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I.  Introduction
Large eddy simulation (LES) is valuable for

studying atmospheric behavior on scales of several
tens to hundreds of meters because it treats fine
scale motions realistically without requiring impossibly
costly computations.  The smaller scales are treated
as bulk effects at resolved scales to reduce
computations.  Accurate representation of the small
scale is key to successful simulations.  Most  LES
studies have measured success by comparing major
simulated flow features with those observed in the
field or laboratory.  More comprehensive evaluations
compare spatial or temporal average profiles of basic
state parameters or, sometimes, derived scalar
quantities such as divergence, turbulent kinetic
energy (TKE), momentum fluxes and so forth.  For
lack of adequate data, these latter comparisons are
generally limited to simple idealized flows, or
comparisons of the results obtained with different
models.  These approaches are appropriate first steps
in the study of LES performance, but do not address
important questions about measures other than the
mean.  Under many circumstances, especially for
stably-stratified flows, the intermittent processes
represented by the spread of the statistical
distributions can be an important determinant of the
heat, kinetic energy and momentum fluxes.  As will be
shown, the patterns formed by the vertical motions
are also important.  

We compare results among six different sub-filter
models after a very long spin-up time.  These studies
address the simple neutrally-stratified flow over a flat
surface that Chow et al. (2005) used to evaluate the
effects of different models on mean profiles and other
statistics.  The flow has been well studied
theoretically and in the laboratory, so there are norms
available for comparison, at least for the mean flow.
We describe variations in the flow-field fluctuations
observed in LES with different subfilter scale-
turbulence models. The Advanced Regional Prediction
System (AARPS) mesoscale model was used in an
LES configuration to simulate neutrally-stratified flow
over a flat, rough surface using six different sub-filter

scale models (Smagorinsky, dynamic Wong-Lilly, and
a dynamic reconstruction model with various types
and levels of reconstruction).  Past work indicated
that the dynamic reconstruction model (DRM) results
are significantly better than those from traditional
eddy-viscosity closure models (e.g. Smagorinsky)
when means velocity profiles are in better agreement
with the logarithmic profile of similarity theory.
Vertical shear profiles and turbulent stress profiles are
also improved by the DRM over traditional models
(Chow et al. 2005).   

Simulations provide full, consistent data sets for
analysis, and development of analysis techniques.
Different flow parameters, and a variety of statistical
measures can be used to characterize and compare
results.  This work presents the variations in the
fluctuations observed in vertical velocities generated
by LES of turbulent flows when the sub-filter scale
models are changed.  

2. Flow simulation examined

2.1 ARPS model

ARPS is a state of the art atmospheric mesoscale
and small-scale finite difference simulation code that
can be applied to LES problems (Xue et al., 1995,
2000, 2001).  Chow et al. (2005) modified ARPS to
include new sub-filter scale models for this study.  Its
most relevant properties as used in this work are
summarized in Table 1.  ARPS winds are computed on
the faces of the grid volumes; u on the west and east,
v on the south and north and w on the bottom and
top, and interpolated to the computational volume
centers (where temperatures and pressures are also
defined) for output, display and analysis.  The vertical
spacing in Table 1 refers to the original staggered
grid.  Parameter values from nine separate snapshots
at 2500 s intervals, beginning at 280 000 s were used
for the analyses reported here.  The spin up of more
than 3 days simulated time would be expected to
provide a statistically steady state, but Chow et al.
(2005) showed that even after these long integration
times, results were not completely stationary (see e.g.



their Figure 2), because of inertial oscillations and
hence differing numbers of larger scale structures
within the domain.  The 2500 s between samples
should provide independent data that can be
combined for calculating statistics for model
comparisons.  All comparisons involve only data from
the same height above the surface, because of the
large vertical gradients in the flow.

