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1. Introduction

There are many observations of one-dimensional spec-
tra from in situ sensors in the atmospheric boundary
layer. However, for the most part, these observations are
at a few discrete levels (e.g. from towers) or not simulta-
neous in time (e.g. from aircraft). As a result, we have a
general understanding of the shapes of component spec-
tra as well as cospectra between velocity components and
between a velocity component and a scalar, but little in-
formation about the spatial structure of turbulence.

An exception to this is the work of Lenschow and Kris-
tensen (1988) and Kristensen et al. (1989), who flew two
identical aircraft in formation during the Dual Aircraft
Formation Flight Experiment (DAFFEX) to obtain lat-
eral two-point velocity statistics of all three wind com-
ponents in the CBL. They also flew the two aircraft
vertically displaced to measure vertical two-point veloc-
ity statistics (Davis, 1992). Similarly, Kristensen et al.
(1989) used measurements from three towers arrayed
roughly normal to the wind during the Lammefjord Ex-
periment (LAMEX) to obtain two-point statistics in the
atmospheric surface layer.

Mann (1995) presented a detailed discussion of
second-order turbulence structure in the neutral atmo-
spheric surface layer and developed a model of two-point
statistics that uses the isotropic turbulence spectrum of
von Kármán. Applications of two-point statistics include
estimating fluctuating loads on structures due to spatial
variations in the turbulent velocity components, and cal-
culating sampling requirements in order to estimate error
variances in spatially averaged wind field variables such
as divergence and vorticity (e.g. Lenschow et al. (1999)).

With the development of instruments for remotely
sensing velocity, such as Doppler radars and lidars, it is
now possible to measure the radial velocity component
as a function of distance from the transmitter and thus to
map out two-dimensional fields of radial velocity. Here
we report on measurements of vertical velocity w statis-
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tics from a ground-based zenith-pointing Doppler lidar
deployed over a relatively flat and uniform agricultural
surface. Vertical cross-sections of w are used to calculate
the integral scale, spectra, and vertical coherence (and
phase angle) at various separation distances for eleven
daytime CBL cases. As far as we know, this is the first
time that such a study has been carried out. We com-
pare our results with the predicted coherence for inertial
subrange turbulence and for a von Kármán isotropic tur-
bulence spectrum.

2. Experiment and Instrumentation

2.1 Lidars In Flat Terrain experiment
During August 1996, the National Center for Atmo-

spheric Research’s Atmospheric Technology Division
(NCAR/ATD) and NOAA’s Environment Technology
Laboratory (ETL) deployed three lidars at the Univer-
sity of Illinois field site near Champaign, Illinois, USA,
to observe the high resolution structure of aerosol, winds
and ozone in the lowest few kilometers of the atmosphere
as the CBL evolved from early morning to late evening.
The site for Lidars In Flat Terrain (LIFT) was chosen
because of the flat terrain, good aerosol scattering, and
nearby UHF radar wind profilers operated by the NOAA
Aeronomy Laboratory. In addition to the lidars and
permanent wind profilers, surface-based meteorological
instrumentation and additional wind profilers were de-
ployed, and radiosondes were launched on a regular ba-
sis (Cohn et al., 1998). Angevine et al. (1998) have sum-
marized the concurrent Flatland Boundary Layer experi-
ment, which shared instruments and had complementary
objectives.

2.2 High Resolution Doppler Lidar
One of the three lidars, the High Resolution Doppler

Lidar (HRDL), was used for this study. It was developed
and deployed by ETL and is described by Grund et al.
(1998). It utilizes a solid-state thulium lutetium yttrium
alumin um garnet (Tm:Yu, YAG) laser to generate coher-
ent infrared pulses at 2.0218 µm wavelength which are
transmitted and received by a 0.2 m telescope at a pulse



repetition rate of 200 s−1. A beam-steering mechanism
installed on the roof of the shipping container housing
the lidar allowed pointing and scanning anywhere above
the horizon. During LIFT, the laser generated 0.8 mJ
pulses with a radial resolution of 30 m, and a minimum
range (dead-zone) of about 390 m. Typically, the lidar
was able to “see” several kilometers horizontally and, at
the zenith, was always able to see through the top of the
CBL. Changes in aerosol scattering led us to vary the
number of pulses averaged together, and thus the tempo-
ral resolution (from one to few seconds) on a daily basis.

