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1.1

Abstract

We1 study the non-linear stages of the instability of
the neutrally-stratified Ekman flow. We find that two-
dimensional equilibrated rolls exist, and are reached very
closely, although not exactly, after a small random initial
perturbation to the Ekman flow has evolved and reached
nonlinear saturation. We perform in turn a linear stability
analysis of these equilibrated rolls and find that they are
subject to an instability of the hyperbolic type. In both stud-
ies, we investigate the influence of the latitude and of the
direction of the geostrophic wind on these stability proper-
ties.

1 INTRODUCTION

The Ekman spiral flow is an exact solution of the Navier-
Stokes equations in the presence of rotation and a rigid
boundary. It is useful as a prototype flow for idealized dy-
namical studies of the planetary boundary layer (PBL). In
such studies, the Reynolds number is understood as a tur-
bulent Reynolds number. Values about 500 are consid-
ered typical of the PBL [Foster, 1997]. Lilly established
that the neutrally-stratified Ekman flow is subject to an in-
flexion point instability [Lilly, 1966].

The rolls often observed in the neutral planetary bound-
ary layer are usually interpreted as the outcome of this
instability. However important characteristics of its non-
linear development remain unclear. Indeed, due to nonlin-
ear interactions with itself and the basic flow after the initial
stage where the linear approximation is valid, a linearly un-
stable perturbation may either saturate or directly produce
chaos. The convective instability for instance is known to
saturate into convective rolls but contradictory conclusions
concerning the Ekman flow can be found in the literature.
Coleman runs direct numerical simulations at Re=400 and
finds no equilibrated rolls [Coleman et al., 1990]. Foster
performs high-order amplitude expansions at Re=500 and
finds that they admit a steady state. The following ques-
tions are addressed in this work :

1. Does the instability saturate, and how ?

1Corresponding author address : Thomas Dubos, LMD
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2. How stable or unstable are the equilibrated rolls with
respect to three-dimensional perturbations ?

The magnitude of the horizontal component of the Corio-
lis vector and its direction with respect to the geostrophic
wind are known to influence the domain of primary insta-
bility [Leibovich and Lele, 1985]. We investigate their in-
fluence on the nonlinear saturation and on the secondary
instability as well.

2 SATURATION OF THE PRIMARY
INSTABILITY

2.1 Position of the problem

At latitude λ, the vertical component of the Coriolis vector
is f � 2Ω0 sinλ. We scale velocities by the geostrophic
wind G and lengths by the laminar boundary-layer depth
δ � �

2K � f where K is a constant turbulent viscosity.
The fluid obeys the incompressible rotating Navier-Stokes
equations written in adimensional form as :

div U � 0

∂U
∂t � ∇ � P � U � U

2 �� � ω � 2
Re � ez � cotg λeN � �
	 U � 1

Re
∆U

where Re � Gδ � K is the Reynolds number, P is the pres-
sure, U is the velocity, ω is the fluid vorticity, eZ is the up-
ward vertical unit vector and eN is the unit vector pointing
to the North. Equation (??) admits the well-known Ekman
stationary solution :

U0 � z � � � 1 � e � z cosz � � cosθeE � sinθeN �� e � z sinz � cosθeN � sinθeE �
where the angle θ betwen the East and the geostrophic
wind is arbitrary. Hence the global parameters of the prob-
lem are the Reynolds number Re, the latitude λ and the
angle θ.
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Figure 1: Top view of the horizontal axis system. There
is an angle θ between the East and the geostrophic wind
and an angle ε between the geostrophic wind and the y
axis (roll axis).

