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Abstract

We1 investigate the relationships between coherent struc-
tures and turbulence anisotropy in the neutral planetary
boundary layer by means of empirical orthogonal function
(EOF) analysis of large-eddy simulation (LES) data. The
simulated flow contains near-surface transient streaks
similar to those revealed by recent observations. The
EOF analysis extracts recurrent patterns from the signal
based on its second-order spatial correlations. The scale
and direction of streaks estimated subjectively from an
examination of the LES flow field do correspond to that of
the EOFs. The EOF streamlines bear more resemblance
with those of optimal perturbations of an Ekman boundary
layer than with unstable normal modes.

We find that two characteristics of the turbulence de-
pend in an anisotropic way on the horizontal wave vector of
the velocity fluctuations : (i) the vertical extent up to which
the turbulent kinetic energy (TKE) is concentrated and (ii)
the ratio of the vertical TKE to the horizontal TKE. Al-
though still present in the complete signal, this anisotropy
is strongly emphasized by the EOF structures. Further-
more at horizontal wave vectors where recurrent patterns
are dominant, the vertical/horizontal TKE ratio is represen-
tative of same ratio based on the total flow. This ratio is
appreciably far from its isotropic value.

1 INTRODUCTION

Important features of the near-surface turbulence in the
neutrally-stratified planetary boundary layer (PBL) are a
strong anisotropy and the presence of coherent structures.
The relationship between these two features is unclear
and the main focus of this work.

In the PBL, the near-surface flow is characterized by
transient streaks, which are alternating bands of rela-
tively higher and lower streamwise velocity and are re-
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sponsible for a significant fraction of the surface stress.
The streaks are spatially-periodic linear features of the
PBL that reside in the surface layer (SL) and lower
portion of the outer-PBL. They are of much smaller
scale (wavelengths � 100-300 m) than the well-known
PBL rolls [Etling and Brown, 1993, Drobinski et al., 1998,
Young et al., 2002] and are transient rather than persis-
tent. Streaks appear to go through a continuous cy-
cle of generation, growth, decay and regeneration and
typical lifetimes of individual streaks are on the or-
der of tens of minutes [Lin et al., 1996, Foster, 1997,
Drobinski and Foster, 2003]. Because they align approx-
imately along the mean shear corresponding to their ver-
tical extent, streaks tend to form at larger angles to the
mean wind above the PBL than rolls.

Concomitant with the presence of streaks in the neutral
SL, turbulence displays highly anisotropic characteris-
tics: (i) the variances of the wind velocity fluctuations
differ for the three components, i.e. u2 � u2��� 5 � 6,
v2 � u2� � 3 and w2 � u2� � 1 � 2 (where u, v and w are
the streamwise, transverse and vertical wind veloc-
ity fluctuation and u � the friction velocity) or similarly
v2 � u2 and w2 � v2 are about 0.5 as shown numeri-
cally [Moeng and Sullivan, 1994, Drobinski et al., 2006,
Grant, 1986, Grant, 1992, Drobinski et al., 2004] and
experimentally [Panofsky, 1974],
[Nicholls and Readings, 1979]; (ii) close to the
ground, the wind velocity spectra show a devia-
tion from the � 5 � 3 spectral slope expected for
isotropic turbulence with the existence of a -1
power law at intermediate spectral subrange (e.g.
[Katul and Chu, 1998] for a review and more recently,
[Hunt and Morrison, 2000, Hunt and Carlotti, 2001,
Drobinski et al., 2004, Drobinski et al., 2006]).

At the other end on the scale of complexity, the dynam-
ical origin of the rolls and streaks has been investigated
in idealized models of the PBL, especially the Ekman flow.
Lilly established that the Ekman flow is subject to an inflex-
ion point instability [Lilly, 1966]. The PBL rolls are usually
interpreted as the outcome of this instability. More recently,
Foster pointed out that optimal perturbations of the Ekman
flow present large transient amplifications and that their
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scale and orientation are in broad agreement with those of
near-surface streaks [Foster, 1997]. These linear analyzes
lack however all of the nonlinear mechanisms that support
turbulence. Especially, the decay of streaks appears to be
a nonlinear process [Drobinski and Foster, 2003].

