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ABSTRACT

We discuss the entrainment processes at the top of the convectively-driven boundary layer. The discussion

is based on results from a high-resolution (2563 grid points) large-eddy simulation initialized by a commonly

used sounding of Day 33 of the Wangara experiment. We find that the mixed-layer turbulence precisely

follows the Kolmogorov spectral law for the velocity field, whether two-dimensional (in horizontal planes)

or one-dimensional spectra are computed. This behavior also holds for the frequency spectrum, when the

Taylor’s frozen turbulence hypothesis is used. As well, the fluctuating virtual potential temperature field

follows the Corrsin-Oboukhov spectral law. The multiplicative constants of the power laws, inferred from the

compensated spectra, are found to be in good agreement with previous measurements in the atmosphere.

We next revisit the entrainment law at the mixed-layer top from two complementary Eulerian and Lagrangian

approaches. The Lagrangian approach yields similar results to the eulerian one: the normalized entraine-

ment velocity we/w⋆, where we and w⋆ are the entrainment and convective velocities, is found to vary as a

function of the bulk Froude number squared at the interface with a multiplicative constant close to 1.2.

1. INTRODUCTION

The interfacial layer between the convectively-
driven atmospheric boundary layer (CBL) and the
free atmosphere is subjected to intense turbulent
mixing, due to entrainment of air by convective mo-
tions. As a result of the entrainment processes, the
interfacial layer raises (or the boundary layer deep-
ens) at the entrainment velocity we = dzi/dt, with zi

being the horizontally-averaged mixed-layer depth.
Fig. 1 from Chemel et al. (2006) is a visualization of
the instantaneous interfacial layer using virtual po-
tential temperature contours from a large-eddy sim-
ulation of the Day 33 of the Wangara experiment
(Clarke et al. 1971). It shows that the interfacial
layer is strongly turbulent and has a rich structure.
Thus, the thickness of the interface has a high vari-
ability. Updrafts originating from the warm underly-
ing ground surface strike the interfacial layer sharply
(that leads to a folding of the interface) or erode the
interface by a ‘scouring’ mechanism. The free at-
mosphere air above is then entrained into the mixed
layer. These entrainment events are localized and
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the entrained air is mixed downward as the updrafts
sink back into the mixed layer.

Figure 1: Visualization of the interfacial layer using re-
solved virtual potential temperature eθv contours in a (x, z)
from a large-eddy simulation of the Day 33 of the Wan-
gara experiment in a vertical plane (x, z) located in the
vicinity of an updraft at 1500 EST. The distances along
x and z are normalized by the domain length and the
mixed-layer depth, respectively. Grayscale color table in-
dicates eθv variations at the interface (lower and higher
eθv appear white). Both eθv profiles measured during the
Wangara experiment (◦) and computed from the LES out-
puts as a horizontally-averaged profile over the computa-
tional domain (—) are also included for comparison pur-
pose. From Chemel et al. (2006).



As pointed out f.i. by Otte and Wyngaard (2001),
the modeling of the entrainment process is an es-
sential issue for both oceanic and atmospheric ap-
plications. Thus, several entrainment law formula-
tions have been derived out to date, starting from
the ‘zero-order’ jump model of turbulent entrainment
by Ball (1960) and Lilly (1968). A thorough review
of more general formulations in the shear-free CBL
can be found in Fedorovich et al. (2004).

From an experimental point of view, the entrain-
ment processes across a density interface has ex-
tensively been studied. Hopfinger (1987) and Fer-
nando (1991) gave a review for an interfacial layer
that is destabilized by grid turbulence. The entrain-
ment process is classically discussed as a function
of a bulk Richardson number at the interface, de-
fined as

RiB = g β ∆θv zi/w2

⋆, (1)

where ∆θv is the horizontally-averaged virtual po-
tential temperature jump across the interface and
w⋆ is the convective velocity, g the gravitational ac-
celeration and β the coefficient of thermal expan-
sion. Hereafter, the overbar � stands for a spatial
average in a horizontal plane. The convective ve-
locity within the mixed layer is expressed as

w⋆ =
[
g β

(
w′θ′v

)
s
zi

]1/3

, (2)

where
(
w′θ′v

)
s

is the average heat flux just above
the ground surface. When entrainment results from
grid generated turbulence, the dimensionless en-
trainment rate we/w⋆ was found to scale like Ri−n

