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1. Introduction

Surface (shelter and anemometer-height) observations
are frequently under-utilized in data assimilation systems
because of several difficulties. First, transient strong cou-
pling with the Earth’s surface and the free atmosphere
produce intermittent, anisotropic, and nonstationary cor-
relations of the observations with the model background
state. Second, the error growth estimated with mod-
els providing the background state is largely unknown,
highly variable, and likely not well-represented in cur-
rent mesoscale models. Third, dynamic balances often
exploited in large-scale data assimilation are inappropri-
ate for PBL observations of temperature (T), component
winds (U , V), and mixing ratio (Q). Finally, irreversible
processes such as turbulent mixing are difficult to con-
struct for variational data assimilation systems requiring
a model adjoint.

Ensemble filters are, theoretically, a path to overcom-
ing many of these difficulties, but this approach to PBL
assimilation is just beginning. The ensemble provides
a means of estimating flow-dependent background er-
ror statistics, including the full error covariance, and
formally handling model deficiencies. Adjoints are not
necessary and construction of ensemble data assimila-
tion systems is much simpler than the more complex
variational schemes. Hacker and Snyder (2005) showed
in perfect-model observation-system simulation experi-
ments (OSSEs) that ensemble assimilation could prove
fruitful for specifying overlying PBL profiles from sur-
face observations. They also showed that semi-physical
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land-surface parameters could be effectively estimated in
the ensemble-filtering framework.

Here we take the step from observation-system sim-
ulation experiments (OSSEs) to observation-system ex-
periments (OSEs) by assimilating real observations. A
column over the Atmospheric Radiation Measurement
(ARM) program Southern Great Plains Central Facility
near Lamont, OK, is selected for analysis because of the
robust data for both assimilation and verification. The
lack of complex topography in that region also reduces
the likelihood that the climatology will be determined
by mesoscale features, and should be random above the
PBL.

The column model contains soil, surface-layer, and
PBL parameterization schemes that are the same as those
in the Weather Research and Forecast (WRF) mesoscale
model. This results in a response to observations that is
similar to what can be expected in the WRF. It also facil-
itates efficient research on errors in those schemes.

The utility of surface observations for determining
the PBL is quantified by verifying the retrieved profiles
against rawinsonde observations. Useful skill is assessed
by comparing against climatology and also WRF fore-
casts. Comparison against climatology shows the full
effect of assimilating surface observations with the en-
semble filter, because the only additional sources of in-
formation are a background climatological distribution
and the column model. Comparison against the WRF
forecasts is useful to demonstrate what additional infor-
mation might be available to a forecaster who had access
to retrieved profiles such as this. Future work will com-
bine background information from the most-recent WRF
forecast and the assimilation of surface observations in
the column model, providing a more optimal and practi-
cally useful retrieval.

The next section describes the model, the observation



and verification data, and the assimilation system. Sec-
tion 3 presents verification and comparison against cli-
matology and the WRF forecasts, and section 4 summa-
rizes the key findings of this work.

2. Experiment description

This section summarizes some aspects of the column
model used in this study, the experiment data, and the
experiment design.

2.1 The 1D column model

A column model containing a suite of physical param-
eterization schemes is suitable for the experiments de-
scribed here. We are interested in only vertical structures
and relationships within and near the PBL, and a column
model allows experimentation at a fraction of the cost
associated with a 3D mesoscale model. Large ensembles
are feasible, enabling convergence of results and experi-
mentation with sensitivity to ensemble size.

Our model can be thought of as a simpler cousin to
the Weather Research and Forecast (WRF) mesoscale
model (Skamarock et al. 2005). It contains the same
suite of physical parameterizations for subgrid processes
associated with the soil, surface layer, and PBL. For
these experiments, we chose the Mellor-Yamada-Janjić
(MYJ) PBL scheme (Janjić 2001) and the Noah land-
surface model (LSM) for the soil (Ek et al. 2003). The
vertical grid is defined as 33 vertically stretched atmo-
spheric levels, with the first layer extending to approxi-
mately 40 m above the surface and a top at approximately
4800 m. Further details of the column model are given
in Pagowski (2004), Pagowski et al. (2005) and in Ap-
pendix A of Hacker et al. (2006).

