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1. INTRODUCTION

Large-eddy simulation (LES) computes the large, or
resolvable scales of a turbulent flow and models the ef-
fects of the small, or subgrid scales (SGS). When the
filter scale is in the inertial range, the energy-containing
scales are well resolved and most of the turbulent stress
is contained in the resolvable scales. The effects of sub-
grid scales are generally considered to be limited to ex-
tracting energy from the resolvable scales at the cor-
rect rate (Lilly (1967); Domaradzki et al. (1993); Borue
and Orszag (1998)). Thus, the LES results are to some
extent insensitive to the subgrid-scale model employed
(Nieuwstadt and de Valk (1987); Mason (1994)).

However, in LES of high-Reynolds-number turbulent
boundary layers, such as the atmospheric boundary
layer (ABL), the filter scale in the near-wall region is in-
evitably in the energy-containing scales (Kaimal et al.
(1972); Mason (1994); Peltier et al. (1996); Tong et al.
(1998, 1999)). This causes the near-wall results to de-
pend heavily on the SGS model (Tong et al. (1999)).
Therefore, the deficiencies of SGS models are likely to
result in inaccuracies in the LES statistics in the near-
wall region. For example, the standard Smagorinsky
model overpredicts the mean scalar gradient and the
mean scalar variance, but underpredicts the mean verti-
cal scalar flux in the LES of the unstable ABL (Mason
and Thomson (1992); Sullivan et al. (1994)). There-
fore, an important question in improving SGS models
is how the SGS turbulence and SGS models affect the
resolvable-scale statistics under these conditions.

Previous studies of SGS turbulence have been gen-
erally focused on the energy transfer rate from the re-
solvable to the subgrid scales (e.g., Borue and Orszag
(1998); Domaradzki et al. (1993)). However, a limitation
of such studies is that they do not provide information
on how the SGS turbulence affects the resolvable-scale
statistics.

Traditionally, SGS models are studied primarily in two
ways: a priori and a posteriori tests (e.g., Clark et al.
(1979); McMillan and Ferziger (1979); Bardina et al.
(1980); Nieuwstadt and de Valk (1987); Piomelli et al.
(1988); Lund and Novikov (1992); Mason and Thomson
(1992); Domaradzki et al. (1993); Piomelli (1993); Härtel
et al. (1994); Liu et al. (1994); Mason (1994); Meneveau
(1994); Peltier et al. (1996); Juneja and Brasseur (1999);
Sarghini et al. (1999); Tao et al. (2000); Porté-Agel et al.
(2001); Sullivan et al. (2003)). While these tests have
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contributed greatly to our understanding of the current
SGS models, they also have their limitations. For a pri-
ori tests, it is difficult to infer the effects of model perfor-
mance on LES results. For a posteriori tests, it is difficult
to relate the deficiencies of LES results to specific model
behaviors (Chen and Tong (2006)).

To better understand the effects of SGS turbulence
and SGS models on the resolvable-scale statistics, an
systematic approach was employed (Chen et al. (2003,
2005); Chen and Tong (2006)), which uses the transport
equations of the resolvable-scale velocity and velocity-
scalar joint probability density function (JPDF). The use
of the JPDF transport equations has several advantages
over traditional methods for testing SGS models. First,
it deals with the resolvable-scale statistics, whose accu-
rate predictions are usually the primary objective of LES
whereas the instantaneous SGS variables are very diffi-
cult interpret. Second, unlike the filtered Navier-Stokes
equations and the scalar transport equation, the JPDF
transport equation is not chaotic. Therefore, certain ana-
lytical results of the equation (Jaberi et al. (1996); Sabel-
nikov (1998)) can be used to understand the behavior of
SGS models (Chen and Tong (2006)). The JPDF equa-
tions can be used to study the SGS turbulence and to
perform both statistical a priori and a posteriori tests of
SGS models. Chen and Tong (2006) emphasized such
a priori tests provide a strong linkage between the mod-
eled SGS terms and the resolvable-scale velocity JPDF,
and therefore, are qualitatively different from the tradi-
tional a priori tests based on correlations of the mea-
sured and modeled SGS variables.

Chen and Tong (2006) used this approach to study
the SGS turbulence in the surface layer of the ABL and
identified several deficiencies of the SGS models that
affects the LES statistics. They argued that the over-
predictions of the mean shear and streamwise velocity
variance near the surface by the Smagorinsky model are
partly due to the under-prediction of the anisotropy of
the SGS stress and its variations in the near-wall re-
gion. They also pointed out that the under-prediction
of the vertical velocity skewness is likely due to the in-
ability of the Smagorinsky model to predict the asymme-
try in the production rate of the vertical normal compo-
nent of the SGS stress. These analyses based on the
JPDF equation provide important knowledge for improv-
ing SGS model.

The present work studies the influence of the SGS
scalar flux and the SGS stress on the resolvable-scale
velocity-scalar JPDF using the JPDF transport equa-
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tion, which can be derived following the method given by
(Pope (2000)). Differentiating the definition of the JPDF:

f =

〈

δ[θr − ψ]

3
∏

i=1

δ[ur
i − vi]

〉

, (1)

where δ is the Dirac delta function, and v and ψ are the
sample-space variables for the resolvable-scale velocity
u

r and the resolvable-scale scalar θr (a superscript r
denotes a resolvable-scale variable), respectively, and
the angle brackets denote an ensemble mean, we obtain
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, in Eq.
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where τij = (uiuj)
r −ur

iu
r
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stress (the Leonard stress Lij = (ur
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j )
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been included in τij), the filtered pressure, the mean
potential temperature, the fluctuation potential temper-
ature, and the kinematic viscosity, respectively, and the
filtered resolvable-scale scalar equation:
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where Fi = (uiθ)
r −ur

i θ
r and Γ are the SGS scalar flux

and the molecular diffusivity respectively, we have
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The two terms on the left-hand side are the time rate of
change and the advection in physical space. The first
three terms on the right-hand side are transport in ve-
locity space of the JPDF by the SGS stress divergence,
the resolvable-scale pressure gradient, and the buoy-
ancy force, respectively. The last term is transport in
scalar space by the SGS scalar flux divergence. The
viscous force and scalar diffusion terms are small and
are omitted at high Reynolds numbers.

Because SGS turbulence is usually studied by ana-
lyzing the SGS stress and flux rather than their diver-
gences, an alternative form of the equation was given

by Chen et al. (2005):
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where Pij = −
{

τik
∂ur

j

∂xk
+ τjk

∂ur
i

∂xk

}

, PFi =

−
{

τik
∂θr

∂xk
+ Fk

∂ur
i

∂xk

}

, and Pθ = −Fi
∂θr

∂xi
are the

SGS stress production rate, the SGS scalar flux pro-
duction rate, and the SGS scalar variance production
rate, respectively. The terms on the right-hand side
now are mixed transport in velocity, physical, and
scalar spaces due to the SGS stress, the SGS stress
production rate, the SGS scalar flux, the SGS scalar
flux production rate, the SGS scalar variance production
rate, the resolvable-scale pressure, the pressure-strain
correlation, the pressure-scalar-gradient correlation,
and the buoyancy force, respectively. Therefore, the
necessary conditions for LES to correctly predict the
resolvable-scale velocity-scalar JPDF are that the con-
ditional SGS stress, the conditional SGS scalar flux, the
conditional SGS stress production rate, the conditional
SGS scalar flux production rate, the conditional SGS
scalar variance production rate are reproduced by the
SGS models (Chen et al. (2005)).