Although the HRDL was used in various scanning
modes during LIFT, a majority of the observations (110
out of over 160 hours) were with the laser beam pointing
straight up, since a major focus of LIFT was to examine
the vertical structure of w in a CBL. This takes advan-
tage of the lidar’s capability to obtain range-resolved ra-
dial measurements, from which a two-dimensional field
of w can be obtained by use of Taylor’s hypothesis; that
is by assuming that the field of turbulence is “frozen” as
it advects past the lidar.

2.3 description of cases

Here we show results from 11 cases with useful verti-
cal HRDL data collected during LIFT and differing CBL
scaling variables (mean wind, CBL depth, and stabil-
ity). Table 1 summarizes characteristics for each case
averaged over the selected period of time (approximately
centered in the middle of the day) that was chosen for
analysis. The periods were selected on the basis of data
continuity and quality, and stationarity of the CBL. On
most of the days, fair-weather Cu formed by late morn-
ing. Profiles of the horizontal mean wind U were ob-
tained from the wind profiler located at Sadorus, IL,
about 5 km from the HRDL. In Table 1 they have been
averaged over the entire CBL for the selected period.

The CBL top zi was determined from the height at
which the increase in variance over 1-minute segments
first exceeded 0.7 m2s−2 over a height increment of 30
m. That is, when the aerosol backscatter first becomes
too weak to provide a measurable velocity and the sig-
nal is dominated by noise. Thus, we assume that zi is a
demarcation between a particulate-laden CBL and a rel-
atively clean free atmosphere. This criterion also identi-
fies cloud base when fair-weather cumulus are growing
out of the CBL top. The values of zi in Table I are ob-
tained from an average over the given period. These es-
timates of zi compare well with independent estimates
from the nearby wind profilers and with the analyses
of Cohn and Angevine (2000), Grimsdell and Angevine
(1998), and Grimsdell and Angevine (2002).

3. Lateral coherence of a stationary homogeneous
flow

Coherence is a useful tool for documenting spatial cor-
relation between random stationary time series. Follow-
ing the definition by Kristensen and Jensen (1979) (here-
after KJ), the coherence of a velocity component ui sep-
arated by a vector D from a velocity component u j is

Cohi j(D,k) ≡ Coi j(D,k)2 +Qi j(D,k)2

Fii(k)Fj j(k)
, (1)

where k is the wavenumber, Fii(k) and Fj j(k) are the
spectra of the individual velocity component time series,
and Coi j(D,k) and Qi j(D,k) are the co- and quadrature
spectra. Additional information is provided by the phase
angle, defined by

φi j(D,k) ≡ arctan
(

Qi j(D,k)
Coi j(D,k)

)

. (2)

Here, the mean wind direction defines the direction of
the first unit vector i1, and the displacement D along the
vertical defines the second unit vector i2. We note that
0 ≤Cohi j(D,k) ≤ 1.

For large k and D, the coherence becomes small, as
the eddies become independent of each other. In con-
trast, for small k and D the coherence approaches one.
When dealing with finite measurement periods, there is
a statistical uncertainty in estimating coherence. Since
Cohi j(D,k)≥ 0, this uncertainty results in a positive bias,
which increases as the number of Fourier modes that are
averaged together and the length of the time series de-
creases. For one Fourier mode, the coherence is identi-
cally one. However a time series can be subdivided into
a set of M time series and the coherence calculated over a
set of Fourier modes. The product of these two numbers
is often considered as the number of degrees-of-freedom
d f for estimating the significance of the measured coher-
ence. Kristensen and Kirkegaard (1986) addressed the
issue of how large d f should be for a given level of sig-
nificance in coherence estimates.

We first consider the coherence of the vertical velocity
along the vertical axis z obtained from the HRDL data
at two different heights (i.e. two different range gates)
within the CBL. Using the notation of KJ, the coher-
ence that we can estimate from these measurements is
Coh22(D,k), where D is the vertical separation distance.
If the turbulence is homogeneous and isotropic, KJ show
how to obtain Cohi j(D,k) analytically from the energy
spectrum E(k). If we further assume that D is much
smaller than the scale of the turbulence L, the coherence
is close to one for Dk � 1, independent of the behavior
of the spectrum at wave numbers k � 1/L, so that the en-
ergy spectrum can be approximated by the Kolmogorov



Table 1: Characteristics of the 11 LIFT cases considered here. zi is the CBL depth, U is the mean horizontal wind, Lo
is the Obukhov length, l(x)w is the horizontal integral scale at zi/2, and l(z)w is the vertical integral scale at zi/2. 1700
UTC is 1100 CST.