B ,
where n is in the range 1 − 2 depending upon the
values of the Prandtl and Richardson numbers. In
the convection tank experiment of Deardorff et al.
(1980), the dimensionless entrainment velocity was
found to vary as

we/w⋆ = A Ri−1

B , (3)

where A = 0.25. As noted by Deardorff et al. (1980),
the entrainement law (3) immediately follows from
the ‘zero-order model’ with an entrainement ratio
equal to 0.25. Deardorff et al. (1980) claimed that
their data could also be fitted by the law we/w⋆ =

1.1 Ri−3/2

B , so that there seemed to be no clear de-
pendence on RiB .

The entrainment processes have also been in-
vestigated in several large-eddy simulations (LESs).
The entrainment law (3) is generally retrieved for
the convectively-driven boundary layer (e.g. Sulli-
van et al. 1998; Chemel et al. 2006). Nevertheless
different LES investigations show a scatter of about
30 % in the value of the dimensionless parameter

A (Stevens and Lenschow 2001). In this study, we
present our results from a high-resolution (2563 grid
points) large-eddy simulation of the convectively-
driven (shear-free) boundary layer initialized by a
commonly used sounding of Day 33 of the Wan-
gara experiment (Clarke et al. 1971). This ‘realis-
tic’ initialization enables us to validate further our
numerical results. The objectives of the paper are
(i) to investigate the mixed-layer dynamics, which
forces the interfacial layer, from a statistical point of
view, and (ii) to revisit and discuss the Ri−1

B entrain-
ment law (3), using an Eulerian approach (i.e. the
LES) and a Lagrangian approach (i.e. a Lagrangian
stochastic model coupled with the LES).

The numerical experiments presented in this pa-
per were conducted with the Advanced Regional
Prediction System (ARPS), a non-hydrostatic, com-
pressible LES code devoted to meso-scale as well
as small-scale atmospheric flows. Xue et al. (2000;
2001) gave an extensive description of the model
formulation and applications. A lagrangian particle
dispersion model has also been implemented in the
ARPS code to track a large number of particle posi-
tions. A detailed description of the model and setup
of the LES can be found in Chemel et al. (2006).

The outline of the short paper is then as follows.
In § 2.1, we investigate the mixed layer to character-
ize the mechanisms responsible for the destabiliza-
tion of the interfacial layer. We analyze the mixed-
layer dynamics both from a statistical point of view,
by computing 1D and 2D spatial as well as temporal
spectra. In § 2.2, the entrainment rate formulation
is discussed based on LES and particle dispersion
outputs, and expressed as a function of a Froude
number at the interface. Finally, concluding remarks
are given in § 3.

2. RESULTS & DISCUSSION

2.1 Mixed-layer statistics

Since the mixed layer is homogeneous (in a sta-
tistical sense) in a horizontal plane, it is natural to
consider horizontal 2D Fourier transforms. The ex-
pression of the 2D kinetic energy spectrum in the
inertial range (between the integral scale and the
dissipative scale) is given by (Chemel et al. 2006)

E⊥ (k⊥, t) = C2 ǫ2/3 k
−5/3

⊥ , (4)

where ǫ is the turbulent kinetic energy dissipation
rate and k2

⊥ = k2

x + k2

y. The constant C2 is ex-
pressed as a function of the Kolmogorov constant
CK , namely C2 = CK

√
π/2 FΓ (4/3) /FΓ (11/6),

with FΓ being the Gamma function. Measurements



in the atmosphere suggested that CK is in the or-
der of 1.5 (Champagne et al. 1977). Hence, for
CK = 1.5, this yields C2 ≈ 1.26. The integral scale

was computed as ℓi = 2π/ki = ũrms

3

/ǫ, where
ũrms is the root-mean-square of the horizontal ve-
locity components. As for the dissipative scale, it is

calculated as ℓv = 2π/kv =
(
νt

3/ǫ
)1/4

, where νt is
the turbulent viscosity.

