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1. Introduction

There have been many attempts to understand
the role of wave dynamics in regulating hurricane
intensity. A notable deficiency of past hurricane
wave theories is their neglect of moisture. Since
clouds pervade hurricanes, such an approximation
is not soundly justified. Traditionally, the basic
effect of moisture has been viewed as the reduction
of static stability (buoyancy frequency) in the
primitive equations (e.g., Durran and Klemp 1982).
Here, we examine how moisture induced buoyancy
reduction influences vortex Rossby wave dynamics.

In particular, we consider vortex Rossby waves in
a non-precipitating cloudy vortex whose basic state
has no secondary circulation. In general, the vortex
has fluctuations of cloudy and unsaturated air, but
those fluctuations are assumed to occur on smaller
scales than the waves of interest. Section 2 presents
the model that is here used to approximate the wave
dynamics.

We have shown that by reducing buoyancy, mois-
ture can slow the growth of phase-locked counter-
propagating vortex Rossby waves in the eyewall of
a hurricane-like vortex (see Section 3). This sug-
gests that increased fractional cloud coverage might
inhibit asymmetric eyewall breakdown. The conse-
quence on hurricane intensity is a topic of ongoing
study. On the one hand, potential vorticity mix-
ing after eyewall breakdown can directly reduce the
maximum tangential wind speed of a hurricane (e.g.,
Schubert et al. 1999; Kossin and Schubert 2001).
On the other hand, the thermo-fluid dynamics con-
nected to eyewall breakdown is subtle, and may ac-
tually lead to a stronger hurricane (Emanuel 1997;
Montgomery et al. 2002; Persing and Montgomery
2003; Montgomery et al. 2006).

We have also shown that cloud coverage can ei-
ther cause or accelerate the decay of discrete vortex
Rossby waves in a cyclone whose potential vortic-
ity decreases monotonically with increasing radius
(see Section 4). If the Rossby number of the cyclone
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exceeds unity, the discrete vortex Rossby waves can
resonantly excite outward propagating spiral inertia-
gravity waves in the environment. By damping the
vortex Rossby waves, cloud coverage can inhibit the
loss of angular momentum by the associated inertia-
gravity wave radiation. Such loss might otherwise
merit some consideration in the angular momentum
budget of a hurricane (e.g., Chow and Chan 2003).

One type of discrete vortex Rossby wave is an
azimuthally propagating tilt mode. By causing or
accelerating the decay of a tilt mode, cloud coverage
improves the resilience of a monotonic cyclone after
it is misaligned by ambient vertical shear. Such was
anticipated from earlier work that showed or im-
plied that decreasing the (dry) static stability of the
atmosphere increases the realignment rate of certain
vortices that resemble tropical cyclones (Jones 1995;
Reasor and Montgomery 2001; Schecter et al. 2002;
Reasor et al. 2004).

2. The Moist Wave Equations

In this section, we present the model that is
here used to study waves in a cloudy vortex.
Subtleties of its derivation are explained in a
forthcoming paper that is currently under review.

The wave equations are for small hydrostatic per-
turbations of an axisymmetric vortex in gradient
balance. As mentioned earlier, the basic state of the
vortex has no secondary circulation. The only forms
of moisture in the vortex are liquid cloud and vapor.
Air parcels are assumed to move moist adiabatically,
conserving total water mass while not allowing vapor
to exceed its saturation level at any instant.

As usual, let primes and overbars denote pertur-
bation and basic state variables. In addition, let r,
ϕ and p denote the radial, azimuthal and pressure
coordinates. The wave model consists of three prog-
nostic equations and two diagnostic equations, given
immediately below.

The radial and tangential velocity perturbations
u′ and v′ are governed by
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in which φ′ is the geopotential perturbation and ω′ is
the pressure (vertical) velocity perturbation. Equa-
tions (1) and (2) introduce three auxiliary functions
that are connected to the basic state tangential ve-
locity field v̄(r, p). They are (i) the angular rotation
frequency of the vortex Ω̄ ≡ v̄/r, (ii) the modified
Coriolis parameter ξ̄ ≡ f+2Ω̄, and (iii) the absolute
vertical vorticity η̄ ≡ f + r−1∂(rv̄)/∂r.