Date time period zi U −zi/Lo l(x)(zi/2)
w l(z)(zi/2)

w l(x)w /zi l(z)w /zi
(mmddyy) (UTC) (m) (m s−1) (m) (m)

080296 1700-2000 1590 3.0 91 230 372 0.14 0.23
080496 1700-2000 1440 5.2 26 198 287 0.14 0.20
080596 1700-2000 1190 8.6 6 154 222 0.13 0.19
080696 1800-2100 1390 7.8 15 462 552 0.33 0.40
080796 1800-2100 1270 5.6 13 320 419 0.25 0.33
081096 1700-2100 1770 2.2 121 311 421 0.18 0.24
081296 1800-2100 1720 4.8 23 497 609 0.29 0.35
081696 1800-2100 1370 2.2 251 398 541 0.29 0.39
081996 1800-2000 1280 7.2 11 312 419 0.24 0.33
082096 1800-2100 960 6.8 14 175 233 0.18 0.24
082196 1800-2100 1530 3.4 70 293 353 0.13 0.19

spectrum
Ek(k) = αε2/3k−5/3, (3)

where α is the Kolmogorov constant and ε is the rate
of dissipation of turbulent kinetic energy. In this case,
Coh22(D,k) can be obtained analytically and is a func-
tion of the normalized variable Dk (KJ):

Coh22(D,k) = Coh22(Dk) = (Γ(5/6))−2
(

Dk
2

)5/3

×

(

2K5/6(Dk)+ 3
4 Dk K1/6(Dk)

)2
,

(4)
where K is the modified Bessel function of the second
kind (Luke, 1972) and Γ is the Gamma function.

When D can no longer be assumed small compared to
L, the expression for the coherence depends not only on
Dk but also on D/L. Assuming a von Kármán energy
spectrum with a length scale L

Ev(k) = αε2/3 L17/3k4

(1+ k2L2)17/6 , (5)

we obtain an analytical expression for Coh22(D/L,Dk),

Coh22(D/L,Dk) = 9 21/3S11/3

(Γ(5/6))2(3 D2
L2 +8D2k2)2

×

(

(D2k2K11/6(S)+S K5/6(S)

)2
,

(6)

where S2 = D2

L2 + D2k2. Lothon et al. (2006) show how
Coh22(D/L,Dk) monotonically decreases as Dk and D/L
increase. One important aspect of the coherence is that
for significant displacement D relative to L, the coher-
ence is not equal to one for Dk = 0. It can easily
be shown that (6) becomes identical to (4) in the limit
D/L → 0.

4. Effect of beam averaging

Lidar velocity measurement is not a point measure-
ment of the velocity field but an average over the resolu-
tion volume that depends on the pulse width, range-gate
length and time resolution. The beam can be approx-
imated by an infinitely narrow cylinder so that the ef-
fect of the beam averaging on the w measurement can
be analytically studied assuming Taylor’s hypothesis and
Kolmogorov or von Kàrmàn isotropic turbulence models
(Frehlich (1997); Frehlich et al. (2006)).

We use the model developed by Frehlich et al. (2006)
to evaluate the effect of beam averaging on our estimates
of integral scales. The lidar characteristics assumed here
(Michael Hardesty, personal communication, 2005) are a
30 m pulse width and 30 m range-gate length. We com-
puted the theoretical autocorrelation functions using a 30
m lag for the covariance along the vertical, and 5 m lag
along the horizontal (assuming a 5 m s−1 mean horizon-
tal wind and 1 s−1 sampling rate). The Frehlich model
gives the theoretical autocorrelation function assuming a
von Kármán energy spectrum parameterized by the vari-
ance and integral scale of w and taking account of the
beam averaging. We use a 1 m2 s−2 variance and the
observed integral scales. Of course, the measured pa-
rameters are already affected by beam averaging, so we
then calculated a second estimate of the integral scale
from this theoretical autocorrelation function using the
same exponential-fit method as was used with the mea-
surements (see section 5). The theoretically corrected
estimates of the w integral scale in the vertical l(z)w (z) and
the w integral scale in the alongwind direction l(x)w (z) (de-
fined in Section 5) are ' 10% and ' 15% greater, respec-
tively, than the measured values.