In Fig. 2a, E⊥ (k⊥) averaged over the range 0.4 <
z/zi < 0.6 at 1500 EST is displayed versus k⊥,
for two different resolutions. The computed inte-
gral scale is close to 1900 m, which roughly cor-
responds to the typical size of the convective cells
(e.g. Schmidt and Schumann 1989; Chemel et al.
2006). In the present LES the dissipative scale ℓv is
in the order of 5 m. The Kolmogorov law is observed
over almost a decade in the inertial range for the
2563 resolution run. As a comparison, the kinetic
energy spectrum computed with a 1283 resolution
is superimposed in Fig. 2a. It exhibits only a half
decade in the inertial range. To compare rigorously
the computed spectrum with inertial-range theory,
the compensated spectrum E⊥ ǫ−2/3 k

5/3

⊥ = C2

is displayed as a function of k⊥ in the subplot of
Fig. 2a. In the inertial range, C2 remarkably aver-
ages about the predicted value of 1.26.

If the CBL is well-mixed, the virtual potential tem-
perature θ̃v should behave as a passive scalar. We
assume thereafter that the wavenumbers character-
istic of the peaks of both kinetic energy and virtual
potential temperature spectra are identical. This
is a reasonable hypothesis since these wavenum-
bers are both imposed by the large convective mo-
tions. In the inertial-convective range (namely ki ≪
k⊥ ≪ kd, where kd = 2π/ℓd with ℓd =

(
κt

3/ǫ
)1/4

for
Prt < 1, which is the case here), the 2D spectrum
of virtual potential temperature variance follows the
Corrsin-Oboukhov law (Chemel et al. 2006)

Eθ,⊥ (k⊥, t) = CCO,2 ǫθ ǫ−1/3 k
−5/3

⊥ , (5)

with ǫθ being the dissipation rate of one half the av-
erage virtual potential temperature variance, which

is given by ǫθ = κs

(
∂iθ̃v

)2

, where κs is the subgrid-

scale thermal diffusivity. A derivation analogous to
that leading to the expression of C2 gives CCO,2 =
CCO

√
π/2 FΓ (4/3) /FΓ (11/6), where CCO is the

Corrsin-Oboukhov constant. Using measurements
in the atmosphere, Champagne et al. (1977) found
CCO ≈ 0.64. For CCO = 0.64, this yields C2 ≈ 0.54.

In Fig. 2b we compare the virtual potential tem-
perature variance spectrum Eθ,⊥ (k⊥) derived from
our LES outputs with the theoretical prediction in

Figure 2: (a) 2D kinetic energy spectrum E⊥ (k⊥) at
1500 EST computed for the 2563 resolution run (—) and
averaged over the range 0.4 < z/zi < 0.6. The subplot
displays computed constant C2 in relation (4) as a func-
tion of k⊥. The spectrum computed for a 1283 resolution
run (- - -) is superimposed as a comparison. (b) As in (a),
but for 2D virtual potential temperature variance spectrum
Eθ,⊥ (k⊥) and computed constant CCO,2 in relation (5).
From Chemel et al. (2006).

relation (5). Our results agree well with the Corrsin-
Oboukhov spectrum over almost a decade. Divid-
ing the spectra by ǫθ ǫ−1/3 k

−5/3

⊥ gives the value of
CCO,2, which is displayed versus k⊥ in the subplot
of Fig. 2b. The agreement of CCO,2 with the theo-
retical prediction of 0.54 is correct over the range of
wavenumbers for which Eθ,⊥ closely follows a k

−5/3

⊥

power law, that is for the smallest scales of the in-
ertial range. In overall, we may say that the passive
scalar assumption for θ̃v is quite justified.