Table 1. Characteristics of ARPS as used for tests

Characteristic Description

Spatial  discretization Arakawa C grid
Number of grid points 40x40x40
Horizontal spacing 32 m
Vertical spacing for the
computations

Stretched:  10 m near surface,
65 m near top (1500 m)

Time discretization:  Large step
Small step (acoustic mode)

0.5 s, 2nd-order leapfrog
0.05 s, 1st-order fwd–bckwd

Horizontal advection Fourth order
Vertical advection Second order
Boundaries:Bottom

             Top
              Lateral

Rigid free slip with sfc drag
Rigid free slip
Periodic

Spatial computational mixing Fourth order

Subfilter-scale turbulence Discussed in Section 3

2.2 Test case: Neutral atmospheric boundary layer

The simulations used for the comparisons given
here are described by Chow et al. (2005).  A similar
neutral, rotation-influenced, large-scale boundary layer
flow was examined by Andren et al. (1994).  A
constant pressure gradient drives the flow; it
corresponds to a 10 m s–1 westerly geostrophic wind
at approximately 43° north latitude.  The simulation
was initialized with small perturbations superimposed
on the analytical (constant eddy-viscosity) Ekman
spiral solution, so that fully turbulent flow developed.
The parameterized surface fluxes approximate a rough
lower boundary.  

3. Sub-filter scale turbulence models tested
Chow et al. (2005) implemented reconstruction

approaches for the resolved subfilter stresses,
modeled the subgrid stresses, and added a model for
near-wall effects at rough boundaries.  For the
readers’ convenience, we give a brief overview of the
models.  

LES uses the equations of motion to describe the
evolution of larger scale motions directly, while
modeling smaller scale eddies, most often by
representing their effects as analogous to viscosity.
For this approach to work, energy in the unresolved
scales must be small enough that they are not the
major forcing in the evolution of larger scales.  The
size that separates the larger, resolved scales from
smaller, unresolved scales is for practical (not
necessarily physical) reasons related to the size of
the mesh used to represent the flow, so the mesh
should be fine enough that most of the flow energy is
resolved –– the underlying basis for LES.  Key to all
the following discussions is that both resolved sub-

filter scale (RSFS) and sub-grid scale (SGS) models
must use only knowledge of resolved scale behavior.  

When derivatives are estimated from a spatial
array of point values (rather than in an infinitesimal
volume) for numerical solution of the equations of
motion, the discretization acts as a spatial filter.  This
implicit discretization filter and the explicit LES filter
divide flow energy into three categories: 1) wholly
resolved motions, 2) motions at scales resolved by
the grid, but smoothed by the filtering and 3) wholly
unresolved motions.  Motions in category 2 are known
as resolved sub-filter-scale (RSFS) motions.  If a
known explicit filter is used, RSFS motions can be
reconstructed mathematically and used to model their
effects on resolved motions.  RSFS motions cannot
always be reconstructed exactly, because of
numerical limitations in the process.  Chow et al.
(2005) combined both the Taylor series RSFS
reconstruction model of Katopodes et al. (2000a, b)
and the Stolz and Adams’ (1999) approximate
deconvolution approach with the Wong and Lilly (1994)
dynamic eddy viscosity model to form a dynamic
reconstruction model (DRM).  Unresolved sub-filter
scales (USFS) must always be modeled (Gullbrand
and Chow, 2003).  

The filtered, incompressible Navier-Stokes equa-
tions on a discrete mesh are:
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Repeated indices indicate summation; viscous terms
have been neglected. Tildes and over-bars denote
discretization and filtering effects, respectively.  Wind
components and coordinate axes are denoted by
subscripted u and x, respectively.  Other symbols
are: pressure, p; Coriolis parameter, f; gravitational
constant, g: Kronecker delta, δi j and the alternating

epsilon tensor, εimn.  Turbulent stresses are defined:

€ 

τij = uiu j – ˜ u i ˜ u j                     .                          (2)

Carati et al. (2001) separated stress into two
parts representing: 1) the subgrid stress that depends
on unresolved motions (USFS), and 2) sub-filter stress
that depends on differences between the exact and
filtered motions (RSFS).  Theoretically, exact values
of the RSFS component could be reconstructed from
filtered fields.  Separating USFS and RSFS stress in
Equation 2 gives:

€ 

τij = uiu j – ˜ u i ˜ u j( ) + ˜ u i ˜ u j – ˜ u i ˜ u j( )          .                     (3)

Following the example of Carati et al. (2001) 

€ 

A ij  is

used to represent USFS (the first parenthesis on the

right side of Equation 3) and Bij  to represent RSFS
(second parenthesis). The complete models require a
term representing the USFS components in 

€ 

A ij ,
because 

€ 

uiu j  cannot be calculated from grid point

values.  A reconstruction term is also needed for



RSFS motions and associated stresses in Bij.   Chow
et al. (2005) used six different model combinations in
ARPS to simulate the neutral boundary layer flow
described earlier.  

