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1. Introduction

Turbulent spectra of scalars exhibit a peculiar behaviour
in the near-dissipation range, i.e. at length scales of
the order of the Taylor length scale. Around this length
scale the velocity fluctuations make a transition from in-
ertial motion to viscous dissipation. At about the same
scale, depending on either the Prandtl number (Pr , tem-
perature) or Schmidt number (Sc, mass), the scalar fluc-
tuations transit from convective motion to diffusion. The
shape of the scalar spectrum depends on the relative
location of that transition in the velocity spectrum and
the scalar spectrum. For Pr or Sc ≪ 1, there is an
inertial-convective range, a viscous-convective range and
a viscous-diffusive range. On the other hand, if Pr or
Sc ≫ 1 there is an inertial-convective range, a inertial-
diffusive range and a viscous-diffusive range.

In scintillometry, the exact shape of particularly the
temperature and humidity spectra is very important.
Laser scintillometers (both single and double beam scin-
tillometers) are sensitve to temperature (and humidity)
fluctuations in the transition range from inertial range to
dissipation range (see e.g. Hartogensis et al. (2002)).
Furthermore, large aperture scintillometers become sen-
sitive to fluctuations at those small scales when the signal
becomes saturated (Kohsiek et al., 2006).

Up to now, the analysis of scintillometer signals in
which the dissipation range is relevant, the model spec-
trum of Hill (1978) is used.

In this note an alternative estimation of the scalar
spectrum is presented. This estimation builds on the re-
sults obtained by Tatarskii (2005) for the velocity spec-
trum. Like Hill’s model, the spectrum resulting from our
method exhibits a similar bump as Hill’s model. Our re-
sult is compared to the same experimental data as done
in Hill (1978).

2. Derivation of scalar spectra

A general definition of the structure function for one or two
variables for homogeneous, isotropic turbulence is:

Daαbβ (r ) ≡ (a(x + r ) − a(x))α (b(x + r ) − b(x))β (1)

where a and b are two quantities and α and β are integral
exponents and r is the separation. In this paper a and
b are the longitudinal velocity u (i.e. velocity component
parallel to r ) and a scalar concentration. Here tempera-
ture T is used for the scalar and consequently Pr for the
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ratio of viscosity and the scalar diffusivity (here χ). But
T could be replaced by any other scalar, while replacing
Pr by the Schmidt number Sc and χ by the appropriate
diffusivity.

Based on the Navier-Stokes equation, and the trans-
port equation for heat, differential equations for Duu and
DTT can be derived (under conditions of incompressibility,
local stationarity, local isotropy and local homogeneity):

Duuu(r ) − 6ν
d
dr

Duu(r ) = −
4
5

ǫr (2)

DTTu(r ) − 2χ
d
dr

DTT (r ) = −
4
3

NT r (3)

where DTTu is a third-order mixed structure function, ν is
the kinematic viscosity, χ is the thermal molecular diffu-
sivity, ǫ is the dissipation of turbulent kinetic energy, and
NT is the dissipation of temperature variance. Details on
the conditions under which the derivation of equation 2 is
valid can be found in Hill (1997).

Using dimensional analysis, the following similarity
relationships for the structure functions mentioned above
can be deduced:

Duu (r ) = (ǫν)1/ 2 fuu (ξ) (4)

DTT (r ) =
NT

ǫ
(ǫν)1/ 2 fTT (ξ) (5)

DTTu (r ) =
NT

ǫ
(ǫν)3/ 4 fTTu (ξ) , (6)

where ξ = r/ η, and η is the Kolmogorov length scale
(

ν3/ ǫ
)1/ 4

. fTT , fuu and fTTu are similarity functions that
need to be determined either from limiting cases, or from
experiments. For two limiting cases, the r -dependence
of fuu , fTT and fTTu can be predicted. For the inertial-
convective subrange, the viscosity and thermal diffusivity
become irrelevant, fuu and fTT both become proportional
to r 2/ 3 and fTTu ∼ r . In the dissipation range, fuu and fTT

are quadratic in r and fTTu is assumed to be cubic (Kol-
mogorov, 1941).