These conditions were used to study the depen-
dences of the resolvable-scale velocity-scalar JPDF on
the SGS turbulence in a turbulent jet (Chen et al.
(2005)). The results show that the conditional SGS
scalar flux and the conditional SGS scalar flux produc-
tion rate have a strong dependence on the resolvable-
scale velocity and scalar, indicating strong flow history
effects. Chen and Tong (2006) investigated the SGS ve-
locity field in the surface layer of the ABL and showed
that the behaviors of the conditional SGS stress and the
conditional SGS stress production rate are closely re-
lated to the surface dynamics, i.e., updrafts generated
by buoyancy force, downdrafts associated with the large-
scale convective eddies, the mean shear, and the length
scale inhomogeneity in the vertical direction. In addition,
they found that the conditional SGS stress and the con-
ditional SGS stress production rate have similar trends,
and their eigenvectors are generally well aligned with
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the normalized tensorial contraction being close to one,
thereby indicating the potential of modeling the condi-
tional SGS stress using its production rate.

In present work we investigate the effects of the SGS
motions on the resolvable-scale velocity-scalar JPDF in
unstable atmospheric surface layer using measurement
data. The field program and the array filter technique for
measuring resolvable- and subgrid- scale variables are
given in section 2. Section 3 examines the measured
conditional SGS statistics and the SGS model predic-
tions. The conclusions are given in section 4.

2. HATS FIELD PROGRAM

The field measurements for this study, named the hor-
izontal array turbulence study, or HATS field program,
were conducted at a field site 5.6km East-Northeast of
Kettleman City, California, in the summer of 2000 as a
collaboration primarily among the National Center for
Atmospheric Research, Johns Hopkins University, and
Penn State University (CT was part of the Penn State
group). Horst et al. (2004) describe the field site and the
data collection procedures in detail.

The field measurement design is based on the trans-
verse array technique proposed, studied, and first used
by the Penn State group (Edsall et al. (1995); Tong
et al. (1997, 1998, 1999)) for surface layer measure-
ments in the ABL. It has subsequently been used by
several groups in the ABL over land (Tong et al. (1997,
1999); Porté-Agel et al. (2001); Kleissl et al. (2003);
Horst et al. (2004)) and ocean (the recent ocean HATS
program) as well as in engineering flows (Cerutti et
al. (2000); Tong (2001); Wang and Tong (2002); Ra-
jagopalan and Tong (2003); Chen et al. (2003); Wang et
al. (2004)). The technique uses horizontal sensor arrays
(figure 1) to perform two-dimensional filtering to obtain
resolvable- and subgrid-scale variables. Two arrays are
vertically spaced to obtain vertical derivatives. The pri-
mary horizontal array consists of nine equally spaced
sonic anemometers (Campbell Scientific (SAT3)) and
the secondary array has five sonics at a second height.
The arrays are aligned perpendicular to the prevailing
wind direction.

The filter operation in the streamwise direction is per-
formed by invoking Taylor’s hypothesis. Filtering in the
transverse direction is realized by averaging the output
of the signals from the sensor array (Tong et al. (1998)).
For example, the transversely filtered resolvable-scale
velocity (denoted by a superscript t) is obtained as

ut
i(x, t) =

N
∑

j=−N

Cjui(x1, x2 + j × d, x3, t) (7)

where 2N + 1, Cj , and d are the number of sensors on
a array, the weighting coefficient for the jth sensor, and
the spacing between adjacent sensors, respectively. We
use 2N + 1 = 5 and 3 for filtering at the heights of the
primary and secondary arrays respectively, to maintain
the same filter size. The subgrid-scale velocity is ob-
tained by subtracting the resolvable-scale part from the
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Figure 1: Schematic of the array setup. The secondary
array (denoted by a subscript s) is used to obtain deriva-
tives in the vertical direction.

total velocity. In the present study we use the arrays
to approximate top-hat filters, which are the most com-
pact type in physical space. Because derivatives are
computed using finite differencing (with a spacing of 4dp

in the horizontal directions), which is effectively a top-
hat filter, top-hat filters provide consistency among the
resolvable-scale velocity and its derivatives.

The issues in applying the array filtering technique,
including the accuracy of the array filter and the use
of Taylor’s hypothesis, have been systematically stud-
ied by Tong et al. (1998). They showed that a two-
dimensional filter is a good approximation of a three-
dimensional filter. They demonstrated that among the
mechanisms that could affect the accuracy of Taylor’s
hypothesis (Lumley (1965)), including the effect of dif-
ferent convection velocity for different wavenumber com-
ponents, temporal changes in the reference moving with
the mean velocity, and the fluctuating convecting veloc-
ity, only the last one is significant. Their analyses of the
accuracy of a spectral cutoff array filter as an approxima-
tion of true two-dimensional filter showed that the rms
values of the filtered variables differ by less than 10%.
Because the spectral cutoff filter has the slowest decay
in physical space, it is most difficult to approximate by
the array. Therefore, the accuracy of the top-hat filter ar-
ray filter is expected to be higher. The error associated
with one-side finite differencing in the vertical direction
is examined by Kleissl et al. (2003). They evaluated the
divergence-free condition for the filter velocity field and
concluded that reasonable accuracy can be achieved in
computing derivatives of filtered velocity. Horst et al.
(2004) further studied various issues of using the array
technique including the aliasing errors associated with
evaluating derivatives using finite diffferencing and also
demonstrated sufficient accuracy of the technique.

Four different array configurations, shown in Table 1,
are employed in the HATS program. The filter (grid) as-
pect ration (∆/z) ranges from 0.48 to 3.88, allowing the
effects of grid anisotropy to be examined. We refer to
z as the height of the primary array zp here and there-

3



Array # ∆/zp zp dp zs ds

1 3.88 3.45 3.35 6.90 6.70
2 2.00 4.33 2.167 8.66 4.33
3 1.00 8.66 2.167 4.33 1.08
4 0.48 4.15 0.50 5.15 0.625

Table 1: Configurations of the four arrays (lengths in
meters).

after. Array 3 is at a much higher z, therefore the ef-
fects of the stability parameter −z/L can be examined,

where L = −
u3

∗
Θ

kag〈u′

3
θ′〉

, u2
∗ = −〈u′

1u
′
3〉 (a prime denotes

fluctuations), ka = 0.41, and g are the Monin-Obukov
length, friction velocity, von Kármán constant, and gravi-
tational acceleration, respectively. The surface layer pa-
rameters for the data sets collected using the four ar-
rays are given in tables 2 and 3. The results in section
3.3 show that the SGS stress for array 1 which has the
largest ∆/z, is the most anisotropic and most difficult
for SGS models to predict, therefore our discussions of
results focus on array 1. All array 1 data used in the
present study were collected during daytime under clear
conditions and the boundary layer was convective with a
Monin-Obukov length of approximately −15m.

Although the arrays were arranged to be perpendicu-
lar to the prevailing wind direction, the mean wind direc-
tion for a given data section might not be exactly perpen-
dicular to the array. Therefore, we rotate the coordinate
system and interpolate the velocity and temperature in
the Cartesian coordinate system defined by mean wind
and cross-wind directions (Horst et al. (2004)). The in-
terpolation is performed in spectral space to avoid atten-
uating the high frequency (wavenumber) fluctuations.

In present work, we study the unstable surface layer,
i.e. z/L < 0. Data sections that are quasi-stationary
are generally 30-90 minutes in length. In order to
achieve reasonable statistical convergence in our anal-
ysis, we need to combine the results of selected data
sections collected under similar stability conditions us-
ing the each array configuration. We focus on four data
sections collected using array 1 (table 2). The condi-
tional statistics obtained using the individual data sets
(not shown) are very similar but with varying degree of
uncertainty. Therefore, we normalize the results for each
data set using its parameters, then weight-average them
according to the number of conditional samples in each
bin.