3.1 Eddy viscosity subgrid-scale models

The eddy velocity concept is widely used in LES,
and has been adopted here for the SGS models
tested.  The basic form for representing the subgrid
component is:
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                     (4)

where

€ 

νT  is the SGS eddy viscosity, and 

€ 

˜ S ij  is the

resolved strain rate tensor.   Equation 4 requires the
determination of eddy viscosity.  Two models are
tested below: 1) the Smagorinsky model and 2) the
dynamic Wong-Lilly model.

3 . 1 . 1 Smagorinsky model
The original Smagorinsky (1963) model approxi-

mates eddy viscosity 

€ 

νT  as proportional the local

resolved strain and the square of the grid spacing 

€ 

Δg
2 :

€ 

νT = CSΔg( )2
2 ˜ S ij ˜ S ij( )

1
2                                  (5)

The Smagorinsky model without any sub-filter scale

term,  B ij, provides baseline results against which
results from more complete models can be compared.

3 . 1 . 2 Dynamic Wong-Lilly model
The dynamic Smagorinsky model (Germano et al.,

1991) is overly sensitive to the bottom boundary
condition, so the dynamic Wong and Lilly (DWL, 1994)
model was adopted.  It is less sensitive to the bottom
boundary than the dynamic Smagorinsky model
(Germano et al. 1991) and relatively easy to
implement.  The DWL model defines eddy viscosity
as:

 

€ 

νT = CS
2 3Δ4 3ε1 3 = CεΔ

4 3     .                   (6)

CS and ε are the original Smagorinsky coefficient and
the turbulent dissipation rate, respectively; they are
replaced by Cε as shown in Eq. 6.  The Wong-Lilly
model avoids the usual requirement that ε  and the
SGS rate of energy production be equal, and it does
not require the effective grid cell spacing, Δ , to be

defined exactly, because the product term, CεΔ , is
dynamically calculated (Germano el al., 1991) from
Lilly’s (1992) least squares approximation:  
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Brackets < > indicate local averaging and ^ denotes
application of an explicit filter.  The Leonard term

stress tensor, Lij, and the filtered strain rate tensor,
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                                      (8)

and
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The effects of the discretization operator at the
coarser test-level grid are denoted by ~c .  The
dynamic Wong-Lilly (DWL) model is less sensitive to
calculation of the strain rate tensor near the lower
rough boundary and was found to perform better than
the dynamic Smagorinsky model (Chow et al. 2005,
Germano et al. 1991).  The DWL was used alone, and
in combination with four different sub-filter
reconstruction models.  Three reconstruction models
represent different levels of reconstruction vis-a-vis
the number of terms in the series that were retained.

3.2 Sub-filter reconstruction models

The filter operation that results in Equation 1
damps high wave number information.  In theory,
RSFS information can be recovered exactly with
appropriate inverse filtering.  Stolz et al. (2001)
proposed an approximation to the inverse filtering that
uses van Cittert’s (1931) iterative method to estimate

unfiltered velocities

€ 

˜ u i  from the filtered field 

€ 

˜ u i .
Alternatively, Chow and Street (2002) used Taylor
series expansions for the purpose.  The recovered
unfiltered fields, 

€ 

˜ u i , are substituted into the RSFS

stress tensor, 

€ 

Bij = ˜ u i ˜ u j – ˜ u i ˜ u j .   Truncating the

reconstruction at different points provides different

models for the RSFS term Bij .  As described above,
SGS stresses are provided by modeling the stress
term 

€ 

A ij = uiu j – ˜ u i ˜ u j .  