Solving the linear stability problem consists in look-
ing for eigenmodes of the rotating Navier-Stokes dy-
namics linearized around the basic flow U0 � z � . Due
to horizontal homogeneity, such eigenmodes vary hori-
zontally like exp � ik1 � x � for some horizontal wave vec-
tor k1. For each k1 only the vertical structure of the
eigenmode is to be obtained. For given k1 * Re * λ * θ, a
few discrete eigenmodes, growing like eσt , are usually
found. We note σ1 � k1 ; Re * λ * θ � the largest one. Next,
for given k1 * Re * λ * θ, the growth rate σ1 reaches a max-
imum σ1 � Re * λ * θ � at a certain k1 � Re * λ * θ � . This se-
lects the preferred horizontal length scale l � 2π � k1 that
emerges when the basic flow is perturbed. At latitude
λ � 90 + , unstable modes appear when the Reynolds
number reaches the critical value Rec , 54 [Lilly, 1966].
The critical Reynolds number is lower at other latitudes
[Leibovich and Lele, 1985]. In the sequel, we consider the
nonlinear saturation of this most unstable eigenmode.

2.2 Stationary rolls : existence and spatial
structure

We run a direct numerical simulation at Re=500. At this
Reynolds number, the growth rate of the primary insta-
bility is σ1

� 0 - 024. This maximum is reached for k1
�.

k1
. , 0 - 5 and for an angle between the roll axis and

the geostrophic wind of ε , 17 + (see figure 1). In the
simulation, the velocity field depends only on the vertical
coordinate z and the horizontal coordinate x � x � k1 � k1.
The x direction is periodic with wavelength 2π � k1 , 12 so
that exactly one period of the most unstable mode fits in
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Figure 2: Time evolution of the phase velocity c during the
nonlinear saturation of the unstable mode.

this domain. The initial condition is random with amplitude
10 � 5.

At each time we compute the phase velocity c � t � of the
flow by minimizing the r.m.s of ∂U � ∂t � c∂U � ∂x. We dis-
play the evolution of c � t � on figure 2. The linear stage
can be identified as the interval where c is equal to the
eigenmode-based prediction c , �/- 022. Later, nonlinear
interactions become dominant and drive the flow to a trav-
elling quasi-equilibrium. A drastic change in the phase ve-
locity c � t � occurs during a transient phase of duration on
the order of a few τ � 1 � σ , 40. The phase velocity then
relaxes towards a value c , � 0 - 04, still presenting slow
oscillations with a period of several tens of τ. These oscil-
lations decay but even more slowly.

Next we search for an exactly equilibrated flow, i.e a
flow U1 � x * z ; Re * λ * θ � and a phase velocity c such that
∂U1 � ∂t � c∂U1 � ∂x � 0 where ∂U1 � ∂t is defined by the
Navier-Stokes equation (??). We use Newton’s iteration
and take as a first guess the quasi-stationary flow reached
at the end of the simulation. Very small corrections are
enough to reduce ∂U � ∂t � c∂U � ∂x to machine precision.
It is customary in linear stability studies to display the per-
turbation fields but once nonlinear saturation has been
reached it is more instructive to display the total flow, as
we do in figure 3. The roll axis is perpendicular to the fig-
ure. Isolines of axial (along-roll) vorticity emphasize the
vortical structure of the saturated flow. There is one vortex
per spatial period so that the periodic flow presents a pat-
tern of co-rotating vortices. The vortex is fairly broad, with
a small core located around x , 3. Under this broad vor-
tex, a secondary, intensified boundary layer is formed. In
the absence of the Coriolis force, the axial velocity would
be simply advected by the flow in the � x * z � plane and dif-
fused by viscosity. This explains the ejection of low axial

2



−10 −5 0 5 10
0

1

2

3

4

5

x

z

axial velocity and vertical wind

−0
.0

15

−0.015

−0
.0

1−0
.0

1

−0
.0

05

−0.005

−0
.0

05

0

0 0

0

0.005

0.005

0.01

0.01

0.015

0.015

0.
02 0.02

0.025

0.
02

5

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

−10 −5 0 5 10
0

1

2

3

4

5

x

z

axial vorticity

−0
.2

2

−0
.2

2

−0.2

−0.2−0.2

−0.18

−0.18

−0.16

−0.16

−0.14

−0.14

−0.12

−0.12

−0.1

−0.1

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3: Spatial structure of the saturated rolls for Re � 500 and λ � 90 + . The rolls are perpendicular to the X axis.
Two spatial periods 2π � . k1

. , 12 are presented. Top : axial velocity (color) and vertical velocity (contours). Bottom :
axial vorticity (color and contours).
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velocity between two consecutive rolls, visible near x , 5.