Due to the complexity of the variables of interest and
of the conditional sampling procedure, we are not able
to provide a precise level of statistical uncertainty. How-
ever, by monitoring the statistical scatter while increas-
ing the data size, we conclude that reasonable statisti-
cal convergence is achieved. An example of the con-
vergence process is given in Chen and Tong (2006). In
addition, comparisons between model predictions and
measurements only require the relative magnitude of
the results and are less affected by the uncertainty.
Therefore, the data size is sufficient for obtaining reliable

statistics for the analyses.

3. RESULTS

In this section we focus our discussions on results
obtained using data from array 1. The stability param-
eter −z/L has an average value of 0.24. Top-hat filters
in both the streamwise and crossstream directions are
used to obtain the resolvable-scale and subgrid-scale
variables with a filter size ∆ = 3.88z, which is in the
energy-containing range. The results for the other ar-
ray configurations, i.e. different ∆/z, and −z/L (table
3), are also obtained. The results are generally similar
to those for array 1 and will not be discussed. Table 4
gives the normalized Reynolds scalar flux and the ratios
of the mean SGS scalar flux components to the verti-
cal mean scalar flux. Array 1 has the largest fraction of
the vertical SGS scalar flux and thus is the most chal-
lenging case for modeling. The measured and modeled
SGS scalar flux components are given in table 5 and
discussed in section 3.3.

The results for the conditional SGS stress 〈τij |u
r, θr〉

are normalized by the friction velocity u2
∗. The condi-

tional SGS stress production rate 〈Pij |u
r, θr〉 is normal-

ized by the estimated energy dissipation rate ε = θε
u3

∗

kaz
,

where θε = 1 − z/L for z/L ≤ 0 as suggested by
Kaimal et al. (1972). The conditional SGS scalar flux
〈Fi|u

r, θr〉 is normalized by the mean vertical heat flux
H = 〈θ′u′

3〉, where prime denotes fluctuations. The con-
ditional SGS scalar flux production rate 〈PFi|u

r, θr〉 is

normalized by −T∗u2

∗

z
where T∗ = − H

u∗

is the tempera-
ture scale. The results for the conditional SGS variance
spectral transfer rate 〈Pθ|u

r, θr〉 are normalized by the

estimated scalar variance transfer rate χT = θh
T2

∗
u∗

kaz
,

where θh = 0.74 × (1 − 9z/L)−1/2 for z/L ≤ 0 as sug-
gested by Businger et al. (1971).

3.1. SGS scalar flux and its production rate

The results for the conditional SGS scalar flux compo-
nents 〈F1|u

r, θr〉, 〈F2|u
r, θr〉, and 〈F3|u

r, θr〉 are shown
in figure 2. For convenience we omit the sample-space
variable v and ψ from the conditional means here and
hereafter. In addition, only the fluctuation parts of u

r

and θ, which normalized by their respective r.m.s. val-
ues, are plotted.

The results show that 〈F1|u
r, θr〉 and 〈F3|u

r, θr〉 de-
pend strongly on ur

1 and ur
3 for positive and small θr

fluctuations, and the dependence is weak for negative
θr fluctuations. 〈F2|u

r, θr〉 also depends on |ur
2| and

ur
3 for positive and small θr fluctuations, and the depen-

dence is weak for negative θr fluctuations. 〈F1|u
r, θr〉

generally has large values, because the large temper-
ature fluctuations are highly correlated with the streak
structure in the surface layer.

The trends of the SGS scalar production rates
〈PF1|u

r, θr〉 , 〈PF2|u
r, θr〉 and 〈PF3|u

r, θr〉 (figure 3)
are generally similar to those of 〈F1|u

r, θr〉, 〈F2|u
r, θr〉,

and 〈F3|u
r, θr〉, respectively, for positive and small θr
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Data# 〈u〉 −z/L u∗ ε H χT Duration
(ms−1) (ms−1) (m2s−3) (K · ms−1) (K2s−1) (min)

a 1.42 0.34 0.15 0.003 0.02 0.001 35
b 3.56 0.22 0.33 0.031 0.17 0.026 30
c 3.65 0.21 0.36 0.039 0.20 0.035 83
d 3.25 0.24 0.36 0.041 0.24 0.048 33

Table 2: Surface layer parameters for array 1 (∆/z = 3.88) under unstable conditions. The primary array height zp

is used for z.

Array ∆/z 〈u〉 −z/L u∗ ε H χT Total duration
(≈) (ms−1) (ms−1) (m2s−3) (K m s−1) (K2s−1) (min)

2 2.00 3.09 0.36 0.30 0.020 0.15 0.017 257
3 1.00 4.22 0.60 0.34 0.018 0.19 0.009 591
4 0.48 2.73 0.35 0.30 0.021 0.15 0.017 60

Table 3: Surface layer parameters for the other arrays under unstable conditions. The primary array height zp is
used for z.

fluctuations, indicating the dominant influence of SGS
scalar flux production rate on the evolution of SGS scalar
flux, and the conditional equilibrium between production
rate and the pressure destruction. The dependence on
the resolvable-scale velocity for negative θr fluctuations
is weak.

To better understand the connections between the
conditional SGS scalar flux and its production rate, we
expand 〈PF1|u

r, θr〉 as

〈PF1|u
r, θr〉 = −

〈
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〉

. (8)

The first three terms on the right hand side of Eq. 8
are the production rate due to the interactions between
the SGS scalar flux components and the resolvable-
scale velocity gradient components and the last three
terms are the production due to the interactions between
SGS stress and the resolvable-scale scalar gradient.
Our results obtained from the data show that the lead-
ing components in 〈PF1|u

r, θr〉 are
〈

−F3

∂ur
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∂x3
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〉
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−τ33
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, which have similar trends and

magnitudes. The rest of terms are relatively small
because the horizontal derivatives of ur

1 and θr are
relatively small compared to their vertical derivatives.
Therefore, we focus our discussion in the following on

−
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. Similarly, 〈PF3|u
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be expanded as:
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The terms on the right-hand side of Eq. 9 are similar to
those in Eq. 8. The dominant component in 〈PF3|u

r, θr〉

is
〈

−τ33
∂θr

∂x3
|ur, θr

〉

. This is because the derivatives of

ur
3 and θr in the horizontal directions are relatively small.

Therefore, we focus our attention on
〈

−τ33
∂θr

∂x3
|ur, θr

〉

.

We now discuss the results for 〈PF1|u
r, θr〉 and

〈PF3|u
r, θr〉. For positive θr fluctuations, the eddies as-

sociated with updrafts generally come from the region
near the ground, and contain large magnitudes of the
vertical SGS flux and the SGS stress. They also likely to
have experienced strong shear and vertical temperature
gradient. Therefore, both F3, τ33, ∂ur

1/∂x3 have large
positive values while τ13 and ∂θr/∂x3 have large nega-

tive values, resulting in negative
〈

−F3
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. Be-

cause both the vertical shear, flux, and temperature gra-
dient are enhanced by positive values of ur

1 and ur
3, the

magnitudes of 〈PF1|u
r, θr〉 and 〈PF3|u

r, θr〉 increase
with ur

1 and ur
3.

For small θr fluctuations, the eddies are generally well
mixed, and therefore, tend to be more symmetric in the
vertical direction, which is reflected by the symmetry of
∂ur

1/∂x3 and ∂θr/∂x3 respective to ur
3. Therefore, the

magnitudes of 〈PF1|u
r, θr〉 and 〈PF3|u

r, θr〉 increase
with ur

1 and |ur
3|.