In this paper we investigate the relationship between
streaks and turbulence anisotropy in the near-surface flow
of a well-resolved large eddy simulation (LES). One ma-
jor problem is to objectively identify these streaks. In-
deed, while organized structures are frequently observed
in numerical or field data, they have no unique objec-
tive definition and several identification techniques coex-
ist. In vortex identification methods, vortex cores are
visualized as isosurfaces of eigenvalues of the veloc-
ity gradient, the pressure Hessian and related tensors
[Jeong and Hussain, 1995]. Conditional sampling is more
quantitative in that it provides the flow and fluxes condi-
tionally averaged with respect to the occurrence of some
event, typically ejection or sweep events. Yet it is some-
times criticized on the grounds that the results depend
on subjectively chosen sampling criteria. Many studies
of PBL coherent structures have used conditional sam-
pling and vortex visualization techniques [Lin et al., 1996,
Foster et al., 2006]. References to earlier studies can be
found in [Wilson, 1995].

Proper orthogonal decomposition (POD) is an objec-
tive extraction technique which has been widely employed
on engineering flows [Berkooz et al., 1993]. The out-
puts are the eigenfunctions of the correlation functions
and are unique once a quadratic norm has been cho-
sen. There is often an energetically natural choice of that
norm. Furthermore the quadratic quantities can be de-
composed into contributions of the individual structures.
Hence it is a both quantitative and objective method. Yet
its possibilities are much less explored in the geophysi-
cal context, except in climatic variability studies where it
is known as empirical orthogonal function (EOF) analy-
sis. Apparently only Wilson has applied this method to
the PBL [Wilson, 1995, Wilson and Wyngaard, 1995]. He
analyzes an LES simulation of a weakly convective PBL
in a mesoscale box relevant for rolls spanning most of the
PBL. In order to focus on the SL streaks, we analyze a
more finely resolved LES in a smaller box [Carlotti, 2002].

Our analysis complements that of Foster et al.
based on conditional sampling of the same dataset
[Foster et al., 2006]. One major advantage of the EOF
analysis is that, due to horizontal homogeneity, it extracts
the most recurrent vertical pattern for each horizontal wave

vector. The corresponding flows have the same structure
as the linear normal modes or optimal perturbations and
can be compared to them. Furthermore two aspects of
anisotropy can be investigated : (i) the vertical/horizontal
ratio of the velocity components and of the extracted flow
patterns, and (ii) the dependence of turbulent quantities
on the orientation of the horizontal wave vector relatively
to the geostrophic wind.

After the introduction in section 1, section 2 presents the
data analysis technique. Section 3 describes the individual
structures and section 4 investigates their relationship with
the anisotropy. Section 5 discusses the results of the EOF
analysis and section 6 concludes the study.

2 DATA ANALYSIS

2.1 The dataset

The simulation runs the non-hydrostatic LES model
Méso-NH [Lafore et al., 1998] and models a neutrally-
stratified atmospheric boundary layer in a box with size�
L � l � H � = 3 km 	 1 km 	 750 m along the x � y � z axes

respectively. The mesh cell is a cube of side 6.25 m (Nx 	
Ny 	 Nz 
 480 	 160 	 120). The subgrid scale (SGS)
model is based on a turbulence kinetic energy equation
[Cuxart et al., 2000]. However, the simulated flow proved
not to be very dependent on the SGS model (Drobinski
et al. 2006). The computational box is assumed to be at
mid-latitude and a large scale pressure gradient that would
balance a geostrophic wind of 10 m s � 1 above the PBL is
imposed. The top of the domain is a rigid lid. The lateral
boundary conditions are periodic. At the first grid point
above the surface (z = 3.125 m), the wind speed equals
u�
κ log z

z0
where u � is the friction velocity, κ 
 0 
 4 is the von

Karman constant and z0 = 10 cm is the roughness length.
The simulation was started from a laminar velocity field

in which a very weak random temperature fluctuation
(∆T � T � 3 	 10 � 4) was imposed at the bottom of the do-
main in order to generate turbulence. The temperature
fluctuations were quickly damped resulting in a neutrally
stratified turbulent flow. Once the flow reached a statisti-
cal equilibrium, 14 snapshots of the three dimensional ve-
locity, pressure and the turbulent kinetic energy were ex-
tracted and stored, with 500 seconds between each snap-
shot and each previous snapshot is the initial condition for
the next one.

