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1. Introduction

One of the difficulties with mesoscale prediction in
the PBL is a fundamental lack of model fidelity. Er-
rors in the mean behavior (biases) can be estimated and
accounted for if a large number of cases and a good ob-
serving system are available. But probabilistic prediction
using ensemble techniques relies on a model that effec-
tively reproduces error growth. That is, a forecast from
a perturbed initial state needs to diverge from an unper-
turbed forecast at approximately the same rate as either
forecast diverges from the true PBL evolution. It is well
known that mesoscale models, where the resolved-scale
effect of PBL turbulence is usually parameterized, suf-
fer from a lack of variability when compared to the real
atmosphere. This results in a fundamental lack of error
growth in the model, and difficulty producing a useful
ensemble system for PBL forecasts.

Lack of internal variability in models has lead to a
proliferation of the so-called “multi-model” ensembles
for mesoscale prediction (e.g. Hou et al. 2001; Grimit
and Mass 2002; Stensrud and Yussouf 2003). Multi-
model ensembles can be formed by varying PBL param-
eterization schemes within a single dynamical modelling
framework such as the Weather Research and Fore-
cast (WRF) model or the Penn State/NCAR Mesoscale
Model (MM5). They have demonstrated a skillful en-
semble mean, relative to the individual members, and
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marginal ability to predict uncertainty. But noa priori
reason exists to expect that such an ensemble will pro-
duce the best forecast probability distribution. It is pos-
sible that the skill improvements are the result of the dif-
ferent biases inherent in each parameterization scheme,
and not the result of any improvement in error growth
arising from internal variability.

Another approach to increasing the internal variability
needed for a useful probabilistic forecast is to specify
distributions of one or more of the “physical constants”
in the parameterization schemes. This approach simply
admits that the parameters, to which some schemes are
highly sensitive, are uncertain quantities in themselves.
Without assuming a non-trivial stochastic model for the
parameters, the distributions can be objectively selected
within an ensemble data assimilation system.

In this work, land surface parameters such as emissiv-
ity, albedo, thermal conductivity, roughness length, and
moisture availability are allowed to vary within an en-
semble data assimilation system. Covariance with ob-
servations modifies the parameters, which are treated as
state variables, so that the model state can best fit the
observations. After a few assimilation cycles, the result-
ing distributions are used to make an ensemble forecast.
Experiments are completed with a 1D column model,
containing land-surface, surface-layer, and PBL parame-
terization schemes available in the WRF model physics
package.

The next section describes the state augmentation ap-
proach to parameter estimation. Section 3 describes
the model and the experiment configuration. Section 4
presents some results, including both the effects of as-



Table 1: Reference parameter values for the column ex-
periments here.

Surface/Soil Property Value
Land Use USGS Category 2 (Ag.)
Emissivity (εIR) 0.985
Albedo (a) 0.17
Roughness (z0) 0.15m
Soil Thermal Inertia (TI) 0.04Cal cm�1K�1s�0:5
Soil Moisture Availability (M) Variable (Fig. 1)

similation on the parameter distributions and the effect
on forecast skill. Section 5 summarized the key findings
of this work.

2. State augmentation for parameter estimation

Ensemble filter data assimilation systems are designed
to estimate the probability density of the atmospheric
state,X, at timet given all observations up to the timet,
Y. Mathematically, this isp(Xt jYt). By treating param-
eters,x as state variables, the theory supports parame-
ter estimation. The probability density of the augmented
state isp(Zt jYt), whereZ is the joint distribution of the
state and the parameters,Z = (X;x).

At any one time, the optimal estimate of an individual
discrete representation of the augmented state,z, is given
by the usual statistical analysis equation,

zat = zft +Kt
�yot �Hzft

�
(1)

Kt = Pf
tHT �HPf

tHT +Rt
�
�1

(2)

where superscriptsa andf represent analysis and forecast
(or background), respectively, andT represents trans-
pose. The vectoryot contains the most recent observa-
tions, and matricesPf

t andRt are the forecast and ob-
servation error covariances, respectively. The above set
of equations assume normal statistics, a perfect model to
propagatez, and a linear operator relating the discrete
statez to the observationsyo.

Many approaches to solving equation (1) have been
reported in the literature, and here we use the ensemble
adjustment Kalman filter in a regression framework (as
reported in Anderson 2003).

3. Model and experiment

The 1D column model used in these experiments is
further described in paper J5.8 in these proceedings, and
with additional details in Pagowski (2004); Pagowski
et al. (2005), and Appendix A in Hacker et al. (2006).

Table 2: Parameterization schemes in the 1D column
model used in this experiment.

Component Parameterization
Soil Force-Restore (Dickenson 1988)
Soil Wetness Simple Bucket Model (Dudhia 1996)
Surface Layer M-O Similarity
PBL MRF Scheme (Hong and Pan 1996)
Radiative Forcing WRF Forecast
Geostrophic Forcing WRF Forecast

A summary of the parameterization schemes is provided
in Table 2.

Observation system simulation experiments (OSSEs)
are constructed as follows:

1. Choose any number of the parameters in Table 1 for
estimation.

2. Produce a “true” evolution for a particular day in the
BAMEX period by running the column model with
randomly perturbed parameter values.

3. Generate an initial ensemble by randomly drawing
from the climatological distribution.

4. Generate initial parameter distributions by specify-
ing a distribution class, mean, and standard devia-
tion.

5. Assimilate half-hourly surface observations from
the true evolution for six hours. Estimate the pa-
rameter distributions at the same time.