For negative θr fluctuations, the eddies associated
with downdrafts generally come from the mixed layer
region, and contain relatively small SGS fluxes (figure
2(c)). Therefore, the magnitudes of 〈PF1|u

r, θr〉 and
〈PF3|u

r, θr〉 are small and have weak dependences on
the resolvable-scale velocity.

Comparing the three cases of different θr values, the
location of peak values of the conditional SGS scalar flux
production rate appears to shift toward positive ur

3 for
positive θr fluctuations, and toward negative ur

3 for neg-
ative θr fluctuations. This is because 〈∂ur

1/∂x3|u
r, θr〉

and 〈∂θr/∂x3|u
r, θr〉 (not shown) have similar trends,

which indicates that the local gradients are enhanced by
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Array 〈u′

1
θ′〉/H 〈u′

2
θ′〉/H 〈F1〉/H 〈F2〉/H 〈F3〉/H

1 -1.70 -0.23 -0.96 -0.00 0.70
2 -1.20 0.04 -0.62 0.02 0.56
3 -0.85 0.35 -0.26 0.01 0.33
4 -1.16 -0.21 -0.10 0.01 0.18

Table 4: Measured Reynolds scalar flux and mean SGS scalar flux for the four arrays

both updrafts with high temperature (positive θr fluctua-
tions) and downdrafts with low temperature (negative θr

fluctuations).

The conditional SGS scalar flux and the conditional
SGS scalar flux production rate have similar trends for
positive θr fluctuations, which is consistent with the bal-
ance between the production rate and pressure destruc-
tion and the use of the SGS scalar flux and a time scale
to model the pressure destruction. The differences be-
tween the trends of the conditional SGS scalar flux and
the conditional SGS scalar flux production rate for small
and negative θ fluctuations are probably because the
production rates are small and no longer balance the
pressure destruction.

The dominant components in 〈PF1|u
r, θr〉 contains

a slow term
〈

−F3

∂ur
1

∂x3

|ur, θr
〉

, in which F3 influences

〈PF1|u
r, θr〉 through the interaction with ∂ur

1/∂x3. How-
ever F1 does not have a direct effect on 〈PF3|u

r, θr〉,

which is dominated by
〈

τ33
∂θr

∂x3
|ur, θr

〉

. Consequently,

accurate modeling of the vertical SGS scalar flux com-
ponent may be more important than that of the hor-
izontal SGS scalar flux component and poor predic-
tions of the vertical SGS scalar flux component by a
SGS model may result in the inaccuracies in the hori-
zontal SGS scalar flux in a LES. In addition, because
〈

−τ13
∂θr

∂x3

|ur, θr
〉

affects 〈PF1|u
r, θr〉 due to the dom-

inant vertical derivative of resolvable-scale scalar, un-
derpredictions of the condition SGS shear stress com-
ponents by a SGS model may also result in the inaccu-
racies in the conditional horizontal SGS scalar flux in a
LES.

3.2. SGS scalar variance production rate

The SGS scalar variance production rate 〈Pθ|u
r, θr〉

(figure 4) generally increase with ur
1 and ur

3 and the
dependence is strong for positive θr fluctuations and
weak for negative θr fluctuations. For small θr fluc-
tuations, the dependence of 〈Pθ|u

r, θr〉 on ur
3 is sym-

metric and increases with |ur
3|. Similar to the SGS

scalar flux production rate, the dominant component of

〈Pθ|u
r, θr〉 is

〈

F3
∂θr

x3
|ur , θr

〉

. Because both F3 and

∂θr/∂x3 increase with ur
1 and ur

3 for positive θr, so does
〈Pθ|u

r, θr〉. The symmetric dependence of 〈Pθ|u
r, θr〉

on ur
3 is due to the symmetric dependence of ∂θr/∂x3

on ur
3.

3.3. Alignment of SGS scalar flux and its production
rate

Chen and Tong (2006) found that the deviatoric part of
〈τij |u

r〉 and 〈Pij |u
r〉 have similar trends, and the eigen-

vectors of 〈τij |u
r〉 and 〈Pij |u

r〉 are well aligned with the
normalized tensorial contraction being close to unity, in-
dicating the balance between the production rate and
pressure destruction and the validity of using the SGS
stress and a time scale for modeling the pressure de-
struction. The results in part 1 also show that 〈Fi|u

r, θr〉
and 〈PFi|u

r, θr〉 have similar trends. To investigate the
relationship between 〈Fi|u

r, θr〉 and 〈PFi|u
r, θr〉, we

compute the alignment angle between 〈Fi|u
r, θr〉 and

〈PFi|u
r, θr〉, which is given by

α = cos−1

(

| 〈Fi|u
r, θr〉 · 〈PFi|u

r , θr〉 |

‖ 〈Fi|ur, θr〉 ‖ · ‖ 〈PFi|ur, θr〉 ‖

)

(10)

Figure 5 shows that 〈Fi|u
r, θr〉 and 〈PFi|u

r, θr〉 are
generally well aligned. The alignment angle α is gen-
erally less than 10◦ for positive and small θr fluctua-
tions. For negative θr fluctuations, the alignment angle
is small for positive ur

3 and larger (less than 30◦) for neg-
ative ur

3. This is probably due to the small magnitudes of
〈PFi|u

r, θr〉, suggesting imbalance between production
and destruction.

In order to study the effects of buoyancy on the align-
ment, the buoyancy production term (PFB = g

Θ
[(θ2)r −

(θr)2]) is included in the SGS scalar flux production rate.
The alignment angle (figure 5(b)) increase slightly, in-
dicating that buoyancy does not significantly alter the
alignment property.

These results are consistent with the similarity be-
tween the conditional SGS scalar flux and the condi-
tional SGS scalar flux production rate, suggesting the
balance between the production rate and pressure de-
struction and the validity of using the SGS scalar flux
and a time scale for modeling the pressure destruction.

3.4. SGS stress and its production rate

The normalized conditional SGS stress components
〈τ11|u

r, θr〉 and 〈τ33|u
r , θr〉 are given in figure 6. The

results show that 〈τ11|ur, θr〉 and 〈τ33|u
r, θr〉 generally

increase with ur
1 and ur

3. The dependences are strong
for positive θr fluctuations and are weak for negative θr

fluctuations.
The conditional SGS stress production rate

〈P11|u
r, θr〉 (figure 7 (a)) has a similar trend to

〈τ11|u
r, θr〉 (figure 6(a)), suggesting that there is a

local conditional equilibrium between the SGS stress
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production rate and the pressure destruction. How-
ever, the trend of 〈P33|u

r, θr〉 (figure 7(b)) is different
from 〈τ33|u

r, θr〉 (figure 6(b)) because the buoyancy
production rate dominates the evolution of 〈τ33|ur, θr〉,
consistent with our previous results (Chen et al. (2005)).

The dependence of 〈P33|u
r, θr〉 decreases with θr

fluctuations. For positive θr fluctuations, conditional
〈P11|u

r, θr〉 has positive values, indicating τ11 gains en-
ergy while 〈P33|u

r, θr〉 has negative values, indicating
that τ33 loses energy and conditional backscatter. For
negative θr fluctuations, 〈P33|u

r, θr〉 is positive, indicat-
ing that τ33 gains energy. Our previous study (Chen and
Tong (2006)) has shown that underprediction of the de-
pendence of 〈P33|u

r, θr〉 on ur
3 will cause the same for

the vertical velocity skewness. This will be further exam-
ined along with SGS models in section 3.7.

The conditional shear stress component 〈τ13|ur, θr〉
(figure 8(a)) depends on ur

1 and ur
3, and the dependence

is strong for positive θr fluctuations and weak for nega-
tive θr fluctuations. 〈P13|u

r, θr〉 (figure 8(b)) has a simi-
lar trend, indicating the conditional quasi-equilibrium.