Let us examine the assumption of local isotropy
in the horizontal plane. Fig. 3a displays the 1D lon-
gitudinal spectra of ũ and ṽ as a function of kx and
ky, respectively, for two different resolutions, aver-
aged over the range 0.4 < z/zi < 0.6 at 1500 EST.
The spectra along kx and ky are nearly the same,



which is consistent with local isotropy. From a the-
oretical point of view, if turbulence is homogeneous
and isotropic, these spectra should behave as

Eii (ki, t) = C1 ǫ2/3 k
−5/3

i , (6)

with ki being kx or ky, and C1 = (18/55) CK ≈ 0.49
for CK = 1.5 (e.g. Champagne et al. 1977; Moeng
and Wyngaard 1988). The numerically computed
spectrum of ũ normalized by ǫ−2/3 k

5/3

x is displayed
versus kx in the subplot of Fig. 3a. The value of C1

thus obtained agrees well with the theoretical pre-
diction of 0.49 for the smallest scales of the inertial
range.

Since the large-scale flow within the mixed layer
consists of convective cells, the scales contribut-
ing to the inertial range may be assumed to be ad-
vected by those cells. Thence, the Taylor’s (1938)
frozen turbulence hypothesis may be assumed to
hold. This reasoning also requires that the mag-
nitude of the velocity fluctuations be much smaller
than the convective velocity. Under these assump-
tions, a f−5/3 power law, with f being the frequency,
is expected in the inertial range for scalar quantities
as well as for velocity components. The frequency
spectrum of ũ, Su (f), computed from 1200 EST to
1500 EST at z = 500 m in the center of the (x, y)
plane, is displayed versus f in Fig. 3b: a −5/3 in-
ertial range is obtained over almost a decade. The
overturning time scale associated with the integral
scale may be estimated by τi = τeddy (ℓi) = ℓi/ũrms,
and is in the order of 15 min. This is indeed the
typical time period for air to circulate between the
ground surface and the mixed-layer top, i.e. roughly
zi/w⋆, as we checked it.

Since the Taylor’s hypothesis is assumed to hold,
temporal spectra gathered in this way can be con-
verted to 1D spatial spectra by substituting the fre-
quency f for kx |ũ|. The 1D spatial spectrum thus
obtained is superimposed upon Eii in Fig. 3a: both
spectra remarkably coincide over the inertial range,
which demonstrates the reliability of the Taylor’s hy-
pothesis within the mixed layer.

2.2 Entrainment rate formulation

In this section, the focus is directed onto the in-
terfacial layer, where turbulence is damped by buoy-
ancy forces. As stressed by Chemel and Staquet
(2006), the Froude number FrB of the interfacial
layer is the most appropriate dynamical parame-
ter to characterize the interface in the convectively-
driven boundary layer. This parameter is defined as
the ratio of the characteristic frequency w⋆/zi of the
turbulent motions, which destabilize the interface, to

Figure 3: (a) 1D longitudinal velocity spectra Eii (ki) of eu
and ev at t = 1500 EST computed for the 2563 resolution
run (—) and averaged over the range 0.4 < z/zi < 0.6.
The subplot displays computed constant C1 in relation (6)
averaged over both eu and ev spectra as a function of ki.
The spectra computed for a 1283 resolution run (- - -) are
superimposed as a comparison. The dotted line (· · ·)
represents the spectrum of u deduced from the frequency
velocity spectrum Su (f) of eu, displayed in plot (b) and
computed for the 2563 resolution run, from 1200 EST to
1500 EST at z = 500 m in the center of the (x, y) plane.
From Chemel et al. (2006).

the buoyancy frequency N =

√
g β ∂3θ̃v at the in-

terface, which characterizes it stability. Hence,

FrB = w⋆/ (N zi) . (7)

One may note that Fr2B is the inverse of the RiN
number introduced by Fedorovich et al. (2004). With
N aproximated by

√
g β ∆θv/∆h, the parameters

FrB and RiB are related by RiB = (∆h/zi) Fr−2

B ,
where ∆h is the horizontally-averaged mixed-layer
thickness. The entrainment law (3) then becomes

we/w⋆ = B Fr2B, (8)



where B = A (zi/∆h). The value of B appears to
be a constant of about 1.2 in the regime of equilib-
rium entrainment (Fedorovich et al. 2004; Chemel
and Staquet 2006).