Of course, this analysis is only approximate since the
von Kármán model assumes isotropic turbulence and the
measurements discussed later show that the w turbulence
is anisotropic. But since the beam-averaging effect is
not large, and is similar in magnitude for both l(z)w (z) and
l(x)w (z), we consider beam averaging to have a minor ef-
fect on the integral scale measurements and a negligible
effect on their ratios.

Taking account of the beam averaging for the coher-
ence is more problematical since we have no simple an-
alytical approach to take account of it. However, we did
use some higher resolution aircraft w measurements to
empirically study the effect of beam averaging on coher-
ence. Only the denominator in (1) is sensitive to this ef-
fect, and the effect on spectra is only significant for larger
k than what we considered here, so we conclude that its
effect on our coherence measurements is negligible.

5. Spectra

In this section, we show examples of w spectra from
HRDL, multiplied by k = 2π f /U , where f is frequency,
and plotted versus normalized wavenumber kzi at 30 m
height increments. The upturn at kzi > 150−200 is due
to measurement noise. The advantage of the HRDL data
is that we can resolve simultaneous spectra throughout
the CBL and thus compare spectral structure at differ-
ent levels. This gives us a unique perspective on how
well we can generalize height variations in spectral struc-
ture, as well as the vertical extent of correlated features
in the spectra. Our results indicate that the normalized
w spectral structure proposed by Kaimal et al. (1976)
is reasonable on average, but also that each day departs
from the generalized structure. This is likely a reflec-
tion of the multitude of external variables, in addition
to convective instability,that can impact spectral struc-
ture: varying wind shear (and thermal wind) with height,
horizontal heterogeneity in surface properties, differing
lapse rates in the overlying free atmosphere, and differ-
ing fair-weather cumulus regimes. In all the cases the
peaks and valleys in the spectra at small kzi are replicated
throughout many of the resolved levels within the CBL,
thus qualitatively indicating that there is correlation be-
tween w at multiple levels within the CBL. We also see
considerable variation of the behavior with height in the
inertial subrange, with some days showing almost con-
stant inertial subrange and others decreasing by as much
as a factor of three from the lowest to the highest level.

Figure 1 from 4 August is an example of a set of spec-
tra that is mostly consistent with the Kaimal model, but
with some significant differences. The spectral maxi-
mum wavenumber (kzi)

(w)
m is about 5 at the lowest re-

solved levels; that is, the spectral maximum wavelength

λm is about 1.3zi. Then λm decreases somewhat with
height to about 0.6zi. Kaimal suggests a slowly increas-
ing λm up to about z/zi ' 0.5, then constant above this
level with λm ' 1.5. This case is more in accord with
the model of Caughey and Palmer (1979), who suggest
a decrease in λm for z/zi > 0.6 although they suggest an
increase in λm up to that level.

Figure 2 for 6 August is closer to the Caughey model
of an increase in λm up to the middle of the CBL, with a
decrease above that. But it also illustrates an arbitrariness
in determining the location for the spectral maximum.
(Later we show a similar arbitrariness in estimating the
integral scale for this case). There are a series of peaks
over more than a decade, 0.6zi < λm < 10zi, that are cor-
related over most of the CBL. The actual spectral max-
imum depends on which peak emerges as the absolute
maximum, which, in turn, depends on the spectral aver-
aging scheme. Comparing the inertial subrange (roughly
20 < kzi < 100) between these first two examples, we see
that the 4 August case shows a decreasing amplitude with
height (and also evidence for energy input at low levels
for 10 < kzi < 30), while 6 August shows an essentially
constant inertial subrange with height.

In contrast to 4 and 6 August, the spectra for 16 August
(Fig. 3) shows a precipitous decline for kzi < (kzi)

(w)
m ,

much faster than the normalized w spectral plots of
Kaimal et al. (1976), and the 4 and 6 August cases.
(kzi)

(w)
m is also smaller on 16 August (λw ∼ 2.5) than for

the Kaimal model and the 4 and 6 August cases, which
suggests that there may be more injection of turbulence
energy for 2 < kzi < 10 on this day. 16 August had very
light winds (2.2 m s−1) and was the most unstable case
(−zi/Lo ' 251). Thus, Taylor’s hypothesis is more ques-
tionable at small kzi. However, on 10 August the mean
wind was also 2.2 m s−1, but the spectra (not shown) on
this day are more like those on 4 and 6 August except
that they show a considerably more rapid decrease with
height, both in the inertial subrange and at small kzi.