We decompose the velocity field into a
mean flow

�
U
�
z ��� V � z ��� 0 � forced by large-scale
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pressure gradient and turbulent fluctuations�
u
�
x � y � z � t ��� v � x � y � z � t ��� w � x � y � z � t ��� . In the time-averaged

wind hodograph (not shown) the wind is oriented about
12 � left to the x direction in high layers and about 20 �
left to the long direction close to the ground, following an
Ekman spiral continued by a log-layer near the surface.
The mean speed profile is approximately logarithmic up to
about 270 m. However, there is no appreciable turning in
the profile only up to about 40 m, which we take to be the
top of the surface layer.

In the first 100 m, the wind fluctuations form
streaky structures roughly aligned with the ground
wind. These structures appear clearly on horizon-
tal cuts of the velocity field (Fig. 1) and are the
dominant features near the surface, associated with
an overturning circulation [Foster et al., 2006]. The
spacing of the streaks has several apparent scales,
from � 100 m spacing near the surface and 200 m
spacing higher up. The structure of the streaks is
broadly consistent with most LES of the neutrally strat-
ified PBL [Deardorff, 1972, Moeng and Sullivan, 1994,
Lin et al., 1996, Drobinski and Foster, 2003]. These in-
stantaneous flow realizations clearly show a coherent or-
ganization of the turbulence which is not purely wavelike
but is an aggregation of smaller-scale structures.

In this neutral flow, u2 � u2� , v2 � u2� and w2 � u2� increase
between the ground and about 0.02zi (i.e. 15 m)
where they reach a maximum, then decrease with height
(w2 � u2� decrease is much smoother than for the hori-
zontal wind components). The variances u2 � u2� , v2 � u2�
and w2 � u2� are about 5-6, 3 and 1-2 up to about 0.13zi

(i.e. 100 m) [Panofsky, 1974]. The ratios of v2 � u2 and
w2 � v2 are about 0.5 which is in good agreement with
LES studies [Moeng and Sullivan, 1994] and observations
[Nicholls and Readings, 1979, Grant, 1986, Grant, 1992,
Drobinski et al., 2004]. These ratios tend to 1 near the
PBL top. The results of this LES were compared to theo-
retical developments for two-point statistics [Carlotti, 2002]
and integral length-scales [Carlotti and Drobinski, 2004]
near the ground and were validated against sonic
anemometer and Doppler lidar measurements in the near-
neutral surface layer [Drobinski et al., 2006].

We now expose how the EOF analysis permits to re-
cover recurrent patterns from this complex signal.

2.2 Principle of EOF analysis

The principle of EOF analysis, or POD, is the following (see
for example [Holmes et al., 1996], chapter 3). Consider a
signal represented as an N � dimensional real (resp. com-
plex) vector f . Here f will be the deviation of the veloc-
ity field from its time average and N 
 3 	 Nx 	 Ny 	 Nz.
The scalar (resp. Hermitian) product between two vectors
is written

�
f1 � f2 � . A natural choice is that

�
f � f � be the

volume-averaged turbulent kinetic energy. A number of
snapshots f1 ��
�
�
�� fp are available, considered as indepen-
dent realizations of a random vector f , so that it is possible
to define an ensemble average ��� � .

The target of EOF analysis is to find vectors�
φ1 ��
�
�
�� φN � , called empirical orthogonal functions(EOF),

forming an orthonormal basis that optimally represents the
signal. By optimally, it is meant that the projection coeffi-
cients

ai 
 �
φ �i � f � such that f 
 ∑

i
aiφi (1)

have the largest possible variance ��� ai � 2 � . The self-
correlation matrix σ of the signal is the symmetric (resp.
Hermitian) positive definite matrix such that for any φ:�

φ � σ � φ � 
 ��� � φ � f ��� 2 � (2)

Hence we want the unit vector φ1 to maximize
�
φ1 � σ � φ1 � .

