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1. INTRODUCTION1 

 
The stable boundary-layer (SBL) height 

(h) is important to understand SBL devel-
opment and vertical structure. Clearly, h in-
fluences the SBL mixing properties. Model 
formulations with an explicit prescription of 
the vertical profile of the eddy diffusion coëf-
ficient, require an explicit expression for h 
(e.g. Troen and Mahrt, 1986, Holtslag and 
Boville, 1993). For stable conditions, many 
models of this type overestimate the vertical 
mixing and thus h. So there is a clear need 
for an alternative h formulation for Numerical 
Weather Prediction models.  

Furthermore, the dispersion of pollutants 
is strongly affected by h. Release of pollut-
ants below h during periods of weak winds 
results in very high concentrations of pri-
mary and secondary pollutants, which can 
cause serious consequences for the envi-
ronment. This means that for meteorological 
preprocessors in air quality models, h is the 
most critical quantity to estimate (Lena and 
Desiato, 1999).  

Measuring h is not straightforward be-
cause the turbulence is suppressed at night 
and can be of intermittent nature or ill-
defined (e.g. Holtslag and Nieuwstadt, 
1986). In addition to turbulence, radiation 
divergence, gravity waves, wave breaking 
and baroclinicity influence the SBL structure 
for the very stable case. In that case, prob-
lems occur in measuring h, since no univer-
sal relationship exists between the profiles 
of temperature, wind speed and turbulence 
variables.  

We evaluate the performance of two 
multi-limit equations (Zilitinkevich and Mi-
ronov, 1996; henceforth ZM96) against four 
observational datasets and Large Eddy 
Simulation (LES). Secondly, we present an 
alternative, robust and practical formulation 
for h. Finally, we will show that the Coriolis 
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parameter is not a priori a necessary quan-
tity for h estimation. 
 
2. BACKGROUND 
 

ZM96 identified rotation, surface buoy-
ancy flux and free flow stability to be the key 
physical processes that govern h. Conse-
quently, ZM96 derived a formula for h by 
inverse quadratic interpolation of the rele-
vant boundary-layer height scales that rep-
resent these three processes. The formula 
uses the friction velocity ( *u ), buoyancy flux 

( ss wgB θθ= ), Coriolis parameter (f) and 

free flow stability ( zgN ∂θ∂θ=2  ) (g is 
the gravity acceleration, θ the potential tem-
perature and z the height above ground) and 
reads: 
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Herein sBuL 3
*

* −=  is the Obukhov length 
(without Von Kármán constant). The main 
advantage of Eq. (1) is its multi-limit behav-
iour, i.e. both for f → 0, or N → 0 or L*→ ∞, 
Eq. (1) remains defined. 

Based on Zilitinkevich (1972) and Pol-
lard et al. (1973), ZM96 add two additional 
terms to “include the cross interactions” be-
tween f, Bs and N: 
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with Cn = 0.5, Cs = 10, Ci = 20, Csr = 1, Cir = 
1.7.  

Apart from the benefits discussed 
above, Eqs. (1) and (2) have several draw-
backs. Firstly, a large amount of parameters 
is required in both equations. Several of 
these coefficients are hard to determine 
(ZM96, Joffre et al., 2002, Vickers and 
Mahrt, 2004). For example, Cn ranges from 
0.045 to 0.6 and Cs ranges from 1.2-100 
(ZM96) in the literature. 

Secondly, it is not a priori clear that the 
method of inverse quadratic interpolation 
gives the proper weight to the relevant 
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length scales. Alternative interpolation 
methods will give different results. 

Thirdly, the rules of dimension analysis 
are violated in Eq. (2) because five groups 
are used while only three are allowed since 
we have 5 variables and 2 elementary units. 

 
3. DATASETS 
 

The validation material consists of four 
observational datasets of turbulent surface 
fluxes and radiosonde profiles for a broad 
range of latitude and surface roughness: 
- Sodankylä (NOPEX/WINTEX, Finland 

(67.4° N, 26.7° E, 180 m ASL), forest. 
- CASES-99, Kansas USA, (37.6º N, -

96.7º E, 430 m ASL), prairie grass. 
- Cabauw, The Netherlands,(51.9 ºN, 4.9 

ºE; -0.7 m ASL), grass. 
- SHEBA, 75° N, 144° W to 80° N, 166° 

W, sea ice. 
- GABLS Large Eddy Simulation (Beare 

et al, 2005) 
The θ profile and the LLJ height were used 
to obtain h, except for Cabauw where h was 
obtained by sodar. 
 
4. RESULTS 
 
a) Evaluation 

Fig. 1 shows the performance for, Eq. 
(1). h is satisfactorily estimated for thick 
SBLs, although for h > 400 m, an overesti-
mation is seen. Contrary, for small h, we find 
a clear offset: the model predicts h of only 
several meters where the observations still 
show heights of 50-80 m. The mean RMSE 
and median of the absolute error (MEAE) 
over all locations amounts to 133.0 m and 
86.3 m respect-tively. For the LES model 
results, Eq. (1) gives h = 218 m, while 180 m 
was given by the LES. Note that in the cur-
rent analysis, the impact of subsidence was 
neglected.  