The 20 August lidar data showed evidence of wave
motion above the CBL. However, the spectra (Fig. 4) do
not indicate any significant difference within the CBL
that we can attribute to wave motion. This is also the
closest to neutral (zi/Lo ' 14) of the four cases shown
here and the shallowest CBL of all the cases. Again,
there are no distinctive differences that we can attribute
to this.

6. Integral scales

To calculate the integral scales, we make use of the
autocorrelation function Rw(r). The integral scale of w,
which is a measure of the length over which w is rela-
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Figure 1: w spectra for 4 August 1996. Levels vary from
0.25zi (dark blue) to 0.75zi (yellow). Units are m2s−1,
not m3s−1 as given on the plot label. The straight line
with −2/3 slope is drawn as a reference for the inertial
subrange.
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Figure 2: Same as Fig. 1 for 6 August 1996.
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Figure 3: Same as Fig. 1 for 16 August 1996.
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Figure 4: Same as Fig. 1 for 20 August 1996, except that
levels vary from 0.34zi (dark blue) to 0.75zi (light blue)
because of the shallower CBL.



tively well correlated with itself, is defined as:

lw =

Z ∞

0

Rw(r)
Rw(0)

dr, (7)

where r is the displacement and

Rw(r) ≡
Z ∞

−∞
w(r′)w(r′ + r)dr′. (8)

A good estimate of lw can be obtained from the max-
imum of the running integral of (7) (Lenschow and
Stankov 1986):

lw(r) ∼=
[

Z r

0

Rw(r′)
Rw(0)

dr′
]

max
, (9)

which is reached at the first zero crossing of Rw(r). Kris-
tensen et al. (1989) show that for isotropic von Kármán
turbulence spectrum the length scale L in (5) is propor-
tional to the intergal scales; i. e. for the the transverse
integral scale l(x)w (z):

L =
2
π

Γ(1/2)Γ(1/3)

Γ(5/6)
l(x)w (z) ' 2.68 l(x)w (z) (10)

and for the longitudinal integral scale l(z)w (z),

L =
Γ(1/2)Γ(1/3)

πΓ(5/6)
l(z)w (z) ' 1.34 l(z)w (z). (11)

Integral scales of w can be estimated along both the
alongwind and vertical directions:

• The alongwind integral scale l(x)w (z) at level z is cal-
culated from Rw(z,x), where x = Ut.

• The vertical integral scale l(z)w (z) is obtained from
Rw(z,δz). In this case, we consider a reference level
z, and calculate the correlation coefficient as a func-
tion of height z and δz, where δz is the varying
height increment above the level z, between the time
series at z and the time series of the levels above.
Shifting the level z provides a profile of l(z)w (z). Note
that in this case, the height z is the lower limit of the
height interval over which l(z)w (z) is calculated.

Previously Lenschow and Stankov (1986) estimated
l(x)w from the first zero crossing of Rw(z,x) and (9). But
this method could not be consistently used to estimate
l(z)w (z) because of the limited range of values of δz in
Rw(z,δz), which are restricted to about δz ≤ z − 0.7zi
due to the lidar dead zone, temporal and spatial changes
in zi, and noise. So instead, we use an exponential least
squares fit,

Rw(z,δz) = Rw(z,0)exp−δz/lw , (12)
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Figure 5: Comparison of l(x)w (z) estimated with the first
zero-crossing method and with the exponential least
squares fit. Only levels in the middle of the CBL are
considered, i.e. 4 levels below and 4 levels above zi/2, a
height interval of 250 m.

to estimate l(z)w (z). To justify this, we compare the es-
timates of l(x)w (z) using both techniques since the time
series are always long enough for Rw(z,x) to cross zero.
Recognizing that the raw lidar data contains random un-
correlated noise (Lenschow et al., 2000), before estimat-
ing lw the noise contribution was estimated and removed
by extrapolating Rw to zero lag. Then the exponential
fit was made on the corrected renormalized Rw over the
lags for which Rw > 0.5 in order to obtain an objective
estimate of lw. We found (Lothon et al., 2006) that both
l(x)w (z) and l(z)w (z) are well fitted by an exponential for
separation distances < 1 km. Of course, they cannot be
perfect fits, since an exponential autocorrelation function
implies a k−2 spectrum.