It is well known that φ1 is then σ’s eigenvector with the
largest eigenvalue. This eigenvalue is in turn equal to��� ai � 2 � , giving the statistical weight of φ1. The second EOF
φ2 maximizes

�
φ2 � σ � φ2 � in the subspace orthogonal to φ1.

Hence it is the eigenvector with the second largest eigen-
value, and so on. In practice the desired number of EOFs
can be obtained simultaneously. Finally, the projection co-
efficients ai satisfy statistical orthogonality�

a �i a j � 
 0 when i �
 j �
a weak form of mutual statistical independence.

Our set of realizations consists of 14 snapshots of the
whole velocity field taken at different instants. Thus this
procedure extracts the recurrent spatial flow patterns and
drops any temporal or dynamical information from the sig-
nal.

2.3 Fourier decomposition

Due to periodic boundary conditions in the x and y direc-
tions, it is convenient to write the velocity field in Fourier
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Figure 1: Snapshot of the three velocity components U � u � V � v � w in m � s � 1 at altitude z = 60 m.
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representation :

u
�
x � y � z � t � 
 Re ∑

m � n ûmn
�
z � t � exp2iπ � mx

L
� ny

l �
where the horizontal wave-vector

�
kx � ky � 
 2π

�
m � L � n � l �

is quantized according to the box dimensions L and l.
Assuming statistical invariance on horizontal translations,
the cross-correlation between Fourier coefficients ûmn

�
z � t �

with different wave vectors is zero. The eigenvalue prob-
lem is then local to each Fourier mode.

As the scalar product underlying the EOF analysis,
we choose the box-averaged turbulent kinetic energy !�

ûû � � v̂v̂ � � ŵŵ � � dz � H. Hence for each m � n we com-
pute the self-correlation matrix σmn � kx � ky � . This is a
3Nz 	 3Nz matrix made of Nz 	 Nz blocks. Each 3 	 3 block
contains the correlations between two altitudes z and z "
among the Nz 
 120 resolved by the model :# û �mn

�
z � ûmn

�
z " � v̂ �mn

�
z � ûmn

�
z " � ŵ �mn

�
z � ûmn

�
z " �

û �mn
�
z � v̂mn

�
z " � v̂ �mn

�
z � v̂mn

�
z " � ŵ �mn

�
z � v̂mn

�
z " �

û �mn
�
z � ŵmn

�
z "$� v̂ �mn

�
z � ŵmn

�
z "$� ŵ �mn

�
z � ŵmn

�
z "$�&% 


The eigenvalues Emn
i and eigenvectors�

ûmn
i
�
z �'� v̂mn

i
�
z �'� ŵmn

i
�
z ��� of the 3Nz 	 3Nz Hermitian

matrix σmn finally provide the desired EOFs and their
energetic weight. The corresponding flow patterns have
a vertical structure described by

�
ûmn

i
�
z �'� v̂mn

i
�
z �'� ŵmn

i
�
z ���

and a sinusoidal horizontal dependence. We sort the
energies Emn

i in descending order Emn
1 ( Emn

2 ( 
�
�
 Notice
that by construction, Emn 
 ∑i Emn

i is exactly the spectral
density of turbulent kinetic energy for the horizontal wave
vector

�
kx � ky � .

2.4 Decomposition property

At each wave vector, the ratio Emn
1
� Emn called energy frac-

tion explained by the first (i 
 1) EOF is an indicator of
the statistical significance of the first EOF. Suppose for in-
stance that for a given wave vector Emn

1
� Emn 
 1. Then all

projection coefficients ai with i ( 1 must be zero in the de-
composition given by Eq. (1). Thus the flow (within this
Fourier mode) has the same vertical structure at all in-
stants, but appears with a random amplitude given by � a1 �
and at a random position given by the phase of a1. Con-
versely, if the energy is equipartitioned among all EOFs,
the signal is white-in-space noise. So only wave vectors
with a significant explained energy fraction can be said
to be “strongly structured” and present recurrent patterns.

Due to the statistical orthogonality of the projection coef-
ficients ai any quantity that depends quadratically on the
signal can on average be split into individual contributions
from the EOFs. Quadratic quantities of particular interest
here are the turbulent kinetic energy and the shear pro-
duction of turbulent kinetic energy.