 Both the van Cittert iterative and Taylor series
methods recover the velocity to a known order of
accuracy.  Both low- and higher-order reconstructions
were used to model the RSFS stresses with these
methods.   The expansions are equivalent to the
Scale Similarity Model (SSM) of Bardina et al. (1983)
and Leonard’s (1974) tensor-diffusivity model
(Katopodes et al., 2000b; Winckelmans et al., 2001)
when they are appropriately truncated.  

3 . 2 . 1 Approximate Deconvolution
Model (ADM)

Van Cittert’s (1931) iterative deconvolution
method retrieves unfiltered quantities by a series of
operations with a filter G as follows:



€ 

˜ u i = ˜ u i + (I – G) ˜ u i + (I – G)((I – G) ˜ u i ) + • • •   ;  (10)

I is the identity matrix (Stolz et al. 2001) and G is a
smooth spatial filter, here chosen to be a tophat filter.
Further details are available in Chow et al. 2005.  The
truncated series approximates the unfiltered velocity

€ 

˜ u i
*  and when substituted gives 

€ 

Bij = ˜ u i* ˜ u j* – ˜ u i* ˜ u j* .

Stolz et al. (2001) called this reconstruction the
approximate deconvolution model (ADM).  Three levels
of ADM reconstruction were used for the tests, each
with the Wong-Lilly model.  A “level-n” reconstruction
retains  n + 1 terms of the series that approximates
the inversion of the filter G.  Our tests use level 0, 1
and 5 reconstructions.  

3.2.2 Modified Clark reconstruction
m o d e l

Reconstruction with a Taylor series can be done
to an arbitrary order of accuracy in the isotropic filter

width Δf.  For example, to fourth order, the expansion
gives:
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Bij = ˜ u i
* ˜ u j

* – ˜ u i
* ˜ u j

* –

Δ f
2

24
˜ u i∇

2 ˜ u j – ˜ u j∇
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              (11)

Clark et al. (1977) showed that terms with higher order
derivatives are dissipative.  Katopodes et al. (2000b)
rewrote the series model in Equation 11 in the
following form that is equivalent to fourth order:
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Bij =
Δ f

2
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∂xm

∂ ˜ u j
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                      ,                     (12)

which we call the modified Clark model.

3.3 Near-wall stress model

The near-wall stress model is implemented to
supplement the turbulence models and account for the
stress induced by filtering near a solid boundary as
well as the effect of the large grid aspect ratio near
the lower boundary. This model is based on that of
Brown et al. (2001).  Essentially, it adds a drag to the
flow to account for the roughness and grid aspect
ratio effects. The resulting stress appears as

€ 

τi,near−wall = – Cca(z) u∫ uidz               (13)

Nakayama and Sakio (2002) and Nakayama et al.
(2004) provided a theoretical basis for this near-wall
model of rough boundary flow. The shape function a(z)
is chosen so that the near-wall stress tapers smoothly
to zero beyond the near-wall region.  Chow et al.
(2005)  defined the coefficient Cc which ranges
between about 0.4 to 0.8, depending on grid cell
aspect ratio. The depth of the near-wall stress layer
was taken as 4∆x (about 128 m).

4. Results
We analyzed the differences between distri-

butions of a variety of flow descriptors in space, so

that we could determine if there are differences among
the models in the way momentum is transferred in the
vertical.  Scalar descriptors (e. g., flow velocity,
vertical motion, or the spanwise component of
vorticity) rather than vectors or tensors make it easier
to compare statistical distributions and to display
spatial patterns.  Among those parameters that are
closely related to momentum transfer in the vertical
are spanwise vorticity and vertical velocity, both of
which are measures of overturning and vertical
motions that move momentum (flow velocity) to and
from the surface.  Had this been other than a
neutrally-stratified flow without buoyant effects,
Richardson Number and Brunt-Vaisala frequency
would have been good choices to examine heat
transfer.  Although we calculated several of these
variables, only the vertical velocity fields will be
discussed here.  The other parameters, such as
spanwise vorticity lead to similar conclusions that will
be presented elsewhere.