Initial conditions, large-scale forcing, and surface ra-
diation are imposed by randomly sampling two forecasts
from a (warm) season of WRF real-time forecasts at a
column located over Oklahoma, then combining them
with a uniform random coefficient between zero and one
(U[0,1]). WRF 36-h forecasts from the Bow Echo and
Mesoscale Convective Vortex Experiment (BAMEX) ob-
servation period spanning 03 May through 14 July 2003
constitute the sample. Forecasts were launched at 00
UTC every day, on a∆x = 4 km grid. More details on
the sampling approach are available in Hacker and Sny-
der (2005). This approach permits construction of a large
ensemble, containing slow time scales, with forecast er-
ror that is saturated with respect to a conditional clima-
tology. Although the distribution of large-scale forcing
is narrowed with this approach, the small-scale effects
on the column are isolated and ensembles larger than the
WRF sample are available.

2.2 Assimilation and verification data

The Southern Great Plains Central Facility of the
ARM program is well-instrumented, providing observa-
tions for both assimilation and verification of the column
analyses. Observations for assimilation are 30-minute
averages of temperature and water vapor mixing ratio at
z= 2 m (T2, Q2), and winds atz= 10 m (U10, V10), in-
clude quality-control flags and estimates of uncertainty.
Rawinsonde observations valid every 6 h are used for
verification. Measurements of flux at the land interface
and soil profiles are used to evaluate the model configura-
tion as well as the consistency of model diagnostic shel-
ter and anemometer-height states with model represen-
tations of the soil and fluxes. Archived WRF forecasts
from the BAMEX period are used for the background
ensemble climatology, as described above, and also to
provide a performance baseline.

2.3 Experiment design

Assimilation experiments are run for each day in the
BAMEX period. The cycling is begun at 12 UTC, 12 h
after the WRF initialization. Observations are assimi-
lated hourly for the subsequent 24 h period. The obser-
vation errors are assumed to be uncorrelated with vari-
ances 0.08 K2, 1.1 m2 s−2, and 7.7×10−8 kg2 kg−2,
for T2, (U10, V10), and Q2 respectively. These values
are the 30-minute average variances of the assimilated
variables averaged over the period of the assimilation ex-
periments. The observations are assimilated via the en-
semble adjustment Kalman filter, implemented with a se-
quential least-squares algorithm, as described in Ander-
son (2003). Vertical covariance localization is accom-
plished using a fifth-order piecewise polynomial (Gas-
pari and Cohn 1999). We do not present the ensemble-
filter algorithm in detail here, but the interested reader
can refer to the growing body of literature (e.g. Evensen
1994; Burgers et al. 1998; Houtekamer and Mitchell
1998). In summary, the technique provides a direct es-
timate for background error covariances for solution to
the linear statistical-analysis equation. Computationally,
the assimilation algorithm scales with the number of ob-
servations, and the majority of the cost is in the en-
semble of model integrations. For typical atmospheric
data assimilation problems, the cost is roughly equivalent
to four-dimensional variational assimilation (4DVAR),
where the cost is in a 4D minimization algorithm. En-
semble filters provide the added benefit of an ensemble
of analyses that can be used for probabilistic prediction.
In these experiments, ensembles withN = 100 members
are used, and 24 hours of integration/assimilation takes a
few minutes on a desktop computer.

Here we present a straightforward verification, based
on comparison of analyzed PBL profiles and observed



rawinsonde profiles. The analysis procedure is at a con-
siderable disadvantage because the only “information”
provided to it, besides a climatology, is the surface obser-
vations themselves. A climatology is constructed by run-
ning the column model, forced by the WRF climatology,
over the same periods as the assimilation experiments.
The depth of the profile in the column that shows less
error than the climatological mean quantifies the infor-
mation content in those surface observations. The depth
of the profile in the column that shows less error than a
3D WRF forecast is a stricter test. It suggests the bene-
fit of local observations in reducing error independent of
time-dependent 3D dynamics.