The horizontally-averaged turbulent kinetic energy
e
�
z � t � and shear production S

�
z � t � can first be written as

the sum of contributions from each Fourier mode:

e
�
z � t � 
 )*),+ u2 � v2 � w2 - dxdy

2Ll
 ∑
mn

emn � z � t �
emn � z � t � 
 �

ûmnû �mn � v̂mnv̂ �mn � ŵmnŵ �mn � � 2
S
�
z � t � 
 ).) w / u

dU
dz

� v
dV
dz 0 dxdy

Ll
 ∑
mn

Smn � z � t �
Smn � z � t � 
 Re /1/ ûmn

dU
dz

� v̂mn
dV
dz 0 ŵ �mn 0

The quadratic quantities emn and Smn may then be decom-
posed on average into contributions from the individual
EOFs:� emn � z � t ��� 
 ∑

i
Emn

i emn
i
�
z �

emn
i
�
z � 
 � ûmn

i
�
z ��� 2 �2� v̂mn

i
�
z �3� 2 �4� ŵmn

i
�
z �3� 2

2� Smn � z � t ��� 
 ∑
i

Emn
i Smn

i
�
z �

Smn
i
�
z � 
 Re /5/ ûmn

i
dU
dz

� v̂mn
i

dV
dz 0 ŵmn �i 0

3 SIGNIFICANCE AND FLOW
STRUCTURE OF THE EX-
TRACTED PATTERNS

3.1 Significant EOFs

We display in Fig. 2 the energy fraction Emn
1
� Emn ex-

plained by the first (i 
 1) EOF at each wave vector. We
consider that when the energy fraction explained by the
first EOF exceeds a threshold of 6 50%, then the wave
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Figure 2: Energy fraction Emn
1
� Emnexplained by the first

EOF of each Fourier mode as a function of the wave vector
k 
 2π

�
m � L � n � l � .

vector is significant. The choice of the threshold is some-
what arbitrary but does not affect the qualitative shape of
the spectral domain where wave vectors are significant.
Wave vectors with a significant explained energy fraction
lie all in a narrow range of the Fourier space close the line
m � n 
 0. These Fourier modes have their phase lines
nearly parallel to the surface wind, in agreement with qual-
itative observation of streaks.

We shall consider and compare the contributions due to
four sets of EOFs:7 the set A 
 �

ûmn
i
�
z ��� v̂mn

i
�
z ��� ŵmn

i
�
z ��� imn for all i � m � n.

Set A consists of all EOFs in all Fourier modes and
its contribution is by definition the average over the
full flow field.7 the set B 
 �

ûmn
1
�
z �'� v̂mn

1
�
z �'� ŵmn

1
�
z ��� mn for all m � n.

Set B consists of the dominant EOF in each Fourier
mode.7 the set C 
 �

û � m �m
i

�
z ��� v̂ � m �m

i
�
z ��� ŵ � m �m

i
�
z ��� i �m for all

i � m. Set C consists of all EOFs in the line of Fourier
modes such that m � n 
 0 and identified as “strongly
structured”. The contribution of this set to quadratic
quantities is equal to the spectral contribution of these
particular modes.7 the set D 
 �

û � m �m
1

�
z ��� v̂ � m �m

1
�
z �'� ŵ � m �m

1
�
z ��� m for all

m. Set D consists of the dominant EOF of each
“strongly structured” Fourier mode.

Hence the sets B and C are distinct subsets of A , and D
is the intersection of sets B and C.

3.2 Energy and turbulent fluxes

In order to quantify the actual weight of the extracted struc-
tures, we display the contributions of sets A, B, C, and D to
the vertical profiles of turbulent kinetic energy and of shear
production of energy (Fig. 3). Let us first compare sets C
and D. By definition, the set D is made of the most en-
ergetic EOFs of set C. This reflects onto their respective
contribution to the TKE and shear production : although
it consists of much fewer EOFs, set D contributes to an
amount of the same order of magnitude as set C. Let us
now compare sets C and A. Set C covers only a small
fraction of the spectral space and contributes modestly to
the overall profile corresponding to set A. Figure 3 empha-
sizes the fact that the contribution of set C is an order of
magnitude smaller that the total. Finally, it is interesting
to compare the contributions due to set B to the complete
average, corresponding to set A. Indeed, set B is to set
A what set D is to set C : it contains only one EOF (the
most energetic) at each wave-vector. However because
most wave-vectors are weakly structured (do not present
recurrent patterns), by ignoring all but one EOF at each
wave-vector one also drops a lot of the velocity fluctua-
tions. As a result, while the contributions of sets C and D
are of the same order of magnitude, the contribution of set
B is several times smaller than the complete average (set
A).