2.3 Dependance on latitude

The latitude influences the problem through the horizon-
tal component of the Coriolis vector, but is affected by
a weight inversely proportional to the Reynolds number.
Hence one may expect a vanishing influence as Re 0 ∞.
Indeed the growth rates of the primary instability tend to
depend less and less on latitude as the Reynolds num-
ber grows [Leibovich and Lele, 1985]. However a sensi-
tivity of the Reynolds stress to latitude was observed by
Coleman at Re � 400 [Coleman et al., 1990]. Hence de-
spite its small absolute magnitude the coupling induced by
the horizontal part of the Coriolis vector between the dif-
ferent velocity components may have a significant overall
effect.

We reproduced the previous steps at latitude λ � 45 +
for wind blowing from the four cardinal directions. As far as
the stationary rolls are concerned, very little dependence
was observed. The vertical velocity field, which is zero in
the Ekman spiral flow, is a good indication of the vortex
intensity. We found that the difference between λ � 45 +
and λ � 90 + is less than 2% in a root-mean-square sense.

3 SECONDARY INSTABILITY OF
SATURATED ROLLS

In the previous section we have found saturated rolls,
which are stationary solutions of the rotating Navier-
Stokes equations (??) in a Galilean referential travelling
with a nonlinear phase velocity c. Such columnar vor-
tices are subject to different families of secondary instabil-
ity. The Kelvin-Helmholtz rolls that result from the satura-
tion of a free-shear instability are known to suffer in neutral
or stable stratification from elliptic and hyperbolic instabil-
ities [Peltier and Caulfield, 2003]. Unlike Kelvin-Helmholtz
rolls, saturated Ekman rolls have axial velocity, like swirling
jets. This produces shear along the roll axis and may re-
sult in another type of instability. The presence of a rigid
boundary could affect the stability properties as well.

3.1 Growth rates and latitude

We consider the growth or decay of infinitesimal, three-
dimensional perturbations to the secondary flow U1. Due

to the invariance of the problem along the roll axis (y direc-
tion), and periodicity in the x direction the normal modes of
instability are of the form Û � x * z � exp ik2 � x. The secondary
wavenumber k2 has a component γ along the roll axis (y
direction) and a component β in the x direction. For given γ
and β, the growth rate σ2 � γ * β ; Re * λ * θ � is the eigenvalue
with largest real part of the operator resulting from the lin-
earization of the rotating Navier-Stokes dynamics around
the basic state U1 � x * z ; Re * λ * θ � .

We first consider the latitude λ � 90 + . One can show
that σ2 � γ * β ; Re * λ * θ � � σ2 � γ * β � k1 ; Re * λ * θ � and this is
what we obtain (not shown). Furthermore the dependence
of σ2 on β is extremely weak with relative fluctuations on
the order of 1%. We display in figure 4 the growth rate
σ2 as a function of the axial wave vector γ which is the
important parameter. Wave numbers 1 - 1 1 γ 1 2 - 8 are
unstable with a maximum growth rate σ2 , - 021 reached
for γ , 1 - 9. Hence the time scale for the secondary insta-
bility is comparable to that of the primary instability while
the selected length scale is about four times shorter since
k1 , 0 - 5.