3. Skill compared to climatology and WRF forecasts

In this section we present the verification of the an-
alyzed PBL, the climatological mean and the 3D WRF
forecast profiles against rawinsondes profiles. Figures 1
and 2 show the mean average error (MAE) of the compo-
nent winds (U , V), potential temperature (θ), and mixing
ratio (Q) over the period of the assimilation experiments
as a function of height AGL, valid at 00 UTC (19 LT)
and 18 UTC (13 LT) respectively.

The analyzed PBL profiles show a reduction in the
MAE relative to the climatological mean profiles, which
on the whole, becomes less significant with height and is
roughly bounded by climatology. In addition, improve-
ment is observed as compared to the 3D WRF forecasts
in the lower hundreds of meters. Figs. 3 and 4 show the
percentage of MAE reduction in the analyzed PBL pro-
files relative to the climatological mean and the 3D WRF
forecast profiles as a function of height AGL valid at 00
UTC (17 LT) and 18 UTC (13 LT) respectively. While
the MAE reduction curves look similar for the two hours
shown, some differences are distinguishable.

The benefit of the information content in the assim-
ilated observations, shown by the MAE reduction rela-
tive to the climatological mean, depends on the analyzed
variable and the hour. The greatest impact for all vari-
ables is observed at 19 LT (Fig. 3). The maximum MAE
reduction is obtained forθ, 80 to 85% up to 900 m AGL.
θ shows also the maximum vertical extent of MAE re-
duction. The highest vertical extent of MAE reduction
for all variables is obtained at 13 LT (Fig. 4). The dif-
ferences obtained between the curves at 17 LT and 13
LT and between the different variables reflect the tran-
sient coupling between the surface and the atmosphere,
the different coupling between the surface and the atmo-
sphere for the different variables, the effect of the length
of the assimilation period and the information content in
the climatological profiles as a function of the diurnal
cycle. The results shown are insufficient to isolate the
effect of the different factors. Still, the strongest impact

in the lowest few hundred meters at 19 LT may suggest
the effect of the longer assimilation period (12 hours of
assimilation) as compared to 13 LT (6 hours of assimila-
tion).

The MAE reduction relative to the 3D WRF forecasts
shows a time and variable dependence too. The most
significant MAE reduction, 60% forθ up to 700 m is
observed at 19 LT and the maximum vertical extent is
obtained at 19 LT too (forQ up to 1400 m). The bet-
ter skill of the 3D WRF forecast profiles above roughly
the lower kilometer suggest the need to drive the column
model with profiles that contain information richer than
climatology.

4. Summary

• This work investigates the usefulness of assimilat-
ing surface observations via an ensemble filter in
a parameterized PBL driven by climatological pro-
files. The effectiveness of the assimilation of the
surface observations was tested by verification of
the analyzed PBL, climatological mean and WRF
forecasts profiles against rawinsonde profiles.

• The analyzed PBL profiles show a significant re-
duction in the error (e.g.,up to 85% in the lower
900 m for the potential temperature) relative to the
climatological-mean profile that extends up to 2-3
km AGL. This reflects the information content of
the surface observations assimilated with the en-
semble filter. Comparison against WRF forecast
profiles (at a horizontal resolution of 4 km) show
an error reduction of 30 to 60% in the lower 700 m
and a positive effect up to 1400 m. This shows the
advantage of local observations regardless of time-
dependent 3D dynamics.

• Ongoing work focuses on improving the retrieved
profiles by providing enhanced initial and forcing
information to the 1D column model using most re-
cent WRF forecast or observed profiles. In addition,
the usefulness of the method as a short term (6-12
hours) forecast tool is being assessed.
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Figure 1: Mean absolute error (MAE) as a function of height AGL in the analyzed PBL (red curve), climatology (blue
curve) and 3D WRF forecast profiles (black curve) for (a)U , (b)V, (c) T and (d)Q. Results are valid at 00 UTC. See
text for further details.
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Figure 2: Same as Fig. 1 but valid at 18 UTC.
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Figure 3: Percentage of MAE reduction in the analyzed PBL as a function of height AGL relative to climatology (red
curve) and 3D WRF forecast profiles (black curve) for (a)U , (b)V, (c) T and (d)Q. Results are valid at 00 UTC.
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Figure 4: Same as Fig. 3 but valid at 18 UTC.
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