3.3 Typical flow structure

Due to incompressibility, the flow corresponding to a sin-
gle Fourier mode or to several Fourier modes with parallel
wave vectors can be conveniently described in terms of
an across-wave-vector horizontal (along-roll, downstream)
velocity u " and an along-wave-vector stream function, from
which the vertical velocity w and the along-wave-vector
horizontal velocity v " are derived. This description and
choice of axes is called Squire’s transformation in the con-
text of normal-mode stability analysis [Foster, 1997].

The first EOFs are found to be concentrated close to the
ground with a vertical extension comparable to their hori-
zontal wavelength. At very low wave-numbers ( � m 
 n 

1 � 2), the vertical scale of the EOFs is about 200 8 400 m,
quite too large for streaks. Higher-wavenumber EOFs
( � m 
 n 
 4 � 5) are more likely to correspond to the
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Figure 3: Contribution of sets of EOFs A (solid), B (crosses), C (circles) and D (dots) to the profiles of turbulent kinetic
energy e

�
z � (left) and shear production of energy S

�
z � (right).

streaks (Fig. 4). Both have the structure of an alternat-
ing along-roll jet superimposed onto two counter-rotating
rolls typical of linearly unstable normal modes and of op-
timal perturbations [Foster, 1997]. The stream function is
approximately in quadrature with respect to the along-roll
velocity. This means that the along-roll and vertical ve-
locities are roughly in phase, producing on average a ver-
tical flux of horizontal momentum and extracting energy
from the mean shear. Compared to the downstream ve-
locity, the stream function of the linearly most unstable
normal mode extends vertically roughly twice as much
([Foster, 1997], fig. 4). At contrast the downstream veloc-
ity and stream function of the optimal perturbations have
roughly the same vertical extent. ([Foster, 1997], figs 7-8).
The patterns presented in Fig. 4 thus bear more resem-
blance to the optimal perturbations than to the unstable
normal modes.

We finally display for the Fourier modes � m 
 n 
 2
and � m 
 n 
 4 the vertical profiles of kinetic energy
emn

1
�
z � (Fig. 5) and of production rate of energy by the

shear (Fig. 5). Since EOFs have by construction unit norm,
emn

1
�
z � is a non-dimensional quantity whose z � average is

1. It can be seen that the energy of the first EOF is con-
centrated closer to the ground than the total energy of the
corresponding Fourier mode. Concerning the shear pro-
duction, most of it is solely due to the first EOF. Only very
close to the ground does the flux intensity contributed by
the first EOF decrease much faster than the total con-

tribution by the corresponding Fourier mode. The maxi-
mum shear production for the first EOF of Fourier mode
( � m 
 n 
 4) is attained at an altitude � 0 
 08zi (i.e. about
60 m) which corresponds to the typical altitude up to which
streaks can be qualitatively observed in this LES.

The EOF technique is therefore successful at (i) identi-
fying objectively the horizontal characteristics of the recur-
rent flow patterns (wavelength and orientation) (ii) provid-
ing the corresponding vertical structure of the flow. How-
ever when further analyzing results based on this analysis,
one must bear in mind that the recurrent patterns extracted
by the EOF technique represent only a small fraction of
the energy (except, by construction, in the “strongly struc-
tured” spectral domain).

