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1. INTRODUCTION   

Over the past few decades, significant 
research has been conducted into improving 
tropical cyclone (TC) track and intensity forecasts 
while relatively little work has been done to 
improve tropical cyclone rainfall forecasts. This is 
at least partly due to a lack of rainfall forecast 
validation schemes designed specifically for 
landfalling tropical cyclones. We have addressed 
this issue by developing a set of validation 
techniques and objective skill indices specific for 
landfalling tropical cyclones that provide a 
baseline measure of quantitative precipitation 
forecasting (QPF) skill.  

Rainfall in tropical cyclones is produced 
primarily through the evolution of convective 
features, with the heaviest rainfall occurring along 
the track of the storm near the intense core 
convection (e.g., Lonfat et al., 2004).  This strong 
relationship between storm track and rainfall 
distribution can be exploited for the purpose of 
forecast validation, which is done in a post-mortem 
mode when the best track data are available.   
Indeed, several of the techniques developed in 
this study use track-relative methods that allow for 
model rainfall fields to be compared and validated 
against observations while reducing the impact of 
model track forecast errors on QPF skill statistics.  

In this presentation, we describe a set of new 
TC QPF validation techniques.  In addition, we 
describe the development of objective QPF skill 
indices based on these techniques that allow for 
objective comparison of TC QPF performance 
among dynamical models and against the 
benchmark R-CLIPER model.  Finally, we apply 
these techniques and indices to the validation of 
QPF from operational National Weather Service 
models for landfalling U.S. TCs for the combined 
1998-2004 Atlantic seasons as well as for the 
2005 season.       

2. VALIDATION TECHNIQUES   

There are many features of a rainfall forecast 
that can be evaluated.  The 72-h accumulated 
rainfall plots for Hurricane Jeanne (2004) shown in 
Figure 1 indicate wide variability among the 
observations and models in terms of volume, 
distribution and patterns of the rainfall.               

Figure 1.  Plots of 72-h accumulated rain (shaded, in) from 12 
UTC 25 to 12 UTC 28 September, 2004 for (a) Stage IV 
observations; (b) GFDL; (c) GFS; (d) NAM; (e) R-CLIPER.  The 
observed track is shown in black; each model s forecast track is 
shown in red.  R-CLIPER uses the NHC Official track. 
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For example, while the GFDL and GFS 

models both produce the fairly large areas of 
moderate (4 +) rainfall, their axes of heaviest 
precipitation in Georgia are too far to the east, 
consistent with both models

 
eastward track 

forecast bias at that point in the forecast.  The 
NAM and the R-CLIPER models both under 
produce the volume of rainfall that fell over land 
and fail to produce the extreme amounts that were 
observed in central and northeastern Florida.  

In order to evaluate the unique characteristics 
of TC rainfall as shown in this example, we have 
developed validation techniques that address the 
following four critical aspects of TC rainfall 
forecasts: (1) A model's ability to match the large-
scale rainfall pattern; (2) A model's ability to match 
the mean rainfall and the distribution of rain 
volume; (3) A model's ability to produce the 
extreme rainfall amounts often observed in TCs; 
and (4) The impact of a model's track forecast 
error on its QPF skill.  

All validations are performed on storm-total 
rainfall accumulations out to a maximum lead time 
of 72 hours.  For the 1998-2004 Atlantic seasons, 
a total of 35 landfalling storms were used, with one 
forecast included from each storm.  The case 
selected for each storm is from the last 12 UTC 
cycle prior to landfall.    A mask was used to 
exclude all non-CONUS data from all validations.  

2.1 Pattern Matching      

Two metrics commonly used in validations of 
QPF are used to evaluate the ability of models to 
reproduce rainfall patterns produced by the 
landfalling TCs: equitable threat score (ETS) and 
pattern correlation. For these analyses, the 
validation grid was restricted to include only those 
points within 600 km of the best track.   

The ETS results in Figure 2 show that the 
GFS outperformed the other models at almost all 
rainfall thresholds for the 1998-2004 storm 
sample.  The GFDL and NAM were similar for all 
amounts greater than 0.25 inches, and all three 
dynamical models outperformed R-CLIPER by a 
significant amount.  

For the pattern correlations (not shown), there 
was wide case-to-case variability, but the GFS had 
the highest frequency of superior performance 
(highest correlation for 38% of the storms), while 
the GFDL and R-CLIPER had the lowest 
frequency of superior performance (highest 
correlation for 18% of the storms).  The computed 
mean correlation coefficients over all cases are as 
follows: GFS (0.65), NAM(0.56), GFDL(0.50) and 
R-CLIPER (0.40). 

Figure 2.  Plot of equitable threat score (ETS) for storm total 
rainfall for all models and all U.S. landfalling storms from 1998-
2004.  