Our previous study (Chen and Tong (2006)) has
shown that underpredictions of the trend and magnitude
of the τ13 cause overpredictions of the mean streamwise
velocity gradient near the surface, and that the correct
prediction of 〈τ13|ur〉 is very important for predicting the
horizontal velocity variance profile.

The dependence of 〈τij |u
r, θr〉 on θr is partly due to

the flow history effect. A velocity field is not affected
by a passive scalar. The dependence of the conditional
SGS stress and conditional SGS stress production rate
on the resolvable-scale scalar reflects the different flow
histories that the SGS eddies with the same resolvable-
scale velocity but different resolvable-scale scalar values
have experienced (Chen et al. (2005)). The temperature
in the ABL is generally not passive, therefore, the de-
pendence is probably partly due to the flow history and
partly due to the buoyancy effects. The dependence on
ur for positive temperature fluctuations is very close to
the dependence on ur alone. This is because the buoy-
ancy force and thermal plumes are associated with pos-
itive temperature fluctuations. For negative temperature
fluctuations, the dependence is generally weak.

3.5. Anisotropy of the conditional SGS stress

An important property of the SGS stress is its level
of anisotropy. The level of anisotropy of the conditional
SGS stress can be characterized by the representation
in the Lumley triangle (Lumley (1978)). The normalized

anisotropy tensor for 〈τij |u
r, θr〉, 〈τij |u

r,θr〉
〈τkk|ur ,θr〉

− 1

3
δij , can

be determined by two variables ξ and η defined in terms
of its invariants (Pope (2000))

6η2 = −2II =

〈

τd
ij |u

r, θr
〉 〈

τd
ij |u

r , θr
〉

〈τkk|ur, θr〉2
(11)

and

6ξ3 = 3III =

〈

τd
ij |u

r, θr
〉 〈

τd
jk|u

r, θr
〉 〈

τd
ki|u

r, θr
〉

〈τkk|ur, θr〉3
,

(12)

where τd
ij = τij − τkkδij/3 is the deviatoric part of

the SGS stress, and II and III are the second and
third invariants of the anisotropy tensor respectively. If
〈τij |u

r, θr〉 is isotropic, both ξ and η are zero. (The
first invariant or trace of

〈

τd
ij |u

r, θr
〉

is always zero by
definition). The representation for the conditional SGS
stress results are shown in figure 9. The dependence
of the anisotropy on the resolvable-scale velocity (Lum-
ley triangle for 〈τij |u

r〉) Chen and Tong (2006) shows
that the anisotropy is weak for negative ur

3 and is much
stronger for positive ur

3. For positive and negative ur
1

values, 〈τij |u
r〉 is close to axisymmetric with one large

and one small eigenvalue, respectively, probably reflect-
ing the shear and buoyancy effects. Here we study the
dependence of the anisotropy on the resolvable-scale
scalar.

Figure 9 shows that there is a clear dependence of
the anisotropy on the resolvable-scale scalar. For pos-
itive and small θr fluctuations, 〈τij |u

r
1, u

r
3, θ

r〉 is quite
anisotropic and close to the results for 〈τij |u

r
1, u

r
3〉 (with-

out conditioning on θr), consistent with the trends of
〈τij |u

r, θr〉 in section 3.2.1. The points representing the
anisotropy are not far from η = −ξ and η = ξ indicating
that 〈τij |u

r
1, u

r
3, θ

r〉 is close to axisymmetric with either
one small eigenvalue or one large eigenvalue. One dif-
ference between the results for small θr fluctuations and
for positive θr fluctuations is that there are more points
close to η = ξ than that of η = −ξ, indicating that the
SGS eddies are more likely to contain SGS stress that
is close to axisymmetric with one large eigenvalue. This
is probably because the compression and shear effects
are weakened as these eddies are likely to has gone
through a strong mixing process.

For negative θr fluctuations, there are more points
representing the anisotropy close to the origin than for
positive and small θr fluctuations, indicating a slightly
less anisotropic SGS stress. In addition, some points
with ur

3 < 0 are close to the axisymmetric with one small
eigenvalue (η = −ξ) due to the compression effect, and
some points with ur

3 > 0 are close to the axisymmetric
with one large eigenvalue (η = ξ) due to the weakened
shear effect.

3.6. Alignment between the conditional SGS stress
and its production rate

The geometric alignment of
〈

τd
ij |u

r, θr
〉

and
〈

P a
ij |u

r, θr
〉

can be characterized by the angles be-
tween their eigenvectors. The alignment between
〈

τd
ij |u

r
〉

and
〈

P a
ij |u

r
〉

(P a
ij = Pij − Pkkδij/3) were first

studied by Chen and Tong (2006). They found that
〈

τd
ij |u

r
3

〉

and
〈

P a
ij |u

r
3

〉

are well aligned for positive ur
3

with the alignment angles are less than 10◦ but are less
well aligned for negative ur

3.
We further examine the dependence of the alignment

between the conditional SGS stress and its production
rate on temperature fluctuations. The alignment angles
are defined in the same way as those in Chen & Tong
2006 Chen and Tong (2006). The eigenvalues of the
conditional SGS stress tensor,

〈

τd
ij |u

r, θr
〉

, are denoted
as ατ , βτ and γτ , ordered such that ατ ≥ βτ ≥ γτ ,
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〈F1〉 /H 〈F2〉 /H 〈F3〉 /H
F smg

i -0.003 -0.003 0.51
F nl

i -1.31 0.03 0.13
F mix

i -1.31 0.03 0.54

Table 5: Modeled mean SGS scalar flux for array 1

and the corresponding unit eigenvectors as ~ατ , ~βτ and
~γτ . Similarly, the eigenvalues of the conditional SGS
stress production tensor,

〈

P a
ij |u

r, θr
〉

, are denoted as
αP , βP and γP , ordered such that αP ≥ βP ≥ γP , and
the corresponding unit eigenvectors as ~αP , ~βP and ~γP .
Three alignment angles, ψ, φ and ξ, are defined as ψ =
cos−1(|~γP · ~γτ |) (the angle between ~γP and ~γτ ), φ =

cos−1(|~βP · ~βτ |), and ξ = cos−1(|~αP · ~ατ |).
The results for the alignment angles are given in figure

10. The results show that
〈

τd
ij |u

r, θr
〉

and
〈

P a
ij |u

r, θr
〉

are generally well aligned for positive ur
3 and is less well

aligned for negative ur
3, and that the alignment angles

weakly depend on ur
1, which is similar to the results of

Chen and Tong (2006). Alignment angles are smaller for
positive θr fluctuations and larger for negative θr fluctu-
ations.

The results for the Lumley triangle (figure 9) show that
SGS stress is more anisotropic for ur

3 > 0, therefore,
there is likely a strong trend to return to isotropy, and
therefore the pressure destruction can be predicted well
by τij/τ . In addition, the updrafts with higher tempera-
ture (θr > 0) generally experience stronger shear and
temperature gradients near ground with large produc-
tion rate and the pressure destruction and production
are balanced. Therefore, the SGS stress and its pro-
duction rate are well aligned.

For ur
3 < 0, The Lumley triangle shows that the SGS

stress is less anisotropic. The misalignment (or poor
alignment) for θr < 0, and ur

3 < 0 suggests that the
pressure destruction is larger than the SGS production.

3.7. SGS scalar flux model

The results discussed in the previous parts of this sec-
tion provide a basis for studying the effects of SGS mod-
els on LES statistics. Here we examine the model pre-
dictions of 〈Fi|u

r, θr〉 , 〈PFi|u
r, θr〉 and 〈Pθ|u

r, θr〉 us-
ing the Smagorinsky model, the nonlinear model, and
the mixed model, and compare them to the experimental
results. The mean values of the measured and modeled
mean SGS scalar flux components are given in table 5.