The differential equations 2 and 3can be rewritten as:

1
6

fuuu(r ) −
d
dξ

fuu(r ) = −
2

15
ξ (7)

Pr
2

fTTu (ξ) −
d
dξ

fTT (ξ) = −
2
3

Prξ. (8)

In order to solve for fTT (i.e. DTT ), an estimate for fTTu is
needed. To this end, use is made of the mixed skewness
F (r ), defined as:

F (r ) ≡
DTTu(r )

√

Duu(r )DTTT (r )
=

fTTu(r )
√

fuu(r )fTT (r )
(9)



Substitution of equation 9 into 8 yields:

Pr
2

F (r )
√

fuu(ξ)fTT (ξ) −
d
dξ

fTT (ξ) = −
2
3

Prξ. (10)

In a similar way, fuuu in 7 can be replaced by a combina-
tion of the skewness S(r ) and fuu . Except for quantifica-
tion of F (r ) and S(r ), DTT can now be solved for.

A commonly used assumption is that F (r ) is inde-
pendent of the separation (which at least it is in the two
limiting cases of inertial subrange and dissipation range,
see above). Then, if F (r ) is known from the limiting cases,
as well as the similarity function for the velocity struc-
ture function (fuu), the differential equation for fTT van be
solved. The solution of equation 2 was dealt with by
Tatarskii (2005), yielding the required fuu . Apart from the
assumption of constant F (r ) (and S(r )), we will investi-
gate the consequences of F (r ) and S(r ) varying with r as
well.

In the end one is interested in the shape of the
scalar spectrum (be it the three-dimensional spectrum
Γ(k ) or the one-dimensional spectrum Ψ(k1). To arrive
at the spectra for the scalar, the following transformation
is used:

ΓTT (k ) =
1

2πk

Z

∞

0
sin(kξ)

dDTT

dξ
dξ . (11)

To go from Γ(k ) to Ψ(k1) the following relationship can be
used (Hill, 1978):

Ψ(k1) =
Z

∞

k1

Γ(k )
k

dk . (12)

3. Comparison to data

In this section scalar spectra according to the method-
ology presented in the previous section will be derived.
First constant (independent of r ) values for the skew-
nesses S(r ) and F (r ) will be assumed (section 3.1). Next
a variable skewness will be used, based on the DNS re-
sults of Watanabe and Gotoh (2004) (section 3.2).

The resulting spectra for the longitudinal windspeed
will be compared to experimental results of Saddoughi
(1997) and Williams and Paulson (1977). The temper-
ature spectra are compared to data from Williams and
Paulson (1977) and Champagne et al. (1977). Further-
more, the DNS results of Watanabe and Gotoh (2004)
are included for comparison as well (with Pr = 0.7).

3.1 Constant mixed skewness

Like Obukhov and Yaglom (1951) the skewness S(r ) is
assumed to be independent of wavenumber. Further-
more, the same assumption will be made for the mixed
skewness F (r ). However, there is significant uncertainty
regarding the value of S(r ) (see Katul et al. (1995) and
Katul et al. (1997) for a discussion). The values range be-
tween -0.25 and -0.5. Katul et al. (1995) show that the
value of -0.25 is consistent with a a Kolomogorov con-
stant equal to 0.55. For S(r ) a reference value of -0.25
is used. For F (r ) -0.4 is used.The results for the velocity
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FIG. 1: Compensated longitudinal velocity spectrum
derived from 7, with constant S(r ) = −0.25. The result
is compared with experimental data of Saddoughi (1997)
and Williams and Paulson (1977) and DNS results of
Watanabe and Gotoh (2004).

spectrum can be found in figure 1. The model is quite
close to the data of Saddoughi (1997), whereas the DNS
results show a much too high bump. This may in part be
due to in an incorrect estimation of the inertial subrange
level of the spectrum (in the graph the the spectra have
been normalized with the mean value for kη < 0.025).