4 ANISOTROPY

4.1 Vertical extent

The vertical extent of rolls or streaks is often studied by
investigating up to which height above ground the spatial
features of a horizontal cut (z 
 const) of the velocity field
survive. Here because the EOFs precisely represent the
correlations between the different altitudes, the different
levels are never considered independently. Therefore we
characterize the vertical extent of the turbulent structures
through their TKE center, the column average of altitude
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Figure 5: Left : vertical repartition emn
1 of the kinetic energy of the first EOFs for Fourier modes � m 
 n 
 2 (circles) and� m 
 n 
 4 (crosses) ; vertical repartition emn of the total kinetic energy contained in the Fourier modes � m 
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 n 
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1 (contribution of the first EOFs to the shear production) for Fourier modes � m 
 n 
 2
(circles) and m 
 � n 
 4 (crosses); vertical profile of the total shear production Smn for the Fourier modes � m 
 n 
 2
(solid) and � m 
 n 
 4 (dashed)

weighted by the turbulent kinetic energy :

Zmn 
  
zemn � z � dz 
emn

�
z � dz

In this definition, one can choose to weigh by the to-
tal TKE or only by the horizontal TKE eH 
 1

2
�
u2 � v2 �

or the vertical TKE eV 
 1
2 w2. In addition, the velocity

components can be either those of a given Fourier mode�
ûmn � v̂mn � ŵmn � or those of an EOF

�
ûmn

i � v̂mn
i � ŵmn

i � . The
height Zmn can then be interpreted as a penetration height
up to which a given Fourier mode or EOF contributes sig-
nificantly to its part of the more commonly used horizontal
Fourier spectrum.

We display in Fig. 6 the TKE center as a function of
the horizontal wavenumber, obtained from the horizontal
energy emn

H of the corresponding Fourier mode (panel a)
or obtained from the horizontal energy emn

H 1 of the corre-
sponding EOF only (panel b). A global trend is that hori-
zontally short structures (large wave-vectors) have a cor-
respondingly small vertical extent. A striking feature is the
strong anisotropy in the values of the TKE center Z. For
wave vectors lying on the line m � n 
 0, the TKE center
is much smaller than that of wave vectors of comparable
magnitude and different direction. This anisotropy is more

pronounced for the TKE center based on EOFs (panel b).
The line m � n 
 0 corresponds to the strongly structured
wave vectors. Hence what we observe is that the most re-
current patterns of this flow are more concentrated close
to the ground than the more disordered motions of compa-
rable horizontal scale.

Considering finally the TKE center obtained now from
the vertical energy emn

V (not shown), the trend that hori-
zontally short structures have a small vertical extent per-
sists. However the anisotropy in the values of the TKE
center Zmn is much less apparent, yet still visible for the
TKE center based on EOFs. Now, the vertical velocity is
blocked near the ground, which is not the case for the hor-
izontal components (above the thin viscous sublayer). The
strength of this blocking effect of this effect does not de-
pend on the direction of the wave vector. Hence it may be
the origin of the weaker dependence of the vertical TKE
on the direction of the horizontal wave-vector.

4.2 Vertical vs horizontal turbulent kinetic
energy

We have discussed so far the anisotropic dependence of
the vertical extent of flow patterns on their horizontal wave
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Figure 6: TKE center Zmn as a function of the horizontal wave vector k 
 �
2π � λx � 2π � λy � .Left : weighted by the

horizontal TKE of each Fourier mode. Right : weighted by the horizontal TKE of each first EOF.
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Figure 7: Ratio eV � eH of vertical to horizontal TKE. (a) vertically averaged TKEs. (b) only the contribution due to the
first EOF.
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Figure 4: Flow structure of the first EOF at wave-vector
k 
 2π

� � 4 � L � 4 � l � . The horizontal axis is parallel to the
wave-vector. Top : contours of cross-wave-vector (along-
roll) velocity. Bottom : contours of along-wave-vector
stream function (regularly spaced).

vector. Anisotropy may enter in a second way for a vec-
tor quantity such as velocity since it may point in direc-
tions that are not isotropically distributed. An indication of
that is given by the ratio eV � eH of the vertical TKE over
the horizontal TKE. The properties of homogeneous and
isotropic turbulence are that (i) the ensemble means asso-
ciated with the turbulent state are invariant with respect to
any translation, rotation or symmetry; (ii) in practice, there
is no privileged direction for turbulence. If the velocity fluc-
tuations had isotropically distributed directions, as in lo-
cally isotropic turbulence, this ratio would be equal to 1 � 2
(u2 
 v2 
 w2).