6. Repeat 5, with the initial specified distribution, un-
affected by the assimilation.

It should be emphasized that these are not perfect-model
experiments because the mean of the parameter distribu-
tion does not agree with the parameter values determin-
ing the evolution of the truth.

Beta distributions are chosen for the parameters in Ta-
ble 1 (except land use, which is not varied). These are
bounded [0,1] to agree with the expected bounds on the
parameters. It is easily transformed to a normal distri-
bution with the logistic transformation, to agree with the
assumptions of normality underlying the the ensemble
filter algorithm. The mean and standard deviations of the
initial distribution is enforced in the transformed space.
After the initial specification, the distribution is allowed
to vary in the assimilation algorithm according to covari-
ances with the observation.
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Figure 1: Cross-correlation ofT2 with the various param-
eters estimated, as a function of time of day.

The extra assimilation cycle in step 6 provides a met-
ric for quantifying the effects of assimilation on the dis-
tribution. Analysis and forecast skill with the distribu-
tion initially specified is the null case of varying the pa-
rameter without any information from the observations
in the assimilation cycle. Comparison of analysis and
forecast skill against this quantifies the impact of the ob-
servations.

4. Results

Results are presented for a 12-h assimilation period
beginning at 1200UTC (0700 local time). A total of 54
days in the BAMEX period are used to aggregate statis-
tics. First, the cross-correlation of each of the estimated
parameters with the ensemble of model values in ob-
servation space (e.g. diagnostic screen and anemometer
height values, in this caseT2) are shown in Fig. 1. This
shows that the moisture availability (M) and the ther-
mal inertia (TI) are reasonably correlated withT2, and
suggests that assimilatingT2 will affect those parameters
more than the others. The correlations also quantify the
sensitivity ofT2 to the parameters. The high correlation
betweenM and T2 is generally expected. The similar
character ofTI may result from a similar dependence on
soil moisture.

The ability of the model to fit the assimilated obser-
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Figure 2: Mean absolute error in observation space:T2

(top),Q2 (middle), andU10 (bottom). The colors denote
different experiments: when parameters are estimated
(blue), when the initial distribution is not modified by
the assimilation process (green), and when the parame-
ter values are considered a constant single value (red).
Statistics are compiled over 54 case days.

vations is shown in Fig. 2. Mean absolute error (MAE)
is computed over all 54 assimilation periods. The results
show a generally better fit when a distribution of param-
eters is used (blue,green) rather than a single fixed value
(red), with a small temporary reduction in skill forU10

during the middle of the day. The difference between the
skill when the distribution is estimated (blue) and when
it is specified and stationary (green) are rather small ac-
cording to this metric. A slight divergence near the end
of the time period (1800) suggests that the assimilation
cycling may need to continue longer to see real differ-
ences.

Some dependence on time of day is evident, and other
times of day need to be examined before conclusions
can be drawn. These results only suggest that this is a
promising approach.

An example of the effect of the assimilation on the dis-
tribution of TI is shown in Fig. 3. We chooseTI rather
thanM, despite its lower distribution, because the bucket
model also modifiesM dynamically, making it more dif-
ficult to interpret. Figure 3 shows that the mean peaks in
the middle of the day to better fit the observations, sug-
gesting that the values need to increase when the temper-



5 10 15 20
0.02

0.04

0.06

0.08

Analysis Hour

E
ns

em
bl

e 
M

ea
n

5 10 15 20
0

0.5

1

1.5
x 10−3

Analysis Hour

E
ns

em
bl

e 
S

pr
ea

d

5 10 15 20
0

0.1

0.2

0.3

0.4

Analysis Hour

 T
I

Figure 3: Example of the evolving thermal inertia mean
(top), standard deviation (middle), and ensemble (bot-
tom). Initial and final histograms are also shown inset
bottom.

atures are high. The ensemble spread also peaks, sug-
gesting a lack of confidence in that estimate. In this case,
the values decrease later in the day, suggesting greater
confidence in lower values. This type of evolution is not
representative of typical behavior, which can take many
other forms.

5. Summary and conclusions

Parameter estimation experiments with an ensemble
filter are run with a column model containing WRF land-
surface, surface-layer, and PBL physical parameteriza-
tion schemes. Shelter and anemometer-height observa-
tions are assimilated half-hourly. The overall goal is to
estimate distributions of parameters that will improve er-
ror growth properties in the PBL and improve skill and
estimates of uncertainty in both analyses and forecasts.

A subset of the experiments were presented here, and
general conclusions cannot be drawn, but the results ap-
pear promising. Parameters such as moisture availability
and thermal inertia are correlated with the model state
at observation locations, suggesting that the parameters
could be estimated. The model fits the observations bet-
ter in the assimilation when the parameters are treated as
a distribution rather than a fixed value. A longer assim-
ilation period may be necessary to truly understand the
effects of the estimation procedure compared to using a
fixed distribution. Assimilation over different parts of
the diurnal cycle will elucidate the effects of parameter
estimation in the appropriate diurnal regime.

The talk will address these issues, and additional is-

sues not discussed here. These include the effects on
short-range forecast skill and internal error growth in the
model, an examination of the behavior near transition
times, and comments on how to improve ensemble fore-
cast systems. Both observation-space verification, and a
verification of the profiles, will be shown.
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