2.2 Mean rainfall and rain volume distributions   

Due to the threat of inland flooding, it is 
important to evaluate the ability of the models to 
forecast the volume of water that will fall over a 
given region.  Figure 3 shows the mean storm-
total forecasted rainfall in 20-km swaths centered 
on each model s forecasted storm track, as well as 
the observed rainfall centered on the best track. 

Figure 3.  Radial distribution of mean storm rainfall (in) for all 
1998-2004 storms for all models and observations, plotted as a 
function of across-track distance from the storm track.  

Throughout most of the radial range, R-CLIPER 
closely approximates the observed mean rainfall 
totals, followed by the NAM and GFS.  The GFDL 
has a pronounced over forecast bias, with mean 
rainfall totals about 40% higher than the observed 
mean within 150 km of the storm.  An evaluation of 
total accumulated rain volume within 600 km of the 
best track confirms this bias in the GFDL, with a 



mean percent volume bias of 37.4% greater than 
the observations.  The GFS also has a significant 
over-forecast bias (20.5%), while the NAM has a 
much lower bias (3.6%).  The R-CLIPER, due to 
poor rain production at large radii, has a negative 
mean volume bias (-21.3%).  

To further refine the analysis of rain volume 
distribution across a grid, a variable called rain flux 
is introduced.  This is simply the product of the 
rainfall value at a grid point and the representative 
areal coverage of that point.  In contrast to most 
standard QPF verification techniques which simply 
account for numerical occurrences of exceeding 
various thresholds, an analysis of rain flux 
provides a volume variable that can still be 
categorized by rainfall amount.  For this reason, 
the rain flux values are kept in mixed units of in-
km2.   Figure 4 shows PDFs of the rain flux for 
each of the models, using all points within 600 km 
of the best track.  For the GFDL model, compared 
to the observations, a larger proportion of the total 
rain flux is accomplished at the high rain amounts 
(i.e., >6 inches).  The inverse is true for the NAM 
and R-CLIPER models, i.e., a larger proportion of 
the rain flux is accomplished at the light-to-
moderate rain amounts and a smaller proportion of 
the flux occurs for the heavy rain amounts.  

Figure 4.  Probability distribution function (PDF) of rain flux for 
all 1998-2004 storms, using data within 600 km of best track for 
all models and observations.      

From the PDFs of rain flux shown in Fig. 4, we 
can derive a cumulative distribution function (CDF) 
of rain flux for each of the models and the 
observations.  From this CDF, we can compare 
the median value of rain flux among the various 
models, i.e., the point on the CDF at which 50% of 
the rain flux occurs in rain amounts greater than 
the indicated threshold rain amount.  Figure 5 
indicates that the 50th percentile occurs at 2.8 
inches for the observations.  The median for the 
GFDL is at a slightly higher value (3 inches), while 

the median for the NAM and GFS is at a lower 
value (2.2 inches) than the observations.  The bias 
toward lighter amounts is most evident in R-
CLIPER, where the 50th percentile is at 1.9 inches.  

Figure 5.  As in Fig. 4, but for Cumulative distribution function 
(CDF).  Median (50%) level is indicated by the horizontal 
dashed line.  Vertical dashed lines indicate, for each model and 
the observations, the rainfall threshold associated with the 
median rain flux value.  

2.2.1  Track-relative analyses    

In order to reduce the impact of a model s 
track forecast error on its QPF validation statistics, 
we can compare track-relative distributions of rain 
flux in bands surrounding the forecast and 
observed tracks.  Distributions of rain flux are 
calculated within 100-km wide bands surrounding 
each model s forecast track and are compared 
against distributions of observed rain flux that are 
calculated within bands surrounding the best track.  
Figure 6a indicates that for the core region band 
(0-100 km), the GFDL has a pronounced bias 
towards producing too much rain flux in the high to 
extreme amounts, while the NAM produces too 
much rain flux in the light to moderate amounts.  

Figure 6.  PDFs of rain flux for all models and observations for 
all 1998-2004 storms. (a) PDFs of rain flux within 0-100 km 
track-relative swath for GFDL, NAM and Stage IV; (b) As in (a), 
but for GFS, R-CLIPER and Stage IV. 

(b) (a) 



The GFS core region PDF profile matches most of 
the observed profile well, but it underproduces rain 
flux in the extreme amounts (>10-15 in).  The R-
CLIPER core region profile offers the closest 
match to the observed, matching light, moderate, 
heavy and extreme amounts.  

2.3 Extreme rain amounts   

The ability of models to produce the extreme 
amounts that are often observed in TCs is another 
factor that is critical for inland flooding 
applications.  Because these extreme amounts are 
highly localized, it is unrealistic to expect current 
models to accurately predict the location of such 
events.  Rather, we focus our analysis on the 
overall probability distribution of these extreme 
amounts.  Using the CDF analyses described in 
the previous section, we develop two techniques.  