In order to compute the modeled SGS scalar flux pro-
duction rate PFi, the modeled SGS stress is needed.
In this work, the modeled SGS stress is computed
using the same procedure given by Chen and Tong
(2006). Our previous study (Chen and Tong (2006))
shows that the conditional mean of the normal com-
ponents are severely underpredicted by the Smagorin-
sky model and slightly overpredicted by the nonlinear
model. The trends of the shear components are gen-
erally well predicted by the Smagorinsky model and are

poorly predicted by the nonlinear model. The magni-
tudes of the shear components are generally underpre-
dicted by a factor of two using the Smagorinsky model.
The mixed model can predict normal components well
but not the shear component. These results are impor-
tant for understanding the trends and magnitudes of the
conditional mean of the SGS scalar flux production rate
discussed in the following.

3.7.1. The Smagorinsky model

The Smagorinsky model is given by Smagorinsky
(1963) and Lilly (1967).

F smg
i = −Pr−1

T (CS∆)2(2SmnSmn)1/2 ∂θ
r

∂xi
(13)

where Cs = 0.154 is the Smagorinsky constant for a
box filter and PrT is the SGS turbulent Prandtl number,
and Sij is the resolvable-scale velocity strain rate. In
this work, we determine Pr−1

T C2
s by matching the mean

SGS scalar variance production rate.
Tables 4 and 5 show that the mean horizontal SGS

scalar flux is severely underpredicted by the Smagorin-
sky model and the mean vertical SGS scalar flux is
underpredicted by approximately 30 percent. The pre-
dicted conditional means using the Smagorinsky model
are shown in figure 11 and 12. Figures 11(a) and 2(a)
shows that the horizontal SGS scalar flux, 〈F1|u

r, θr〉
is underpredicted, because it use only the horizontal
scalar gradient ∂θr/∂x1, which is very small. The sign
of 〈F1|u

r , θr〉 is not predicted correctly. As discussed
in section 3.1 the conditional production of F1 is dom-

inated by
〈

F3

∂ur
1

∂x3
|ur, θr

〉

and
〈

τ13
∂θr

∂x3
|ur, θr

〉

. How-

ever, these gradients do not appear in the model. There-
fore the model cannot account for the dominant produc-
tion mechanisms and consequently cannot predict the
flux correctly. The results demonstrate the importance
of including the effects of the dominant vertical gradient
in the modeling of 〈F1|u

r, θr〉.
Figure 11(b) and 2(c) shows that the magnitude of the

vertical SGS scalar flux 〈F3|u
r, θr〉 is better predicted

than that of 〈F1|u
r, θr〉. The trends of 〈F3|u

r, θr〉 are
generally well predicted for positive θr fluctuations. The
trends for small θr fluctuations are somewhat less well
predicted. Because 〈F smg

3
|ur, θr〉 uses the gradients

∂θr/∂x3 which is in the dominant term in PF3, it is gen-
erally much better predicted than 〈F smg

1
|ur, θr〉

The trend of 〈PF1|u
r, θr〉 is generally

well predicted (figure 12(a)). 〈P smg
F1

|ur, θr〉

(= −
〈

τ smg
1k

∂θr

∂xk
+ F smg

k
∂ur

1

∂xk
|ur, θr

〉

) is dominated

by the term −
〈

F smg
3

∂ur
1

∂x3
+ τ smg

13

∂θr

∂x3
|ur, θr

〉

. Therefore,

the well predicted trend of 〈PF1|u
r, θr〉 is due to the

well predicted τ13 and F3. However, the magnitude is
underpredicted approximately by a factor of two due to
the underprediction of the magnitude of τ13 (Chen and
Tong (2006)) and F3.

The trend and magnitude of 〈PF3|u
r, θr〉 in figure

12(b) are poorly predicted. As discussed in section

3.1 〈P smg
F3

|ur, θr〉 (= −
〈

τ smg
3k

∂θr

∂xk
+ F smg

k
∂ur

3

∂xk
|ur, θr

〉

)
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is dominated by the term
〈

−τ smg
33

∂θr

∂x3
|ur, θr

〉

. There-

fore, the poor prediction of 〈PF3|u
r, θr〉 is due to the

poor prediction of τ33 by Smagorinsky model (Chen and
Tong (2006)).

The trend and magnitude of 〈Pθ |u
r, θr〉 in figure 12(c)

are generally well predicted. The dominant term of

〈P smg
θ |ur, θr〉 is

〈

F smg
3

∂θr

∂x3
|ur, θr

〉

, therefore, the well

predicted trend (the magnitude is matched) is due to the
well predicted trend of F3.

The results for the SGS production rates show that
when the conditional means of the SGS stress and/or
flux components that appear in a SGS production rate
are well predicted by a SGS model, the conditional mean
of the SGS production rate is also well predicted. This
suggests that the correlations between the conditional
fluctuations of the SGS stress (flux) and the resolvable-
scale gradients are of less importance. Consequently,
it appears to be sufficient to focus on the conditional
means.

3.7.2. The nonlinear model

The nonlinear model (Leonard (1974); Clark et al.
(1979)) is the first order approximation of the similarity
model Bardina et al. (1980) and is given by:

Fnl
i =

1

12
∆2 ∂θ

r

∂xk

∂ur
i

∂xk
. (14)

The predictions of the nonlinear model are shown in fig-
ure 13 and 14. In general, the nonlinear model pre-
dicts the overall trend and the magnitude better than the
Smagorinsky model. The trend for small θr fluctuations
is underpredicted but the magnitude is slightly overpre-
dicted.

The mean horizontal SGS scalar flux is overpredicted
by approximately 35 percent and the mean vertical SGS
scalar flux is underpredicted by approximately 80 per-
cent. The predicted magnitude of 〈F1|u

r, θr〉 using the
nonlinear model is better than that of the Smagorinsky
model. The better prediction of 〈F1|u

r, θr〉 can be un-
derstood as following: the nonlinear model component
Fnl

1 = ∂θr

∂xk

∂ur
1

∂xk
is dominated by the term ∂θr

∂x3

∂ur
1

∂x3
, which

can be rewritten in terms of the Smagorinsky model as

Fnl
1 ∼

∂θr

∂x3

∂ur
1

∂x3

∝ F smg
3

∂ur
1

∂x3

+ τ smg
13

∂θr

∂x3

. (15)

The previous section shows that τ13 and F3 are well pre-
dicted by the Smagorinsky model. Therefore, the term
F smg

3

∂ur
1

∂x3
+ τ smg

13

∂θr

∂x3
in equation (15) is effectively the

Smagorinsky model prediction of 〈PF1|u
r, θr〉. Figure

2a, 3a, and 5a have shown that the conditional SGS
flux and the conditional flux production rate have similar
trends, which is likely a result of the balance between the
SGS flux production rate and the pressure destruction
and the fact that the latter can be well predicted by the
SGS flux and a SGS time scale. Therefore, 〈F1|u

r, θr〉
is better predicted by the nonlinear model.

The trend of 〈F3|u
r, θr〉 is underpredicted. Further-

more,
〈

Fnl
3 |ur , θr

〉

has some spurious negative values.

The magnitudes for positive values are underpredicted.
The dominant component of F nl

3 is ∂θr

∂x3

∂ur
3

∂x3
, which can

be rewritten as

Fnl
3 ∼

∂θr

∂x3

∂ur
3

∂x3

∝ τ smg
33

∂θr

∂x3

. (16)

Because τ33 is poorly modeled by the Smagorinsky
model, ∂θr

∂x3

∂ur
3

∂x3

is not a good model for the dominant
term of PF3. Therefore, 〈F3|u

r, θr〉 is poorly modeled by
the nonlinear model.