We display in Fig. 7a the TKE ratio eV � eH as a function
of the horizontal wavenumber. Only for very small scales
(large wave vectors) does eV � eH approach the isotropic
value of 1 � 2. Everywhere else the TKE ratio is in fa-
vor of the horizontal TKE, especially at large horizontal
scales (small wave vectors) but also and more remark-
ably for “strongly structured” wave vectors (lying on the line
m � n 
 0). Figure 7b presents the ratio eV 1 � eH 1 of the
contribution of the first EOF to the vertical and horizontal
TKEs. Retaining only the first EOFs worsens the statistical
convergence, resulting in a more noisy plot. Nevertheless
the features discussed above are clearly visible in an even
more pronounced way. In a narrow angular sector contain-
ing the “strongly structured” line m � n 
 0, the TKE ratio
is in favor of the horizontal TKE while it is much closer to
its isotropic value of 1 � 2 outside this sector.

One expects isotropy to be violated by very large scale
structures since their vertical extent is limited by the PBL
depth, resulting in a low geometric aspect ratio. Because
of incompressibility, such structures with small vertical ex-
tent relatively to their horizontal scale have a correspond-
ingly low vertical velocity. Conversely, horizontally short
structures are free to achieve a vertical/horizontal aspect
ratio of 1 or more and the corresponding ratio of vertical
to horizontal TKE. This is clearly not the case at “strongly
structured” wave vectors for which a typical eV � eH ratio is
about 0 
 2 even at large wave vectors. This is consistent
with the observation that the corresponding flow patterns
are closer to the ground that those of equivalent horizon-
tal scale and different direction, resulting in a lower verti-
cal/horizontal aspect ratio. Noticing that for the total signal,
v2 � u2 and w2 � v2 are about 0.5, we obtain that eV � eH

�
0 
 17 which is remarkably similar to the ratio found for the
“strongly structured” wave vectors. Hence the “strongly
structured” wave vectors carry a turbulence anisotropy that
is representative of the anisotropy observed in the total sig-
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nal.

5 SUMMARY

We have analyzed a dataset produced by a large-eddy
simulation (LES) of a neutral atmospheric surface layer
(SL). In the LES, the small-scale streaks can be observed
up to about 0.13zi (i.e. 100 m above the ground). We have
performed an empirical orthogonal function (EOF) analy-
sis, which is in substance a more convenient way to rep-
resent the statistical information contained in the correla-
tion matrix, particularly here the correlations between the
velocity fluctuations at different altitudes. This is at con-
trast with, for instance, a level-by-level spectral analysis,
which would discard these correlations. Furthermore the
extracted EOFs have a flow structure similar to that of lin-
early unstable normal modes and optimal perturbations.
EOF analysis thus provides a way to compare features
emerging from complex, fully nonlinear dynamics and ide-
alized, linearized dynamics.

A number of interesting observations were made possi-
ble by the EOF analysis:7 not all horizontal wave-vectors, rather few in fact,

present recurrent patterns in their vertical profile. We
identified the narrow band in the Fourier space near
m � n 
 0 where such recurrent patterns are strong
enough that the first EOF carries significantly larger
energy than the next ones. The orientation of this
band is in agreement with a qualitative feeling of the
streak lines. Thus these patterns are indeed pro-
duced by structures with a spatial coherence on the
vertical.7 the corresponding structure of the turbulence is
strongly altered. For a horizontal wave vector be-
longing to this narrow band, the turbulence extends
on a vertical range much smaller than for wave vec-
tors with comparable magnitude and unspecified di-
rection. This observation is particularly true for the
fluctuations of horizontal velocity (as measured by the
horizontal turbulent kinetic energy) and less for verti-
cal velocity.7 the velocity fluctuations are also distributed in a less
isotropic way, as made apparent by the depleted ratio
of vertical and horizontal turbulent kinetic energies.

These last two points are strongly emphasized when the
signal is projected onto the most energetic EOF of each

Fourier mode, but still convincingly present in the complete
signal. This is important since the dominant EOFs finally
account for a relatively small fraction of the total kinetic
energy. The significance of properties of the EOF-filtered
signal could therefore be questionable. Here we use the
EOF analysis to point us at the regions of Fourier space
where coherent structures are important and might have
a signature on the turbulence, but rely on both the EOF-
filtered signal and the complete signal to characterize this
signature.
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