From the rain flux CDF shown in Fig. 5, we 
focus on the extreme end of this profile and 
determine how far the model-produced rain flux 
CDF curve deviates from the observed rainfall s 
95th percentile.  In Fig. 5, the 95th percentile in the 
observed rain flux distribution corresponds to a 
rainfall threshold of 8.3 inches, i.e., 5% of the 
observed rain flux is accomplished in amount 
thresholds greater than 8.3 inches.  For the GFDL 
model, the 8.3 inch threshold falls at 92%, 
meaning that 8% of the GFDL rain flux occurs in 
values greater than 8.3 inches.  Thus, more of the 
rain flux in the GFDL occurs in rain amounts 
greater than 8.3 inches, compared to the 
observations.  By contrast, the 8.3 inch threshold 
for the NAM and R-CLIPER both fall at the 97-
98% mark, meaning that a smaller proportion of 
their rain flux occurs at rain amounts above 8.3 
inches.  The 8.3 inch threshold for the GFS falls at 
95%, exactly matching the observed value.  

The second technique for extreme amounts 
employs the same technique just described, but 
instead of including all data points within 600 km 
of the best track, it utilizes the same breakdown 
into 100-km wide bands described above for 
examining the mean rainfall.  This track-relative 
analysis is done for all 100-km wide bands out to 
600 km from the storm track.  

2.4 Sensitivity to track error   

In previous sections, we have used track-
relative analyses to compare rainfall data along 
two different storm tracks.  Here we use a more 
direct approach and shift the model forecast 
rainfall fields in order to explicitly remove the 

impact of track forecast error on QPF 
performance.  

Track-error removal is accomplished by 
shifting each 6-hour forecasted rainfall field by a 
distance equal to the difference in position of the 
forecasted vs. the observed storm location.  The 
field of rainfall that is selected to be shifted 
includes only those grid points that are within 400 
km of the location that is the midpoint between two 
successive 6-hourly forecast positions.  These 
shifted 6-hourly rainfall fields are then summed 
over the lifetime of the storm, producing storm-
total shifted rainfall analyses.   Figure 7 shows an 
example of a shifted GFDL storm-total rainfall field 
for Hurricane Georges (1998).  For this specific 
case, shifting the rainfall fields results in an 
increase in the correlation coefficient from 0.14 to 
0.73, indicating a significant contribution of track 
error in this case.  

Figure 7.  Example of storm-relative grid-shifted rainfall fields 
for GFDL forecast of Hurricane Georges (initial time of 12 UTC 
27 Sep 1998) compared with observed fields.  (a) Original 
GFDL 0-72h forecast of rainfall; (b) Shifted GFDL 0-72h 
forecasted rainfall; (c) Observed 0-72h rainfall.  Amounts are in 
inches.  GFDL forecast track is shown in red; The best track is 
shown in black.  

Equitable threat scores are computed for all cases 
before and after the grid-shifting is done.  The ETS 
comparisons shown in Figure 8 indicate that the 
unshifted scores for the GFS are the highest 
across all rainfall thresholds, while the R-CLIPER 
performs the worst.  Once the fields are shifted, 
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however, the GFDL and NAM models show 
comparable skill to the shifted GFS model over 
almost all rainfall thresholds.  Similar 
improvements are noted in the pattern correlation 
coefficients (not shown).  The GFS shows the    

Figure 8.  Comparison of ETS for all models before (solid line) 
and after (dashed line) performing grid shift for all 1998-2004 
storms.  

least improvement from the grid-shifting and is the 
least sensitive to track error.  This is likely at least 
partially due to the fact that the GFS had the 
lowest 48-h forecast track error for this sample of 
storms.  

3. SKILL INDICES   

The techniques outlined in Section 2 allow for 
evaluation of several different aspects of TC 
rainfall forecasts.  In order to make evaluative 
statements on the relative performance of various 
models being compared, however, further 
synthesis of the results is required.  This is 
especially critical for application to the validation of 
operational model forecasts, where an end-of- 
hurricane season analysis requires definitive 
statistics on model performance.  Therefore, we 
develop skill indices that assess the performance 
of TC rainfall forecasts for these critical forecast 
attributes: (1) Pattern matching; (2) Mean rain and 
rain flux (volume); (3) Extreme rain; and (4) Impact 
of track error.  Table 1 presents a summary of the 
various components that contribute to the skill 
indices.  These indices rely upon algorithms that 
assign a value of 0 for no skill and 1 for most skill.  
The indices can be computed for all dynamical 
models as well as for the R-CLIPER model, 
thereby offering a means of evaluating skill relative 
to a benchmark climatological model.  Details on 
the formulation for each algorithm will be 
presented in a forthcoming paper.  Results (not 

shown) from the initial study of the 1998-2004 
storms indicate superior performance by the GFS 
in 7 of the 9 indices shown.    
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Table 1.  Table summarizing individual TC QPF 
skill indices and the primary QPF attribute 
described.    
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