The above analysis of the nonlinear model using the
Smagorinsky model and the surface layer dynamics pro-
vides a physical explanation of the performance of the
nonlinear model. Here we also provide a similar anal-
ysis of the nonlinear SGS stress model. The normal
component of the nonlinear model τnl

11 can be rewritten
as τnl

11 ∼
∂ur

1

∂x1

∂ur
1

∂x1
+

∂ur
1

∂x2

∂ur
1

∂x2
+

∂ur
1

∂x3

∂ur
1

∂x3
∝ τ smg

11

∂ur
1

∂x1
+

τ smg
12

∂ur
1

∂x2

+ τ smg
13

∂ur
1

∂x3

. Because the trend of τ13 is well

predicted by the Smagorinsky model, τ smg
13

∂ur
1

∂x3

is a good
model for the dominant term in P11, therefore, τ11 is well
predicted. Similarly, the dominant term in τnl

33 , ∂ur
3

∂x3

∂ur
3

∂x3
,

can be written as τ smg
33

∂ur
3

∂x3
. Because τ33 is poorly pre-

dicted by the Smagorinsky model, so is τ33 by the non-
linear model. The understanding can also be use to an-
alyze the production rate

〈

Pnl
ij |ur, θr

〉

.
The magnitude and the trend of

〈

Pnl
F1|u

r, θr
〉

for
positive θr fluctuations are not well predicted (figure
14(a)). This is due to the poor predictions of F3 and
τ13, which are in the dominant terms in 〈PF1|u

r, θr〉

(−
〈

F3

∂ur
1

∂x3
+ τ13

∂θr

∂x3
|ur, θr

〉

).

The magnitude of
〈

Pnl
F3|u

r, θr
〉

(figure 14(b)) is un-
derpredicted, while the trend for positive θr fluctuations
is better predicted than that for small and negative θr

fluctuations. This is due to the well predicted trend
of τ33, which is in the dominant term of 〈PF3|u

r, θr〉

(
〈

−τ33
∂θr

∂x3
|ur, θr

〉

).

The magnitude of 〈Pθ|u
r, θr〉 is well predicted,

whereas the trend is not as well predicted as the
Smagorinsky model. This is due to the poor predic-
tion of F3, which is in the dominant term of 〈Pθ|u

r, θr〉

(
〈

F3
∂θr

∂x3

|ur, θr
〉

).

3.7.3. The mixed model

The previous results show that the Smagorinsky
model can predict 〈F3|u

r, θr〉 but not 〈F1|u
r, θr〉, and

the nonlinear model can predict well 〈F1|u
r, θr〉 but not

〈F3|u
r, θr〉. Therefore, a mixed model combining these

two models

Fmix
i =

1

12
∆2 ∂θ

r

∂xk

∂ur
i

∂xk

− Pr−1

T (CS∆)2(2SmnSmn)1/2 ∂θ
r

∂xi
(17)

can potentially provide improved predictions.
The mean horizontal SGS scalar flux is overpredicted

by approximately 35 percent and the mean vertical SGS

9



scalar flux is underpredicted by approximately 23 per-
cent. The results of the conditional means for the mixed
model are shown in figure 15 and 16. The predicted
magnitude and trend of 〈F1|u

r, θr〉 are close to, but
not quite as good as the predictions using the non-
linear model due to the underpredicted magnitude of
〈F1|u

r , θr〉 by the Smagorinsky model. The predicted
trend of 〈F3|u

r, θr〉 is somewhat in between the predic-
tions by the Smagorinsky model and the nonlinear mod-
els, because the magnitude of

〈

Fnl
3 |ur, θr

〉

is compara-
ble to that of 〈F smg

3
|ur, θr〉.

The magnitude and trend of
〈

Pmix
F1 |ur, θr

〉

are close
to the predictions of the nonlinear model with improved
magnitude. This is because Fmix

3 and τmix
13 are better

than Fnl
3 and τnl

13 , but not as good as F smg
3

and τ smg
13

.
The magnitude of

〈

Pmix
F3 |ur, θr

〉

is close to the predic-
tions of the nonlinear model, because the magnitude
of 〈P smg

F3
|ur, θr〉 is smaller than that of

〈

Pnl
F3|u

r, θr
〉

.
The trend of

〈

Pmix
θ |ur, θr

〉

is in between those of
〈

Pnl
θ |ur , θr

〉

and 〈P smg
θ |ur, θr〉. Therefore, the predic-

tion of 〈Pθ |u
r, θr〉 using the mixed model is not as good

as that of the Smagorinsky model but better than that of
the nonlinear model. Therefore, the mixed model offers
a compromise between the Smagorinsky model and the
nonlinear model.

3.8. Potential effects of SGS models on the resolvable-
scale statistics

The results discussed above show that the conditional
horizontal scalar flux production rate is dominated by
〈

−F3

∂ur
1

∂x3
|ur , θr

〉

and
〈

−τ13
∂θr

∂x3
|ur, θr

〉

, and the con-

ditional vertical scalar flux production rate is dominated

by
〈

−τ33
∂θr

∂x3
|ur, θr

〉

. Therefore, correct predictions of

F3, τ13 and τ33 are very important for reproducing the
resolvable-scale velocity-scalar JPDF.

The Smagorinsky model underpredicts the condi-
tional horizontal SGS scalar flux but predicts well the
trend of the conditional vertical SGS scalar flux. The
underprediction of the conditional horizontal SGS scalar
flux directly affects the scalar PDF, and therefore the
velocity-scalar JPDF.

The Smagorinsky model also underpredicts the con-
ditional τ33 (Chen and Tong (2006)). Because τ33 ap-
pears in the dominant term of the conditional vertical
scalar flux production rate, the underprediction of the
conditional τ33 causes underprediction of the conditional
vertical scalar flux production rate, which in turn results
in underprediction of the resolvable-scale vertical scalar
flux (velocity-temperature correlation). For a constant
heat flux boundary condition, the mean scalar gradient
will be overpredicted because the LES fields have to ad-
just themselves to carry the improved heat flux at the
boundary. The improved mean scalar profile using the
split model (Mason and Thomson (1992)) and stochas-
tic model (Sullivan et al. (1994)) may be partly because
these models have improved τ13 and τ33, which is impor-
tant for scalar flux production rate. Introducing backscat-
ter can improved the scalar PDF as well and results in
better scalar variance profile.

The nonlinear model can predict the conditional hor-
izontal SGS scalar flux well but not the vertical SGS
flux. Again due to the constant heat flux boundary con-
dition the underprediction of the vertical SGS scalar flux
causes overprediction of the mean scalar gradient. The
underprediction of the conditional F3 and τ13 also cause
underprediction of the conditional PF1, which results in
underprediction of the horizontal resolvable-scale scalar
flux.

These potential effects of the SGS models indicate
that for LES to reproduce a resolvable-scale statistics,
all the relevant conditional SGS stress, flux, and SGS
production rates must be correctly predicted. An exam-
ple in which this condition is not satisfied is the poor pre-
diction of the conditional τ33 by the Smagorinsky model,
which can lead to incorrect predictions of the conditional
PF3 and hence the resolvable-scale vertical scalar flux
even when F3 is quite well predicted. Previous efforts
to improve SGS models generally focused on the model
predictions of the SGS stress and flux. The results here
show that the predictions of the SGS production rates
must also be improved.