We then compare both the classical first zero-crossing
and the exponential fit methods to obtain l(x)w (z). Fig-
ure 5 shows that in most cases both methods give similar
results. For two cases (6 and 19 August), the exponen-
tial method gives significantly smaller integral scales be-
cause for large x, Rw(z,x) decreases to zero more slowly
than the extrapolated exponential fit at small x. Inspec-
tion of the time series indicates that this is the result
of larger-scale coherent structures in the velocity field,
which inevitably leads to some arbitrariness in charac-
terizing the integral scale. This is also reflected in the
spectra for 6 August, shown in Fig. 2, which has an ex-
tended region of large variance for small kzi.

Both l(x)w (zi/2) and l(z)w (zi/2) are shown in Table 1.
Figure 6 shows l(z)w (z)/zi versus l(x)w (z)/zi for all days and
for levels contained within a 250 m thick layer centered
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Figure 6: l(z)w (z) versus l(x)w (z) for the 11 LIFT cases.
Only levels in the middle of the CBL are considered; that
is, 4 levels below and 4 levels above zi/2, as in Fig. 5.
The solid line is the 2/1 slope characteristic of isotropic
turbulence. The dashed line is a linear least-squares fit to
the data, constrained to intercept zero.

at zi/2. The two scales are very well correlated and the
ratio is remarkably constant over all the cases. Accord-
ing to predictions of isotropic turbulence, l(z)w should be
twice as large as l(x)w (Batchelor, 1953). We find instead
that l(z)w (z) ' 1.3 l(x)w (z); that is, l(z)w (z)/l(x)w (z) is 0.65
times what it would be for isotropic turbulence. Thus,
the w eddies are are “squashed” in the vertical direction
even in the middle of the mixed layer and the amount
of squashing is independent of zi/Lo, where Lo is the
Monin-Obukhov length.

Figures 7 and 8 display the vertical profiles of, re-
spectively, l(x)w (z)/zi and l(z)w (z)/zi for the 11 days.
The empirically estimated profile of l(x)w (z)/zi found
by Lenschow (1986) from aircraft observations during
the Air Mass Transformation Experiment (AMTEX),
l(x)w (z)/zi = 0.28(z/zi)1/2, is also plotted. The profiles
that we observed are, on average, of similar magnitude to
those observed in AMTEX, but in contrast to the increase
with height obtained in AMTEX, we see here a nearly
constant value of l(x)w (z) throughout the mixed layer. We
speculate that this may be due either to the heterogeneity
of the surface (a patchwork of soybean and corn fields)
in LIFT that may generate larger-scale fluctuations near
the surface, or to the presence of some stratiform clouds
in AMTEX that may generate larger-scale fluctuations
near the CBL top. Angevine et al. (1998) show the sur-
face virtual temperature flux at noon each day for the en-
tire summer for both a corn and a soybean field. They
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Figure 7: Profiles of l(x)w (z) for 0.2 < z/zi < 0.8 for the
11 LIFT cases. A composite Rw(z,x) obtained from the
average of Rw(z,x) at five successive levels was calcu-
lated before calculating l(x)w (z). The dashed line is the
empirical fit obtained by Lenschow (1986).

found the temperature flux over the soybean field to be as
much as a factor of two higher than over the corn field till
mid July, when this systematic difference virtually disap-
peared. They concluded that the temperature flux differ-
ences were mostly related to the maturity of the crops.

In contrast to l(x)w (z), for z/zi > 0.3 we see a signif-
icant decrease of l(z)w (z) with height (Fig. 8). Here we
have no previous observational data with which we can
compare. We note, however, that this is consistent with
the eddies being squashed as they approach the top of the
CBL (Kristensen et al., 1989).

There seems to be no strong functional dependence of
either l(x)w (z) or l(z)w (z) on zi/Lo, although we note that the
case with the smallest value of zi/Lo (5 August) is also
at the small end of the observed values of l(x)w (z)/zi and
similarly the case with the largest zi/Lo (16 August) is at
the high end of the observed values of l(x)w (z)/zi. This is
consistent with more neutrally stable cases having some-
what smaller normalized w eddy sizes, but the scatter in
the data does not give a definitive functional dependency.
There is even less evidence for any zi/Lo dependency in
the l(z)w (z)/zi data.