4.1 Temporal variability

Even after 105 s, Chow et al. (2005) found inertial
oscillations between about 0.8 to 1.2 in stationarity
parameters that equal one for steady-state conditions
(see their  Figure 2),  One reason why these
variations may persist is that the flow is characterized
by a few large, coherent structures (e.g. regions of
updraft and downdraft) that dominate the statistics of
integrated surface stress used to calculate the
stationarity parameters.  If coherent features are large
enough (several hundred meters in extent) so that no
more than five or ten features can occupy the domain
at any given time, then variations of two or three in
their number will produce systematic variations in
stationarity parameters, and other statistics.  Further-
more, if the size and shape of large coherent
structures (if they exist) are different for different
models, that would signal that the flows produced by
the different models are significantly different in the
effects that they produce, such as scalar transport
and dispersion.  Therefore, it is important to examine
more than just differences in mean behavior between
models.  Other statistics and flow measures could be
very important, especially standard deviations and the
nature of the spatial distributions of flow variables.
Chow (2004) had already found evidence of coherent
structures in the spatial correlations of streamwise
velocity.  

Chow et al. (2004) evaluated the performance of
the different models by comparing layer mean
velocities and shears with the theoretical logarithmic
profile values.  They used the non-dimensional
velocity gradient
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In Equation 14, u* is friction velocity, κ  is the von

Kármán constant; Φ  should be 1 in the logarithmic

layer.  In the first hundred meters, Φ  lies between



about 0.99 and 1.06, 1.08 or 1.6, for the DRM-ADM0,
Wong-Lilly and Smagorinsky models, respectively,
leading the authors to conclude that the Smagorinsky
model is the least realistic of those tested, and the
ADM-DRM formulations are the most realistic.  Here,
we accept that hierarchy, and thereby infer that
results presented later for the different models are
less realistic for the Smagorinsky than for the others.

4.2 Variations of layer averages and standard
deviations of vertical velocity with height

Figure 1 shows profiles of vertical velocity
standard deviation.  The lowest 110 m is plotted
separately so the scales can be expanded to allow
the differences among models to be seen more
readily.  Continuity requires that the layer mean
vertical velocities (not shown) equal zero, and
statistical tests confirmed that none of the layer
averages differs significantly from zero, so only
standard deviations are shown in Figure 1.
Fluctuations in vertical velocity are important to the
determination of vertical momentum fluxes.  Large
standard deviations can be produced by either 1)
large organized areas of upward and downward
motion, 2) up and down motions randomly distributed
over the grid points,  or 3) a combination of the two.
As will be shown later, it is the first of these that
seems to be the most important.   

In order to produce velocity profiles with a
momentum sink at the surface, there must be
downward momentum transport.  Downward momentum
transport in an LES arises by two mechanisms, 1)
direct vertical subgrid transport accomplished by the
models being studied, or 2) horizontal subgrid
transport between areas of resolved upward and
downward motion.  In the second case, if there is no
interchange between upward and downward moving
cells, higher momentum air from aloft eventually
returns to its original level with the same momentum.
We will return to this idea later when the patterns of
vertical motion are discussed.

The standard deviations in Figure 1 have regular
and significant variations with height.  The largest
values occur at about 200 m for all the models.  Since
the upper and lower boundary conditions fix vertical
motions at zero, the standard deviations are forced to
approach zero near the top and bottom of the profiles.
Differences among w standard deviations were
evaluated at 15 m and 959 m, using the F test
(Bluman 2001).  All the differences at 959 m are
significant at the 95 percent level.  The, models
differed significantly at 15 m in all but one (Modified
Clark and DRM_ADM1) of 15 possible pairings.  

Our results have shown that different models
often produce significantly different statistical
distributions.  Here, each w is associated with a point
in space), and although the mean vertical velocities
are all statistically indistinguishable from zero and
from each other, there may be different patterns of
spatial distribution, because of spatial correlations.
We next examine the spatial patterns of vertical
motion to see if this is in fact the case).  

Figure 1. Vertical profiles of layer standard deviation
of vertical velocity.