Our entropy-related variable of choice is the den-
sity potential temperature θρ. Its perturbation is
governed by
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Equation (3) introduces the “buoyancy reduction
factor,”

Υ(r, p) ≡ 1−
(∂θρ/∂p)s,qt

ϕ,t

(∂θ̄ρ/∂p)r
, (4)

which, as explained below, characterizes the frac-
tional cloud coverage in an azimuthal circuit. The
second term in the definition of Υ is the ratio of
two pressure derivatives of density potential temper-
ature. The numerator involves the pressure deriva-
tive at constant moist entropy s and total water
mixing ratio qt. We have derived a formula for this
derivative in terms of temperature T , pressure p and
and total water mixing ratio qt. The derived expres-
sion varies discontinuously between unsaturated and
cloudy air. The overline here represents an average
over azimuth ϕ and time t. The denominator is the
pressure derivative of basic state θρ at constant ra-
dius. For a dry vortex, the numerator is zero, and
Υ = 1. For a very cloudy vortex Υ can be much less
than unity.

In addition to the above prognostic equations, we
have from hydrostatic balance,
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and from mass continuity,
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Here, Rd is the gas constant of dry air, cpd is the
specific heat of dry air at constant pressure, and po =
105 PA is a reference pressure. We need not consider

buoyancy reduction factor (  )
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Figure 1: This preliminary computation shows that the
“buoyancy reduction factor” of a simulated category 5
hurricane is smallest in the very cloudy eyewall region.
The raw simulation data used here was provided to the
authors by Dr. M. Nicholls and Dr. J. Persing of Col-
orado State University.

the linearized equation for total water mass, since
the above system (1-6) does not depend explicitly
on q′t, and is therefore closed.

Note that the above wave equations are the

same as those for a dry vortex, with ∂θ̄ρ/∂p →

Υ∂θ̄ρ/∂p. With moisture, the Eulerian rate of cool-
ing/warming by upward/downward motions is re-
duced by a factor Υ.

Figure 1 shows the Υ-distribution† of a hurricane
that was simulated with RAMS, the Regional At-
mospheric Modeling System developed at Colorado
State University (CSU). This particular simulation
involved no ice. The data was provided to the
authors by Dr. M. Nicholls and Dr. J. Persing at
CSU. It suggests that within the context of the
present model, the best cloudy vortex to represent
a hurricane might have relatively small values of
Υ in the eyewall (near the radius of maximum wind).

3. Eyewall Instability

We have used the moist wave equations (1-6)
to reexamine the eyewall instability of a baroclinic
category-3 hurricane-like vortex (Nolan and Mont-
gomery 2002). In the absence of clouds, the fastest
growing eyewall mode of this particular vortex
consists of two phase-locked counter-propagating

†For this computation, we used an instantaneous az-
imuthal mean as opposed to the tempero-azimuthal mean that
appears in the proper definition of Υ [Eq. (4)].



vortex Rossby waves. The azimuthal wavenumber
of the perturbation is 3.

In order to study the effect of moisture on the
gravest mode, we developed a computationally sta-
ble numerical algorithm for integrating the moist
wave equations forward in time. In a sequence of
numerical experiments, the buoyancy reduction fac-
tor Υ was gradually decreased from unity to bring
the vortex toward slantwise convective neutrality.
Within the context of our model, a necessary condi-
tion for symmetric stability is

Υ ≥ Υnt(r, p) ≡ −
[ξ̄(∂v̄/∂p)]2

Rdη̄ξ̄(∂θ̄ρ/∂p)
p

(

po
p

)Rd/cpd

.

(7)
Slantwise convective neutrality is here defined by
Υ = Υnt.

The numerical simulations showed that increas-
ing the fractional cloud coverage in the vortex
(decreasing Υ) decreases the growth rate of the
gravest mode. This result qualitatively agrees with
the stability analysis of potential vorticity rings
in a quasigeostrophic shallow-water model. There
too, the growing modes are neutralized by reducing
buoyancy (the ambient gravity wave speed).