In the following, we check upon the reliability of
the latter entrainment law from our LES results us-
ing both Eulerian and Lagrangian approaches.

Characteristics of the simulated interfacial layer
are given in Chemel et al. (2006) (their Table 1). In
respect to the Eulerian approach, the horizontally-
averaged entrainment velocity, namely

we = dtzi, (9)

is directly computed from the time derivative of zi

using a centered difference scheme.
A different approach using particle dispersion is

proposed to retrieve the entrainment velocity we.
Using first-order closure the heat flux is classically
expressed as a function of the mean vertical gradi-
ent of virtual potential temperature, namely

−w′θ′v = κt ∂3θ̃v. (10)

Using the ‘first-order’ jump model framework pro-
posed by Betts (1974), the heat flux across the in-
terfacial layer

(
w′θ′v

)
i

is related to the entrainment
velocity by

−
(
w′θ′v

)
i
= we ∆θv − δh ∂tθ̃v

1,2

, (11)

where δh = z2 − z1 is the difference between the
vertical position z2 where the heat flux first goes to
zero above zi and the vertical position z1 of the min-

imum heat flux, and θ̃v

1,2

=
[
θ̃v (z1) + θ̃v (z2)

]
/2. In

the limit of infinitely small thickness of the interfacial
layer, i.e. δh = 0, relation (11) simply reduces to the
‘zero-order’ jump condition derived by Lilly (1968).
Assuming again that ∆θv/∆h is a good approxima-
tion of ∂3θ̃v within the interfacial layer, relations (10)
and (11) together yield

we = κt/∆h + δh ∂tθ̃v

1,2

/∆θv. (12)

The turbulent thermal diffusivity κt can be eval-
uated directly from the dispersion of fluid particles.
By ‘fluid particles’, we mean non buoyant particles
simply advected by the velocity field. Let (δz)ms (t)
be the mean square vertical displacement of fluid
particles at time t for a given release. It is written as

(δz)ms (t) = (1/Np)

Np∑

n=1

[zn (t) − zG (t)]2, (13)

where Np is the number of particles of the release,
zn (t) is the vertical position of the particle n and
zG (t) the vertical position of the center of gravity of
the particle cloud at time t. If the turbulence is lo-
cally homogeneous and stationary, and for t ≥ 2 TL,
with TL being the Lagrangian time scale of the tur-
bulence, κt can be inferred from the growth rate
of (δz)ms (Taylor 1921; Hunt 1985, for a review),
namely

dt (δz)ms = 2 κt. (14)

Since the interfacial layer is continuously forced by
the quasi-stationary convective cells, the turbulence
within this layer may be assumed stationary as well.
For stationary and homogeneous turbulence, the
Lagrangian time scale is in the same order of mag-
nitude as the Eulerian time scale TE [for isotropic
turbulence, the ratio TL/TE is close to 0.8 (Yeung
2002)]. This result also holds in the presence of
a stable stratification (Hunt 1985) . In the present
case TE = ℓb/σw, where σw is the standard devia-
tion of the fluctuating vertical velocity (e.g. Hopfin-
ger 1987). From Otte and Wyngaard (2001), ℓb ≈
24 m and σw ≈ 0.5 m s−1 for conditions analogous
to our LES (their cases 19 to 22), so that TE ≈ 48 s
implying that 2 TL is in the order of 1 min.

Particles were carefully released within the bulk
of the interfacial layer (approximately between z −
zi = ±100 m) in a region centered approximately on
the horizontal plane. Nevertheless some of the par-
ticles were released below and above the interfacial
layer since its thickness varies over a wide range
within the simulated domain. The releases were
made at 4 equally-spaced times from 1155 EST to
1325 EST over 10-min periods and resulted in a to-
tal of 57500 particles per release. These release
times were chosen because they correspond to a
nearly constant ground surface heat flux. A quasi-
linear growth occurs after about 1 min (not shown)
whose growth rate may be interpreted as 2 κt. Val-
ues for κt between 2.94 and 3.83 m2 s−1 were ob-
tained depending upon the time of the release. κt

varies with time since the interfacial-layer properties
also vary with time.