Figures 2 and 3 show vertical motions at 15 m
and 517 m above the surface for the six models (the
six large squares) at each of the nine snapshot times.
Vertical velocities are shown by the color, blues for
downward motion, reds for upward.  Whites and pale
colors are near zero.  In Figures 2 and 3, colors range
between ±50 cm s–1 and ±150 cm s–1, respectively,
although some extremes (upper right corner of each
panel) are outside these ranges.  

Qualitative differences among the models are
obvious in Figure 2.  Smagorinsky results differ from
those of other models, with upward and downward
motions being organized in long stripes at an angle to
the west-east geostrophic motion.  The Wong-Lilly and
DRM_ADM0 models produce vertical motion patterns
arranged in less pronounced tilted stripes.  Other
model results look more like mosaics of updrafts and
downdrafts.  Another factor that differentiates
Smagorinsky patterns from the others is their
generally smaller magnitude.  Although extreme values
for w in Figure 2 are not smallest for the Smagorinsky
model, the standard deviation profiles in Figure 1
confirm that overall, the Smagorinsky model’s vertical
motions near the ground deviate less from zero than
do other model results.  



Figure 2 Vertical motions produced at 15 m by the six subfilter models (large squares).  The small
squares at upper left are the earliest of the nine times for that model; the latest is at the lower
right.  Extreme values for each model are shown in the upper right corner of each large
square.



Figure 3 Vertical motions produced at 517 m by the six subfilter models (large squares).  The small
squares at upper left are the earliest of the nine times for that model; the latest is at the lower
right.  Extreme values for each model are shown in the upper right corner of each large
square.  Note: the  color scale differs from Figure 10.



Figure 3 shows vertical motions at 517 m; the
color scale spans a larger range than in Figure 2.  The
qualitative differences among the patterns produced
by the various models are much less pronounced at
this height than they are near the surface.  The
patterns at 517 m are qualitatively quite different from
those at 10 m.  The elongations are gone, and the
features are much larger.  At the higher altitude, the
Smagorinsky patterns are not as markedly different
from those produced by the other models, but overall,
the Smagorinsky features do contain smaller features.
The noticeable differences well away from the wall at
517 m are counter to the common belief that the
turbulence model is only important near the wall.  I t
appears that errors near the surface affect the entire
flow field. Interestingly, Khanna and Brasseur (1998)
reached the same conclusion for moderately
convective boundary layers.

The correlograms in Figures 4 and 5 confirm that
patterns change with height.  At 15 m, all the models,
except the DRM_ADM5, produce elongated features
with major axes of the area encompassed by the 0.3
correlation that are at least 1.8 times the minor axis
(See Table 2).  At the higher level, only the Wong-Lilly
model has a ratio as high as 1.9.  As noted, the upper
level features are also larger, especially with regard to
the minor axis dimension, which doesn’t exceed 105 m
at the 15 m height, but is greater than 290 m for all
models at 517 m.  

Table 2 Vertical velocity correlogram axis lengths
and angles for 0.3 correlation isopleths

Chow (2004) presented correlation diagrams at 5,
111 and 839 m for the magnitude of the u velocity
component (instead of w).  They are similar to those in
Figures 4 and 5.  She only examined the Smagorinsky
and DRM_ADM5 model runs.  Her Smagorinsky results
at 5 m had roughly the same rotation and extent as
those in Figure 4.  As altitude increased, the u-
correlation ellipses rotated CW and the eccentricity
decreased.  Chow’s (2004) DRM_ADM5 correlograms
indicate that the u component features are more
elliptical than we see for the w component, but in both
cases the size of the features (as indicated by the
area enclosed by a given correlation isopleth)
increases with altitude.

