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1. INTRODUCTION

Using Large Eddy Simulations of shallow cumulus clouds
we analyse the relation between cloud-size and the frac-
tional entrainment rate. First we determine the effect of
fluctuations in the sub-cloud moisture field on the lateral
size of clouds. To this end we apply at each time-step a
spectral filter to the sub-cloud moisture field in order to
prevent the formation of fluctuations with spatial scales
that are significantly larger than the depth of the sub-
cloud layer. The resulting cloud size distributions are
compared to the unfiltered situation. Next, we focus on
the impact on the cloud dynamics and on the depth of the
cloud layer. In particular, we conduct a study of the lateral
entrainment rate and analyse in detail its relation with the
lateral size of clouds.

2. LES CASE DESCRIPTION AND METHODS

The Large Eddy Simulation is based on the Small Cu-
mulus Microphysics Study (SCMS), held from July 17 till
August 13 1995 near Cocoa Beach, Florida (Knight and
Miller, 1998). An idealized LES version of the SCMS-
case was created by Neggers et al. (2003) and includes
a diurnal cycle by prescribing varying surface heat- and
moisture-fluxes. In this study, the resolution is 50m in
the horizontal and 40m in the vertical direction. With
128 points in each direction, the simulated domain is
6.4kmx6.4kmx5.1km. The entire run covered a 12-hr pe-
riod and was simulated with a timestep of 2 seconds.

3. THE INFLUENCE OF THE SUB-CLOUD MOISTURE
FIELD ON CLOUD SIZE DISTRIBUTIONS

Two types of LES have been conducted, a standard (ref-
erence) run and a simulation in which the large-scale fluc-
tuations in the sub-cloud moisture field were removed, as
done in Jonker et al. (1999). The filtering procedure
consisted of spectrally removing fluctuations with scales
larger than 1280m (about 2h), see Fig. 1(b), where h is
the depth of the sub-cloud layer. The filter was applied on
all moisture fields with z < 0.8h, while taking into account
that the sub-cloud layer grows during the simulation.

The main reason for filtering the sub-cloud moisture
field was to be able to control the lateral size of the clouds,
in particular to prevent the formation of relatively large
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clouds. It was expected that the filtered run, due to the
absence of large clouds, would display a different dynam-
ics and entrainment behaviour, which would then result in
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Fic. 1: (a) Power spectrum from the unfiltered mois-
ture field, 3 hour average from 18.00h to 21.00h UTC. (b)
Power spectrum from the filtered run, scales larger then
1280m removed. (c) The cross-section of the moisture
field at a height of 0.8 times the boundary-layer height h
in the unfiltered run, approximately 18.00h UTC. (d) The
sub-cloud moisture field in the filtered run, same cross-
section height. (e) The cloud field as seen from a satellite
at approximately 18.00h UTC. (f) Snapshot at the same
time for the filtered run.



a different evolution of the cloud-top height compared to
the reference run with large clouds.

Comparing Fig. 1(c) and Fig. 1(d) one can observe
that the filter procedure worked properly to remove the
large scale fluctuations from the sub-cloud moisture field.
However, quite unexpectedly, the effects on the result-
ing cloud fields appear to be rather modest, as seen in
Figs. 1(e),1(f) and in the cloud fraction profiles in Fig. 2.
We emphasize that this result is in disagreement with the
findings of Jonker et al. (1999). For some unknown
reason the large clouds are missing in the reference
case. The effect of filtering is therefore useless. Pre-
sumably the explanation for the lack of large clouds must
be sought in the differences between the LES cases. Un-
derstanding this discrepancy may provide an interesting
clue for the interaction between the cloud field and the
sub-cloud moisture field, and the formation of (relatively)
large clouds, but the issue is not pursued here.
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FiG. 2: Comparison of the cloud fraction between the
filtered and unfiltered run. Clearly the effect of filtering is
marginal.

4. THE RELATION BETWEEN CLOUD SIZE AND THE
FRACTIONAL ENTRAINMENT RATE

A more direct way to study the relation between en-
trainment and cloud size is to calculate the fractional
entrainment rate of cloud ensembles conditioned upon
size, rather than of the entire ensemble as was done by
e.g. Siebesma and Cuijpers (1995). To this end we calcu-
lated the volume V of each individual cloud in a simulated
cloud field, and defined the (linear) size of the cloud by
taking the cube root:

1=V3 @

We distinguished four classes based on size: 0 <
[ <250m, 250m< [ <500m, 500m < [ <750m, and
[ >750m and calculated the entrainment and detrainment
rates for each class separately. To obtain statistically re-
liable results, we conducted six independent LES runs
(so called ensemble runs, with different random pertur-
buations of the initial state) and additionally averaged the
guantities over a three hour period.

FiG. 3: Entrainment E and detrainment D in the mass-
flux model

The entrainment and detrainment rates were derived
with the mass-flux framework (Betts, 1973; Tiedtke,
1989), see Fig. 3.
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with the cloud mass flux M°¢ = a“w®, w® being the av-
erage upward velocity in the cloud. E and D represent
the entrainment and detrainment rates respectively. The
fractional entrainment and detrainment rates £ and ¢ are
defined as
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In many cloud and plume models, the mixing with the en-
vironment is described by the following 'simplified lateral
mixing equation’
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(e.g. Betts, 1975; Anthes, 1977; Tiedtke, 1989;

Raga et al., 1990). The superscripts ¢ and e represent
cloud and environment, respectively. Here ¢ denotes a
conserved quantity like g: or 6;.

The effective entrainment rate ¢ can be readily esti-
mated by inverting equation (5) (e.g. Siebesma and Cui-
jpers, 1995) and using for example ¢ = ¢:. Hence we use
the following equations to determine ¢ and §
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5. RESULTS

In Fig. 4 we show for different cloud sizes the profiles of
total water ¢:(z), and liquid water ¢;(z) and in Fig. 5 the
cloud fraction a.(z) and mass-flux M.(z). All graphs re-
veal a marked dependence on cloud-size. It is interest-
ing to note that for the largest clouds, the cloud fraction
is nearly constant with height and the mass-flux even in-
creases. The implies that the average vertical velocity
increases with height.
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FiG. 4: Size decomposed vertical profiles of ¢:, ¢; and
cloudfraction a®. Note that the largest clouds have an ap-
proximately constant cloud fraction between 1000m and
2000m.
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Using the results depicted in Figs. 4(a) and 5(b), we
derived with equation (6) the entrainment and detrain-
ment profiles for clouds of different sizes, see Fig. 6.

A first glance at the figure reveals that the entrain-
ment rate indeed displays a dependence on cloud size, in
particular for the smaller clouds. Regarding the detrain-
ment rate, the same general picture seems to be present:
There is an effect of size, but primarily for small clouds.

The size dependence of the entrainment rate has
been further studied by decomposing the clouds in ten
size categories, rather than four. To obtain a cloud size
vs. entrainment relation, the average entrainment value in
the region z € [1280, 2020]m (this is the region where the
graph is not so noisy and where forced clouds do not in-
fluence the statistics) has been calculated as function of
cloud size. The results are depicted in Fig. 7. The first im-
pression given above seems to hold: the entrainment rate
shows a dependence on cloud size for sizes smaller than
500m. For clouds larger than this value, the entrainment
rate appears to saturate.
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FiG. 5: Size decomposed vertical profiles of ¢:, ¢, and
cloudfraction a“. Note that the largest clouds have an ap-
proximately constant cloud fraction between 1000m and
2000m.
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