The resulting Ri−1

B and Fr2B dependences of the
parameters A and B in relations (3) and (8), respec-
tively, with we values computed by relation (12), are
shown in Fig. 4. The results are compared with
those obtained when we is computed by relation (9),
as well as with the convection tank measurements
of Deardorff et al. (1980) over the region of com-
mon Ri−1

B or equivalently Fr2B. A good agreement
is found, with relative differences being lower than
10 % on average. This emphasizes that the par-
ticle dispersion approach is well adapted to derive



Figure 4: Dimensionless parameters: (a) A =
(we/w⋆) RiB in relation (3) and (b) B = (we/w⋆) Fr−2

B

in relation (8). In each frame, the entrainment velocity
we is computed by three different methods: the Eulerian
approach as triangles [△, relation (9)], the Lagrangian
approach as squares [�, relation (12)], and a simplified
model in the Lagrangian approach, with we being com-
puted as κt/∆h, as circles (◦). The convection tank mea-
surements of Deardorff et al. (1980) are also indicated as
black dots (·). The filled area represents: (a) A in the
range 0.18 − 0.27 and (b) B in the range 1.0 − 1.4. From
Chemel et al. (2006).

the properties of the interfacial layer. As a compar-
ison, the values computed from a simplified model
in the Lagrangian approach (namely, we computed
as κt/∆h) are superimposed in Fig. 4. The mag-

nitude of the term δh ∂tθ̃v

1,2

/∆θv in relation (12) is
found to be not negligible compared with κt/∆h in
the range of RiB values considered in our LES. The
former term indeed contribute to about 30 − 35 %
of the total entrainment velocity when RiB is strong
enough (approximately larger than 15 according to
our data). At low RiB, this term counts for more
than 45 %. Our finding are consistent with the LES
results of Sullivan et al. (1998).

3. CONCLUDING REMARKS

The entrainment processes at the top of the CBL
were reexamined using data from high-resolution
(2563 grid points) LES. A detailed statistical anal-
ysis of the mixed-layer fields was performed. We
found that the turbulence precisely follows the Kol-
mogorov spectral law for the velocity field, with a
multiplicative constant in good agreement with pre-
vious measurements in the atmosphere, whether
2D (in horizontal planes) or 1D spectra are com-
puted. This behavior also holds for the frequency
spectrum, when the Taylor’s frozen turbulence hy-
pothesis is used. Hence, the turbulence within the
mixed layer may be assumed to be locally homoge-
neous and isotropic. As well, the fluctuating virtual
potential temperature field was found to follow the
Corrsin-Oboukhov spectral law, both in power law
and level. This is consistent with this field behaving
as a passive scalar in the mixed layer.

The normalized entrainment velocity was found
to vary as we/w⋆ = B Fr2B, with a multiplicative con-
stant B of about 1.2. The scatter of our data points
out the difficulties to estimate the boundaries of the
interfacial-layer and consequently the values of ∆θv

and ∆h. Nonetheless, the ratio of the interfacial-
layer thickness to the convective mixed-layer depth
in the limit of strong stratification was found to be
in the order of 0.2, consistently with the convection
tank measurements of Deardorff et al. (1980) when
RiB is high enough.

A particle dispersion approach using LES cou-
pled with a Lagrangian stochastic model was used
to compute the entrainment velocity from relation
(12). The derived values were in rather good agree-
ment with those computed directly from dtzi. Rela-
tive differences were found to be lower than 10 %
on average. The ‘first-order’ jump model was found
to work well. We find that the first order correc-
tion contributes to at least 30 % to the value of we.
Still, the Lagrangian approach provides a very sim-
ple and useful expression for the entrainment veloc-
ity (namely, we = κt/∆h), from which a preliminary
good estimate can be obtained in a straightforward
manner. These results may have applications for
remote sensing of the mixed-layer top.
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