Figure 4. Vertical velocity correlograms at 15 m for the
six models. Isopleth interval is 0.1; dashed
lines=negative correlations

Figure 5. Vertical velocity correlograms at 15 m for the
six models. Isopleth interval is 0.1; dashed
lines=negative correlations



Kosovic´ (1997) compared a “linear” model
(corresponding to the Smagorinsky used here) and a
“non-linear” model (a more accurate model when
comparing mean velocity profiles).  His u component
correlograms are similar to Chow’s (2004).  His linear
model produced structures that were more elongated
at low levels than those of the more complicated
model, but the differences aloft were less at higher
levels, where both models produced more nearly
circular features.  It appears that models of the
Smagorinsky type produce elongated features near
the surface (at least for u, and w) that become more
circular aloft.  The more complete models (e.g.
DRM_ADM5) exhibit less difference between the
shapes of features at low levels and those aloft.  The
low level features tend to be nearly as circular as
those at higher altitudes.  Based on the mean speed
profiles, we infer that patterns produced by more
complete models are more realistic than those of a
Smagorinsky model. This could be very important in
some applications, because the transport and
dispersion associated with the different patterns are
likely to be very different.

Chow (2004) examined the streamwise,
normalized one-dimensional energy spectra at
different heights above the surface for a similar
simulation on a larger 833 grid and found that at an
altitude of 161.5 m, the Smagorinsky model had more
energy than the DRM_ADM0 model, and that the
added energy was associated with larger wave
numbers, i.e. smaller size features.  This differed from
the spectra at 5 m, where the DRM_ADM0 had greater
energy at larger wave numbers.  This is certainly
consistent with the entries in Table 2, which show that
the major axes (which are the more closely aligned
with the streamwise direction) of the 0.3 correlation
isopleths are larger for the Smagorinsky model than
for the DRM_ADM0 at the lower altitude and smaller at
the higher level.  It appears that differences in
spectra among the models can be attributed to
differences in the patterns of organized motion
produced by the different subfilter models.

The DRM_ADM5 and Smagorinsky patterns of w
were plotted for all levels (not shown) after 290 000 s
of simulation to see how they changed with height.  In
both cases, the transition to larger features with
height takes place largely by the merging of smaller
areas of upward or downward motion.  The motions
become stronger with increasing distance from the
lower boundary and its dampening effects.  Features
evolve with height so that it is often difficult to match
patterns separated by more than a few hundred
meters in the vertical.

5. Summary and discussion
Differences in flow feature variabilities, as

measured by horizontal layer standard deviations can
have great practical importance, because the intensity
of fluctuations has a direct impact on turbulent fluxes
of momentum and scalar variables. The fact that the
models produce different standard deviations is
interesting, but of itself not particularly enlightening.
It is important to remember that the standard

deviations seen in the profiles do not derive from
randomly distributed spatial distributions of the
scalars involved.  Instead, as we have shown, there
are organized patterns, i.e., a value at any point is
likely to be of the same sign and of similar magnitude
as its immediate neighbors.  These spatial patterns
and the correlations associated with them have been
shown to be recognizably different for different
models, especially at the lower altitudes, but also far
above the ground.  Based on the extent of the area
covered by spatial correlations greater than 0.3 (see
Table 2), the patterns will span from about 3 to 20 grid
points, depending on altitude and directional
orientation.  When LES results are used for driving
other applications (e.g. transport and dispersion
models), the differences in patterns among the models
would likely lead to very different results.  The
question remains, how are these pattern differences
associated with the different effects of the various
subfilter models?  Below, we suggest a possible
answer by analogy to what Sreenivasan et al. (1989)
observed and theorized about the behavior of
constant scalar surfaces in turbulent fluids.  

Sreenivasan et al. (1989) related fine scale
details of the interfaces between mixing layers to the
macroscopic fluxes between layers.  The shapes of
iso-surfaces (e.g., a surface of constant dye concen-
tration) are made up of convoluted wrinkles on
convoluted wrinkles over a range of scales.  Over that
range of scales, the area of the surface varies
according to the resolution (R) with which it is
measured.  The variation in area A follows a power law
of the form:

€ 

A = CR2−D          .                                           (15)

C is a constant and D is a fractal dimension with a
value of approximately 7/3, meaning that the area
increases with finer resolution.  The relationship in
Equation 15 does not hold over all sizes.  At the
larger sizes, it is bounded by an outer scale (Ro)
which is approximated by the integral scale of the
turbulence.  At this outer scale, the area is Ao.  The
small, inner scale bound (Ri) is approximated by the
Komolgorov scale.  The inner scale defines the
maximum area for the surface
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Amax = Ao
Ri
Ro
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                                     (16)