Figure 9 shows the averages of both integral scales
over 11 days, which makes more obvious the constancy
of l(x)w (z)/zi and the decrease of l(z)w (z)/zi with height
through the upper part of the CBL, and thus the vary-
ing anisotropy of w with height. In effect, the vertical
eddies become even more squashed and anisotropic near
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Figure 8: Profiles of l(z)w (z) measured from a reference
level (in ordinate) just above the dead zone (' 390 m)
for the 11 LIFT cases. Every fifth level is plotted.

the top of the CBL due to the capping inversion We also
note that at the lowest level (i.e. z/zi ' 0.25), l(z)w (z)/zi
increases with height, which is what one would expect
near the surface.

7. Observed coherence

The coherence Coh22(Dk) and phase φ22(Dk) were
calculated for all the LIFT cases using d f = 50 for all
the periods indicated in Table 1 for 0.25 < z/zi < 0.8 in
increments of 120 m, and with 0.25zi as the reference
level. This level is high enough to insure that the cal-
culations are carried out above the surface layer. From
Kristensen and Kirkegaard (1986), the bias in the coher-
ence for d f = 50 is about 0.02 when the true coherence
is zero.

7.1 Departure from Kolmogorov model
Figures 10 and 11 show examples of Coh22(Dk) and

φ22(Dk) for 2 and 4 August 1996, respectively. The Kol-
mogorov model is shown for comparison. Although both
cases have similar integral scales of about 200 m, the
coherences differ between them. On 2 August, the ob-
served coherence is always larger than the Kolmogorov
model and does not seem to depend on D/L, but on 4
August, for small values of Dk but large values of D, the
observed coherence falls below the Kolmogorov model;
i.e. the coherence is also a function of D/L. As pointed
out previously for the von Kármán spectrum, the coher-
ence decreases with increasing D/L, especially at low
wave numbers, where the predicted coherence does not
go to one for Dk → 0. Figures 10 and 11 show that the
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Figure 9: Profiles of l(z)w (z/zi)/zi (triangles) and
l(x)w (z/zi)/zi (squares) averaged over the 11 LIFT cases.
The dashed line is the empirical fit obtained by Lenschow
(1986) for l(x)w (z/zi)/zi.

phase angle is insignificantly different from zero, indicat-
ing that there is negligible tilt in w with z over the depth
of CBL probed. This was true for all of the LIFT cases;
the average phase shift was always < 3◦, which amounts
to a tilt of < 5 m for a height increment of 100 m.

7.2 Departure from von Kármán model

Figures 12 and 13 display the coherence for all 11
LIFT days as a function of Dk for two particular values of
D/L, where L was obtained from l(x)w (z) via (10). All the
points for which D/L = 0.15±0.10 are plotted in Fig. 12
and all the points for which D/L = 0.55±0.10 are plot-
ted in Fig. 13. Both Kolmogorov and von Kármán pre-
dictions are also displayed. In the first case, D/L is small
enough for the two theories to be negligibly different for
Dk > 0.5. The agreement with the von Kármán model is
generally good for small Dk, but the observed coherence
is consistently larger than the predicted for Dk > 0.5. For
the second case (Fig. 13) the scatter is larger, likely be-
cause departures from assumed isotropic turbulence be-
come increasingly likely as D/L increases, and these de-
partures seem to be different for different cases, so it is
difficult to discern any consistency in the departures. But
the cloud of points does show a smaller coherence for
small Dk than for the first case as predicted by the von
Kármán model.

Another way to check the effect of the integral scale
on the coherence is to keep the ratio of the two vari-
ables D/L and Dk constant—that is keep kL constant.
The curves obtained for the von Kármán coherence as
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Figure 10: Coherence (top panel) and phase (bottom
panel) on 2 August 1996, between two levels separated
by D= ‘+’: 60 m, ‘∗’: 180 m, ‘◦’: 300 m, ‘�’: 420 m,
‘4’: 540 m, ‘�’: 660 m, ‘×’: 780 m. Reference level is
0.25zi. The solid black line is the Kolmogorov model.

a function of Dk lie increasingly below the Kolmogorov
coherence with an increasing slope as kL decreases. Fig-
ures 14 and 15 show the measured and modeled coher-
ence for two separate days each with different ranges of
values for kL. We can see that the 5 August data points
(Fig. 14) for kL = 0.7 and 2.1 follow the predicted von
Kármán model curves for the first few values of Dk, then
fall below the predicted curve, while for kL = 3.5, the
points lie above the predicted curve for small Dk but lie
close to the predicted curve for large Dk. For kL > 3.5,
the points lie above the predicted curve for all values of
Dk. For this particular day, the mean wind was large (8.6
m s−1) while l(x)w was small; that is, kL is small enough
that the smallest increment in k reveals a difference be-
tween the two theories.

