False table obtained using the spatiotemporal prediction results of 27 storms in 2003-2004 at ET-24h, ET-12h, ET+00h, ET+12h, ET-24h/ET-
12h, ET-12h/ET+00h, and ET+00h/ET+12h, in two different methods. Positive storms were highlighted gray. Threshold for classification was chosen to
give 10%, 20%, 30%, 40% PF A in the training data. 1 = correct, 0 = incorrect class prediction at each threshold. The last column shows results
obtained using the predicted fields by NOGAPS at ET-24h.

(a) (b) (c)

Figure 8: Comparison of (-) and (+) case images with mean added at ET+00h: (a) Negative; (b) Mean image of all storms; (c) Positive.The images
correspond to the *’s indicated in Figure 4.
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Figure 9: Cross-Covariance matrix for (H) and (V) variables combined.
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ing cells of ET-12h (spatial) to those of ET-24h/ET-
12h (spatiotemporal), or ET+00h to ET-12h/ET+00h,
etc. This is indeed an improvement of the more re-
cent time, t2, results incorporating the data observa-
tion at time t1. Moreover, the performances in the
last three rows indicate that coupled pattern analy-
sis with SVD is not as effective as the simple spa-
tiotemporal analysis. This could be because of the
excessive coupling between the 500-mb geopoten-
tial height data coming from two consecutive times.
Though our initial findings for the multivariable anal-
ysis indicate that coupled pattern analysis outper-
forms the separate variable analysis when two vari-
ables, 500-mb and vorticity, are used.

6. Future Work and Conclusion

A multi-stage projection pursuit technique is applied
to NOGAPS 500-mb geopotential height analyses
at different times to create a forecasting tool that
predicts the outcome of various ET cases. The
performance achieved on test data is less accurate
than that of NOGAPS with a higher PFA for the
same detection performance, but the results are
promising considering the fact that only one variable
has been utilized, as opposed to NOGAPS, which
includes full physical parameterizations. In addition,
NOGAPS is computationally complex, and the
algorithm proposed is a simpler approach.

Incorporating the change with time into the tech-
nique in two different ways using spatiotemporal
analysis improved the results considerably. Initial
results are promising and seem to be good starting
point for future work.

In the future, we plan to automate the user-identified
parts of the algorithm such as determining the
ET+00h time. Moreover classification will be based
on multiple classes rather than just two in a higher
dimensional space. Utilization of other variables
such as upper-level divergence (using the variable
wind), remotely sensed optical and microwave data,
will be investigated to improve the results as these
variables provide differentiation between positive
and negative storms. Addition of more variables
will increase the computational complexity and new
methods may be needed to execute the processing.
We also plan to use forecast fields at earlier times to
test the performance.
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A. Application of SVD

Two variable fields do not necessarily have to have
the same dimensions. Another anomaly matrix Y
can be obtained using the (k × l) dimensional data
images for each storm. These variables can be ar-
ranged into a (kl × N) data matrix, Y. The (kl ×
mn) dimensional cross correlation matrix of the two
variables can be defined as,

Ĉyx =
1

N − 1
Y XT . (1)

Singular value decomposition of the cross correla-
tion matrix is

Ĉyx = U(kl x kl)S(kl x mn)V
T
(mn x mn), (2)

where columns of U, uk, are called as left singular
vectors and columns of V, vk, are called as right
singular vectors. These columns are orthogonal
to each other, UT U = I and V V T = I. uk ’s and
vk ’s are eigenvectors of ĈyxĈ

T

yx, and Ĉ
T

yxĈyx, re-
spectively. r singular values in S(kl x mn) are square

roots of nonzero eigenvalues of both ĈxyĈ
T

xy, and

Ĉ
T

yxĈyx.

Instead of using two different variables, SVD analy-
sis can be used on the same variable but at different
times. In this case, cross correlation matrix is de-
fined as,

Ĉxt1xt2
=

1
N − 1

Xt1 XT
t2 . (3)

In our study, we are utilizing the cross correlation in-
formation of 500-mb geopotential height data at dif-
ferent times. Observation vectors are projected onto
the left and right singular vectors and storm obser-
vations can be represented in a lower dimensional
space similarly,

P′ = VT Xt1 + UT Xt2 . (4)
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