Sreenivasan et al. (1989) note that “… an
interesting interpretation [of the above described
behavior] is that the turbulent surfaces at the
‘microscopic’ level adjust themselves in such a way
that the ‘macroscopic’ fluxes are independent of
viscosity.”  In essence, Sreenivasan et al. (1989)
argue that the transfer of momentum and other
scalars is accomplished by microscale processes
across the thin layers associated with the wrinkled
convoluted surface shapes discussed above.  The
effect of changing viscosity is to change the small
scale cutoff of the fractal behavior of the interfaces,
and hence the overall surface area over which the
microscale processes are actively mixing the scalars.  



Large-eddy simulations present a situation
different from that described by Sreenivasan et al.
(1989) in that the small-scale end of the cascade is
fixed by the filter and/or grid scales.  Furthermore, the
LES may not produce the fractal interfaces found in
real fluids, probably because of the aforementioned
fixed small scale.  We hope to examine this question
in the future.  However, the idea that the total surface
area may be adjusted to accommodate “viscosity”
changes does seem to apply.  In LES, differences in
the behavior of the subfilter models generate the
different “viscosities.” The changes in the shapes of
the resolved features are attempts to produce the
differences in interface area that are necessary for
the proper large scale transfers of momentum in the
turbulent flow.  

Figure 1 shows that the near-wall average
behavior varies substantially from model to model,
most pronouncedly for the Smagorinsky model.  In
these simulations, as noted above, there is a
momentum sink at the surface, and a source at
altitude.  The flow must transfer momentum toward the
surface sink.  In an effort to properly transfer the
momentum to the surface, the greater “viscosity” of
the Smagorinsky model introduces patterns that are
likely unrealistic.  Given the improved agreement with
similarity theory for the dynamic reconstruction
models, it seems reasonable to assume that the
larger-scale, near-surface patterns produced by these
other models are more realistic, given their more
realistic mean profiles.

Others have found differences in the larger scale
patterns produced by different subfilter models.
Chow’s (2004) u-component correlograms had much
the same elongations as were presented here for the
vertical velocity. Kosovic´ (1997) demonstrated that
the energy spectrum for his more accurate “nonlinear”
model included more small scale, i.e. large wave
number, energy. The patterns observed here are
consistent with that result.  Chow (2004) also found
that the DRM-ADM0 simulations have considerably
more energy at small scales than do simulations using
the Smagorinsky model.  

Interestingly, Figures 2 and 3 show that the DRM
models stimulate smaller-scale resolved motions near
the wall than does the Smagorinsky model; the
distinction decreases far from the wall where the
eddies are larger, and a significantly larger fraction of
the total energy is held in the resolved scales.  There,
differences among models are less important (cf.,
Khanna and Brasseur, 1998).  Near the wall, the
“better” models have a significant impact on the
resolved scales and to some degree that impact
extends away from the wall.  The dynamic models and
the reconstruction models allow some backscatter of
energy, which mimics the expected interactions of the
resolved and subfilter scales (cf., Leslie and Quarini,
1979). However, the DRM-ADM models mimic this
process more faithfully, yielding a much more active
spectrum in the smaller scales of the resolved flow.

In the future, we expect to apply the EOF
analysis techniques described by Ludwig and Street
(1995) to see if the patterns reported here are also

detected by the EOF analysis.  Ludwig et al. (1996)
used EOF methods to compare fractal support
dimensions in an observed atmospheric flow and a
corresponding LES; the LES patterns were more
space-filling than was observed, The various models
can be compared as the atmosphere and LES were in
that study.  Support dimensions are likely related to
the shapes of the boundaries between regions of
upward and downward motion, and the effectiveness
of the various models with regard to transferring
energy to the smaller scales.  Considering the results
presented here, analysis of more complex flows
certainly seems warranted (e.g. the stratified flow over
Askervein Hill, Chow and Street 2002).  
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