4. Spontaneous Inertia-Gravity Wave

Radiation and Vortex Resilience

We have also used the moist wave equations
(1-6) to generalize a recent theory of spontaneous
inertia-gravity wave radiation from dry cyclones
to cloudy cyclones (Schecter and Montgomery
2004,2006). In all cases considered, the cyclones
are assumed to have barotropic basic states, Rossby
numbers greater than unity, and potential vor-
ticity distributions that decrease monotonically
with increasing radius. In dry theory, a discrete
vortex Rossby wave will resonantly excite an
outward propagating spiral inertia-gravity wave
of proportional strength in the environment. The
inertia-gravity wave radiation has positive feedback
on the Rossby wave, compelling it to grow. How-
ever, the radiative instability is often quenched by
the negative feedback of potential vorticity stirring
in the Rossby wave critical layer. Our specific goal
was to understand how cloud coverage affects the
quenching.

To this end, we derived a growth rate formula
for the radiative vortex Rossby waves of a cloudy
cyclone. The derivation was based in part on a
new flux-conservative equation for the moist angu-
lar pseudomomentum of a perturbation. As in dry
theory, we converted this equation into one of the

Figure 2: Growth rate (solid curve) of a baroclinic vor-
tex Rossby wave that emits a spiral inertia-gravity wave
of proportional amplitude into the environment. See text
for discussion.

following form for the amplitude a(t) of a nearly-
neutral vortex Rossby wave:‡

da

dt
= (νrad + νcl)a. (8)

The positive radiative pumping rate νrad is roughly
proportional to the outward angular momentum flux
of the emitted inertia-gravity wave. The negative
critical layer damping rate νcl is proportional to the
radial gradient of potential vorticity at the critical
radius r∗, where the angular rotation frequency of
the cyclone equals the angular phase velocity of the
wave. The critical radius is generally outside the
vortex core. The primary effect of cloud coverage
is to move r∗ inward. The same effect would occur
by decreasing the dry static stability of the atmo-
sphere. For monotonic cyclones, moving r∗ inward
typically increases the absolute value of νcl by orders
of magnitude. As a result, the growth rate becomes
negative.

Figure 2 provides a concrete example of how in-
creased cloud coverage negates the growth rate (solid
curve) of a baroclinic vortex Rossby wave in a mono-
tonic cyclone. Details of the Rossby wave and of the
cyclone are unimportant for our discussion. As the

‡To evaluate the explicit formulas for νrad and νcl requires
knowledge of the Rossby wave oscillation frequency and wave-
function out to the radiation zone. These are obtained compu-
tationally from an eigenmode/quasimode solver that we have
written for waves in a barotropic cloudy vortex.



fractional cloud coverage increases in the vortex core
(as Υ decreases), the radiative pumping rate (top
dotted curve) remains roughly constant. In contrast,
for reasons given above, the critical layer damping
rate (bottom dotted curve) explosively grows. Ul-
timately, the growth rate becomes negative and the
vortex Rossby wave can no longer produce sustained
radiation.

The vortex Rossby wave under consideration
could well be a tilt mode. Evidently, adding clouds
to the cyclone will either cause or accelerate damp-
ing of that mode. Thus, moisture not only inhibits
inertia-gravity wave radiation, but it also improves
vortex resilience. A cloudy monotonic cyclone will
realign more rapidly than its dry counterpart after
it is tilted by ambient vertical shear.

Before concluding this section, there is an impor-
tant caveat worth mentioning: the above discussion
pertains to linear theory. If the initial vortex
Rossby wave activity (amplitude) exceeds the finite
absorption capacity of the critical layer, radiative
pumping will ultimately prevail, even if linear theory
predicts otherwise (Schecter and Montgomery 2006).

5. Future Plans

We have derived a relatively simple linear model
for waves in a cloudy vortex. We have begun using
this model to gain further insight into fundamental
wave processes that in principle affect hurricane
intensity and resilience (see Section 1). We plan
more studies along these lines to understand how
moisture influences wave transport of energy and
angular momentum. In addition, we plan to test
at least the qualitative accuracy of our results
against more realistic moist vortex simulations.
These simulations will most likely be carried out
with RAMS. The simple model will be amended (or
reformulated) as necessary to explain increasingly
complex behavior.
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