We next consider the latitude λ � 45 + and wind blowing
from the four cardinal directions. All stability curves are
nearly identical, with the notable exception of wind blow-
ing to the East. For this direction, the unstable domain is
slightly reduced, the most unstable wave vector is roughly
identical and the maximum growth rate is reduced by about
one third. Since the corresponding basic flows are almost
identical, this is a non trivial effect of the horizontal compo-
nent of the Coriolis vector. Further insight may be gained
by inspecting the energetics of these modes, e.g. how they
extract their energy from the basic flow.

3.2 Structure of the unstable modes

We display in figure 5 the amplitude 22 Û � x * z � 22 of the most
unstable mode at Re � 500 and latitude λ � 90 + . The
mode is very localized, along the vorticity filament that
connects one roll to the next. This filament results from the
strong stretching by the flow in the � x * z � plane around a
hyperbolic stagnation point. This is therefore strongly sug-
gestive of an hyperbolic instability [Godeferd et al., 2001].
Notice however that this region also experiences a strong
axial shear, e.g. the axial velocity has strong gradients in
this region. Hence another possibility would be an axial
shear instability.
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Figure 5: Amplitude 22 Û � x * z � 22 of the unstable mode. Black : isocontours of downstream vorticity.
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Figure 4: Growth rate of the secondary instability as a
function of the axial wavenumber γ for Re � 500. Solid
: latitude λ � 90 + . Others : latitude λ � 45 + , geostrophic
wind blowing to the South, East, North, West.

4 Discussion

We find that equilibrated rolls exist, and are reached very
closely, although not exactly, after a small random ini-
tial perturbation to the Ekman flow has evolved. Inter-
estingly, while the observations mention contra-rotationg
rolls, these equilibrated rolls are co-rotating, as one would
expect from the saturation of the instability of a parallel
shear flow. The structure of these rolls depends very lit-
tle on the horizontal component of the Coriolis vector. Al-
though we do not present this here, these stationary solu-
tions can be used to obtain quantitative estimates of roll-
induced Reynolds stresses, as a function of the (turbulent)
Reynolds number.

We find that these rolls are unstable with respect
to three-dimensional perturbations, probably through a
mechanism of hyperbolic instability. More detailed inves-
tigations are needed to elucidate the precise mechanism
of instability, and to understand how the small horizontal
component of the Coriolis vector can have a significant
stabilizing effect for certain wind directions.

Finally the nonlinear evolution of the three-dimensional
instability. It may saturate or lead directly to the disruption
of the roll vortices, as is the case in weakly-stratified, free-
shear instability [Peltier and Caulfield, 2003]. This should
be investigated in order to discuss further the relevance
of the inflexion-point instability for the emergence of ABL
rolls.
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Appendix : Numerical methods

The velocity field being non-divergent is completely de-
scribed by the vertical velocity and the vertical vorticity.
These two scalar dynamical fields are decomposed on a
set of basis functions that satisfy the appropriate boundary
conditions. As a result, computing the pressure is never
required [Spalart et al., 1989, Coleman et al., 1990]. This
spatial discretization is spectrally accurate. The z direction
goes from to z � 0 to z � ∞, with high resolution near z � 0
and progressively poorer resolution as z increases. We
use 64 quadrature points in each direction. The highest
quadrature point is at z � 32 - 7 and 50% of the quadrature
points are below z � 3.

In order to study the transient phase of saturations,
we perform temporal integrations, using a third-order
Adams-Bashforth scheme with implicit treatment of vis-
cosity. When searching for exactly equilibrated rolls, each
Newton iteration involves the resolution of a linear system
with several thousands of unknowns. Addressing the lin-
ear stability of these saturated rolls is an eigenproblem
of comparably large size. Direct methods are inappro-
priate for such large problems and we use matrix-free,
iterative methods to solve them. For the linear system
we use the Generalized Minimal Residual method (GM-
RES) preconditioned by the Poisson operator. For the
eigenproblem we use a variant of the implictly restarted
Arnoldi iteration providing the eigenvalue with largest real
part [Lehoucq et al., 1997].
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