Fig. 2 depicts the modeled Eq. (2) and 
observed h. In this case, h is systematically 
underestimated over the whole range for all 
datasets. For the LES case the modeled h = 
90 m. The off-set for small h as with Eq. (1) 
is present here as well. It generally seems 
that Eq. (2) underestimates the data by a 
factor 2. 

 
b) Calibration 

With the large available dataset, it is 
tempting to recalibrate the coefficients in 
Eqs (1) and (2). The proportionality constant 

for a truly neutral boundary layer (Bs = 0 and 
N = 0), Cn is hard to obtain from atmospheric 
observations truly neutral boundary layers 
are generally absent in the atmosphere. 
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Figure 1: Model performance for Eq. (1). 
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Figure 2: Model performance for Eq. (2). 
 
Therefore, we obtain Cn from LES studies by 
e.g. Mason and Thom-son (1987). They find 
Cn = 0.6 and we will use this value further 
on. The remaining coefficients (Cs and Ci) 
are calibrated on the Sodankylä dataset with 
a Monte Carlo approach. We prefer the 
MEAE to prevent outliers to affect the quality 
too much. Fig. 3 shows a surface plot of the 
MEAE for parameters ranges [ ]20,5∈iC  
and [ ]100,0∈sC . The MEAE has a mini-
mum for Ci = 11, which agrees with findings 
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by Van Pul et al., Kitaigorodskii and Joffre 
(1988), and VH96 who found Ci = 7-13, and 
Joffre et al. (2002) who found Ci = 10. Vick-
ers and Mahrt propose Ci = 15.  

Since no clear minimum is found in the 
contour plot, the model performance is in-
sensitive for coefficient Cs for Cs > 40. This 
also explains the large range of proposed 
values for Cs. Also, no unique parameter set 
for Ci and Cs was found with 0.1 < Cn < 0.7 
(not shown). 

Thus, Eqs. (1) and (2) show a clear bias 
against observations and the parameters 
cannot be calibrated robustly.  
 
c) Alternative formulation 

We apply Buckingham Π  theory on the 
relevant quantities in Eq. (1) to find three 
(instead of five) dimensionless groups: 

NhfuBs *1 =Π , 

LhkLhuhBs ===Π *3
*2 , 

fN=Π3 . 
Consequently we determine a relationship 
between 1Π , 2Π  and 3Π  from observa-

tions. Fig. 3 shows 1Π versus 2Π  for differ-

ent classes of 3Π  on a linear scale. Despite 

the small number of data per class, 2Π  in-

creases obviously with 1Π , but levels off at 
different values for different classes of N/f. 
This relevance of N/f was already mentioned 
by Kitaigorodskii and Joffre (1988). After re-
arrangement of the relevant groups, we find 
for h: 
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L is the Obukhov length (with Von Kármán 
constant). 

A similar Monte-Carlo strategy as in the 
previous section was followed to estimate 
the coefficients α and C1. A clear minimum 
in the MEAE is found in the contour plot with 
C1 = 1.8 and α = 3 as optimal parameter 
values. So in contrast to Eqs. (1) and (2), it 
appears that Eq. (3) can be calibrated in a 
robust way. 
Fig. 4 shows the performance of Eq. (3). 
The model agrees well with the CASES- 
 

Figure 3: Dependence of NhfuBs *
 vs h/L and N/f.  

99 and Cabauw observations, although the 
scatter is larger for Cabauw than for the 
other data sets. This relatively large scatter 
is probably inherent to the sodar based ob-
servations for Cabauw instead of radio 
sounding profiles for the other datasets. For 
SHEBA the model performance is good, al-
though the model seems to slightly over-
estimate the observations. 
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Figure 4: Model performance of Eq. (3) 
 

b) Two dimensionless groups. 
The recent literature discusses the rele-

vance of f  for the boundary-layer height (e.g 
VH96, Mahrt, 1998). Since N is typically 
O(10-2) while f is O(10-4) in the mid-latitude 
atmosphere, VH96 suggest that the impact 
of f can be neglected in practice. Accord-
ingly, we assume that f can be excluded 
from the list of relevant variables for h esti-
mation in practical applications. Conse-
quently, two dimensionless groups: 

*uhN and *Lh remain, as shown in Fig. 
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5. Two regimes can be clearly distinguished. 
For h/L*

 < 1 (towards the near neutral limit) h 
∝ Nu* , which is in agreement with earlier 
findings by Kitaigorodskii and Joffre (1988), 
Van Pul et al., (1994), and VH96. For h/L*

 > 
1 the two groups are linearly related on the 
log-log scale. This implies h ∝ 3NBs . 
Consequently a diagnostic equation for h 
reads as: 
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Figure 5: Scaling without f with hN/u vs h/L*. A 
clear regime change occurs for h/L =1. 
 
5. CONCLUSIONS 
 

This study shows that the multi-limit 
equation for the stable boundary-layer 
height does not work satisfactorily against 
four observational datasets that originates 
from a broad range of latitude and surface 
roughness. An alternative formulation is 
proposed on formal dimension analysis. The 
formulation is robust and gives unbiased 
estimates. Furthermore it is shown that if the 
Coriolis parameter is disregarded as a rele-
vant quantity, the SBL height scaling shows 
two different regimes according to h/L. 
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