4. conclusion

In the present study, we use field measurements data
in a convective atmospheric boundary layer to analyze
the subgrid-scale turbulence. The necessary conditions
for LES correctly predict the resolvable-scale velocity-
scalar JPDF are that the SGS models reproduce the
conditional means of the SGS stress, the SGS stress
production rate, the SGS scalar flux, the SGS scalar flux
production rate, and the SGS scalar variance produc-
tion rate conditional on the resolvable-scale velocity and
scalar.

The results show that the conditional SGS scalar flux,
its production rate, and the SGS scalar variance produc-
tion rate depend strongly on the resolvable-scale veloc-
ity and scalar. The dependences are generally strong for
positive temperature fluctuations and are weak for neg-
ative temperature fluctuations.

Analyses of the conditional SGS scalar flux and its
production rate show that they are closely related to the
surface layer dynamics and flow history. For positive θr

fluctuations, eddies associated with updrafts generally
come from the near ground region, which contain large
magnitudes of vertical SGS flux and SGS stress, and ex-
perience strong shear and vertical temperature gradient,
resulting in large SGS flux production rates. For small θr

fluctuations, eddies are generally well mixed, therefore,
the results tend to be more symmetric with respect to
ur

3. For negative θr fluctuations, eddies associated with
downdrafts generally come from the mixed layer region,
which carry relatively small fluxes, resulting small mag-
nitudes and weak dependences of the conditional SGS
scalar flux production rates on the resolvable-scale ve-
locity. The vertical SGS scalar flux is shown to have
a “slow” effect on the horizontal SGS scalar production
rate. The horizontal SGS scalar flux does not influence
directly the vertical SGS scalar flux production rate but
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nonetheless affects the resolvable-scale scalar PDF.
The conditional SGS scalar flux and the conditional

SGS scalar flux production rate have similar trends and
are generally well aligned with the alignment angle be-
ing generally less than 10◦. This is consistent with the
balance between the production rate and pressure de-
struction and the validity of using the SGS scalar flux
and a time scale for the pressure destruction. The sim-
ilarities and the dynamic connections between the con-
ditional scalar flux and its production rate provide the
potential of using the conditional scalar flux production
rate to model the scalar flux in convective ABLs.

The trends of the SGS stress and its production rate
for positive temperature fluctuations are similar to the re-
sults without conditioning on the resolvable-scale tem-
perature fluctuations. The dependences are weak for
negative temperature fluctuations. We argue that the de-
pendences of the SGS stress and its production rate on
the resolvable-scale temperature fluctuations are partly
due to the flow history effect.

The Lumley triangle for the conditional SGS stress
shows that the anisotropy of 〈τij |u

r
1, u

r
3, θ

r〉 for positive
temperature fluctuations is quite strong and is close to
the that for 〈τij |u

r
1, u

r
3〉 (without conditioning on θr). The

conditional SGS stress are not far from being axisym-
metric with either one small or large eigenvalue. For
small θr fluctuations, the results are somewhat simi-
lar to the results for positive θr fluctuations. For nega-
tive θr fluctuations, the conditional SGS stress is less
anisotropic.

The conditional SGS stress and its production are
generally well aligned for positive θr fluctuations and
are less well aligned for negative θr, consistent with the
results on the Lumley triangle and the possible quasi-
equilibrium between the SGS stress production and
pressure destruction.

Our statistical a priori test show that the Smagorinsky
model underpredicts the conditional horizontal scalar
flux, because the small magnitude of the horizontal
scalar gradients. It predicts well the conditional vertical
SGS scalar flux because it uses the dominant vertical
scalar gradients.

The Smagorinsky model can also predict well the
trends of the conditional horizontal scalar flux produc-
tion rate, because the conditional τ13 and F3 are quite
well predicted. However, it predicts poorly the condi-
tional vertical SGS scalar flux production rate due to its
poor prediction of τ33. The conditional scalar variance
production rate are well predicted because the trend of
F3 is well predicted.

The nonlinear model can predict well the conditional
horizontal SGS scalar flux. Both the conditional hori-
zontal and vertical SGS scalar flux production rates are
underpredicted. Predictions of the SGS flux using the
nonlinear model are found to be closely related to pre-
dictions using the Smagorinsky model and the quasi-
equilibrium between the production and pressure de-
struction. The analysis of the nonlinear model using the
Smagorinsky model and the surface layer dynamics pro-
vides a physical explanation of the performance of the
nonlinear model. A similar analyse of the nonlinear SGS

stress model are also performed.
The dependences of the SGS stress and its produc-

tion rate on the resolvable-scale temperature suggest
that it may be beneficial to model such dependences to
account for flow-history effects. Analyses of the SGS
models show that the current SGS models have varying
level of performance in predicting different SGS compo-
nents. Often the poor model prediction of one SGS com-
ponent affects the prediction of the production rate of an-
other component, thereby resulting in errors in the LES
statistics that depend on the production rate. Therefore,
efforts to improve SGS models should be focused on the
correct predictions of all the relevant SGS variables re-
lated to the LES statistics of interests or of importance
to the intended applications.
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Figure 2: Conditional means of the SGS scalar
flux. The dependences on resolvable-scale velocity are
strong for positive θr and are weak for negative θr.
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Figure 3: Conditional means of the SGS scalar flux pro-
duction rate.
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Figure 4: Conditional mean of the SGS scalar variance
production rate.
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Figure 5: Geometric alignment of the measured con-
ditional SGS scalar flux and the conditional SGS stress
production rate. (a), the alignment angles are small for
positive ur

3 and θr and increases for negative ur
3 and θr;

(b), the effects of buoyancy is included, and the align-
ment angles are similar to (a).
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Figure 6: Conditional means of the normal components
of the SGS stress. The dependences are strong for pos-
itive θr and are weak for negative θr.
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Figure 7: Conditional means of the normal components
of the SGS stress production rates.

15



-2

-1

0

1

2

θ
r

-2
-1

0
1

2 u
r
1

-2
-1

0
1

2
u r

3

-2.50 -1.99 -1.47 -0.96 -0.44
〈τ13|u

r,θr〉

(a)

-2

-1

0

1

2

θ
r

-2
-1

0
1

2 u
r
1

-2
-1

0
1

2
u r

3

-2.00 -1.59 -1.19 -0.78 -0.37
〈P13|u

r,θr〉

(b)

Figure 8: Conditional means of the shear components
of the SGS stress and the shear production rate.
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Figure 9: Lumley triangle representation of the condi-
tional SGS stress. The arrows represent the conditional
vector (ur

1, u
r
3). (a), for positive θr, 〈τij |u

r
1, u

r
3, θ

r〉 is quite
anisotropic and close to the results for 〈τij |u
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3〉 (with-

out conditioning on θr); (b), for small θr, the results are
similar to the (a); (c), for negative θr, the conditional
SGS stress is less anisotropy.
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Figure 10: Geometric alignment of conditional SGS
stress and its production rate. The alignment angles are
small for positive θr and increases for negative θr and
ur

3.
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Figure 11: Predicted conditional SGS scalar flux using
the Smagorinsky model. The trend of 〈F3|u

r, θr〉 is well
predicted.
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Figure 12: Predicted conditional SGS scalar flux pro-
duction rate and SGS scalar variance production rate
using the Smagorinsky model. The trend of 〈PF1|u

r, θr〉
is well predicted.
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Figure 13: Predicted conditional SGS scalar flux us-
ing the nonlinear model. The trend of 〈F1|u

r, θr〉 is well
predicted.
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Figure 14: Predicted conditional SGS scalar flux pro-
duction rate and the scalar variance production rate us-
ing the nonlinear model.
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Figure 15: Predicted conditional SGS scalar flux using
the mixed model.
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Figure 16: Predicted conditional SGS scalar flux pro-
duction rate and SGS scalar variance production rate
using the mixed model.
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