3.2 Wavenumber-dependent mixed skewness

Katul et al. (1995) investigated for a limited number of
cases the constancy of S(r ) with separation. Given their
experimental facilities, they only could resolve separa-
tions within the inertial subrange (or larger). For that
range of separations they conclude that S(r ) is relatively
constant at a value somewhat larger than the accepted
value of -0.4. In order to find any r -dependence of S(r )
and F (r ) at separations below the inertial subrange ex-
perimental data at very small scales would be needed.
For the velocity skewness S(r ) this might be feasible, but
for the mixed skewness F (r ) simultaneous velocity and
temperature data would be needed. Since we do not
have those data at our disposal, we revert to DNS results
obtained by Gotoh and Watanabe (personal communica-
tion). The simulation used is similar to those reported in
Watanabe and Gotoh (2004), except that Pr = 1 and the
turbulent Reynolds number Rλ = 427. The resulting sep-
aration dependence of S(r ) and F (r ) is shown in figure
5. It appears that for 40 < r/ η < 150 both skewnesses
are rather constant. For larger separations the size of the
computational domain influences the results. A test on
resolution dependence of the structure parameter, per-
formed by Gotoh and Watanabe (personal communica-
tion) showed that for r/ η > 10 the results were resolu-
tion independent. Thus, the decrease in S(r ) and F (r )
from their inertial subrange values can be trusted down
to about r/ η > 10.
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FIG. 2: Compensated temperature spectrum derived
from 10, with S(r ) = −0.25 and F (r ) = −0.4 and Pr =
0.72. The result is compared with experimental data
of Williams and Paulson (1977) and Champagne et al.
(1977) and DNS results of Watanabe and Gotoh (2004).
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FIG. 3: Compensated temperature spectrum derived
from 10, with S(r ) = −0.25 and a range of F (r ) values
and Pr = 0.72. The result is compared with experimental
data of Williams and Paulson (1977) and Champagne
et al. (1977) and DNS results of Watanabe and Gotoh
(2004).
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FIG. 4: Compensated temperature spectrum derived
from 10, with a range of S(r ) values and a range of F (r ) =
−0.40 values and Pr = 0.72. The result is compared with
experimental data of Williams and Paulson (1977) and
Champagne et al. (1977) and DNS results of Watanabe
and Gotoh (2004).
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FIG. 5: Skewness S(r ) and F (r ) as derived from the
DNS results of with Pr = 1 and Rλ = 427. Also included
are the models according to 14.
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FIG. 6: Compensated temperature spectrum derived
from 10, with constant values for S(r ) and F (r ), as well
as S(r ) and F (r ) according to 14 with S1 and S2 set to
-0.25, F1 and F2 set to -0.40 and Pr = 0.72. The result is
compared with experimental data of Williams and Paul-
son (1977) and Champagne et al. (1977).

From figure 5 it can be concluded that for r/ η < 40
S(r ) and F (r ) decrease from values around -0.25 to ap-
proximataly -0.5. The r -dependence can reasonably well
described with:

F (r )model = F1 + F2 tanh
(

F3/r 3/ 2
)

(13)

S(r )model = S1 + S2 tanh
(

S3/r 3/ 2
)

(14)

with F1 = −0.233, F2 = −0.2003, F3 = 11.38, S1 =
−0.262, S2 = −0.266 and S3 = 19.54. Note that the
inertial subrange values for F (r ) differs considerably from
the reference value of -0.40 used before.

Figure 6 shows the temperature spectra result-
ing from using equation 14 to parameterize the r -
dependence of S(r ) and F (r ) (but with S1 and S2 set to
-0.25, F1 and F2 set to -0.40). The comparison to spec-
tra calculated with constant S(r ) and F (r ) reveals that the
non-constant S(r ) and F (r ) cause the height of the bump
to decrease and to make the high-wavenumber fall-off
less steep.

4. Conclusion and discussion

It was shown how the one-dimensional temperature spec-
trum can be derived from the conservation equations of
the longitudinal (second order) structure function for ve-
locity and the (second order) structure function of tem-
perature. This model has two closure parameters, S(r )
and F (r ) which are the skewness of the velocity struc-
ture function and the mixed skewness of the temperature-
velocity structure function. It is common to take S(r ) and
F (r ) constant with r and fixed to the inertial subrange
value. This has the advantage that the latter is easily
obtained from field data. However, recent DNS results

suggest that for r/ η < 40 the skewness decrease con-
siderably (to lower negative values). It has been shown
that incorporation of this variability of S(r ) and F (r ) has a
significant impact on the temperature spectrum.

Further research is needed to validate the proposed
model for the temperature spectrum. Especially the ex-
act shape of S(r ) and F (r ) and it’s possible dependence
on the Reynolds number needs to be explored. Further-
more, the consequences of the variability in the shape of
the temperature spectrum on the interpretation of scin-
tillometer signals needs to be explored. Finally, the vari-
ability of the inertial subrange values of S(r ) and F (r ) with
atmospheric conditions (mainly stability) needs to be in-
vestigated.
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