For 16 August (Fig. 15), the Kolmogorov and the von
Kármán models give almost identical results. The wind
is light (2.2 ms−1) so that kL is large. For values of kL ≥

7.2 all the points exceed the modeled curve.
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Figure 11: Same as Figure 10 for 4 August 1996.

These results show a consistently larger observed co-
herence than predicted by the von Kármán model when
kL > 3. This suggests that either the von Kármán spectral
shape does not adequately represent the actual spectra or
that the turbulence becomes increasingly anisotropic as
kL becomes larger.

To investigate whether horizontal convective rolls play
a role in this observed anisotropy, we used the criteria
for rolls given by Weckwerth (1999) to distinguish low-
probability roll days (due to large values of −zi/Lo) from
day where rolls are more likely. Comparison of the auto-
correlation functions and spectra on the low-probability
roll days of 2, 10, 16, and 21 August 1996 with the
remaining days, which were high-probability roll days,
showed no obvious systematic differences.

8. Summary

Measurements from a ground-based zenith-pointing
Doppler lidar collected during LIFT enabled us to obtain
two-dimensional fields of w for extended mid-day peri-
ods in the CBL above ' 390 m. These measurements
have been used to calculate, for the first time, integral
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Figure 12: Observed coherence for all 11 LIFT days with
D/L = 0.15± 0.05. The dashed line is the Kolmogorov
model, the solid line the von Kármán model.

scales of w in both the vertical and alongwind directions,
and coherence of w between two levels. The alongwind
integral scale is approximately constant with height, in
contrast to in situ aircraft results from AMTEX (in a
convective marine boundary layer) which showed an in-
crease with height. We speculate that this might be a
result of some stratiform cloud decks in AMTEX or the
surface heterogeneity in LIFT. The vertical integral scale
decreases with height. We know of no other observa-
tions with which this can be compared. We found that
the vertical and horizontal integral scales correlate well
with each other, and that the ratio of the vertical scale to
the horizontal scale is ' 1.3 in the middle of the CBL,
that is, 0.65 times what would be the case for isotropic
turbulence. This ratio decreases with height through the
upper 2/3 of the CBL.

We observed larger coherence of the vertical veloc-
ity along the vertical than predicted by isotropic turbu-
lence, especially as Dk and D/L become large. Thus,
not surprisingly the larger the separation and the larger
the wavenumber, the more anisotropic the turbulence.
We also found no significant tilt of the thermal struc-
tures throughout our measured domain, which is roughly
> 0.2zi; that is, wind shear is too small to affect the ori-
entation of thermals for z > 0.2zi.
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Figure 14: Coherence observed on 5 August 1996 for
different values of k: (a) ‘◦’ – k = 0.0017 m−1 (kL=0.7);
‘+’ – k = 0.0051 m−1 (kL=2.1); ‘4’ – k = 0.0085
m−1 (kL=3.5). The von Kármán model predictions cor-
responding to these wave numbers are given by the
thick solid line, the thick dashed line, and the thin solid
line, respectively, while the thin dashed line is the Kol-
mogorov model prediction. (b) k > 0.0085 m−1 with dif-
ferent values of D: ‘◦’ – D = 0 m; ‘4’ – D = 30 m, ‘+’
– D = 60 m; and ‘·’ – D > 60 m. The dashed line is the
prediction for both Kolmogorov and von Kármán mod-
els.
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Figure 15: Coherence observed on 16 August 1996 for
different values of k: (a) ‘◦’ – k = 0.0068 m−1 (kL=7.2);
‘+’ – k = 0.0201 m−1 (kL=21.4); ‘4’ – k = 0.0334 m−1

(kL=35.6). The von Kármán model predictions corre-
sponding to these wave numbers, defined as in Fig. 14,
overlap the Kolmogorov prediction. (b) k > 0.0334 m−1

with different values of D: ‘◦’ – D = 0 m; ‘4’ – D = 30
m, ‘+’ – D = 60 m; and ‘·’ – D > 60 m. The dashed line
is the prediction for both Kolmogorov and von Kármán
models.


