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1. INTRODUCTION

Quasi-wavelets (QWs) are similar to customary
wavelets in that they are based on translations and di-
lations of a parent function; however, their positions and
orientations are random. An individual QW is roughly
analogous to a turbulent eddy. A random ensemble
of QWs, with size distribution and rotation rates cho-
sen in a manner consistent with Kolmogorov’s hypothe-
sis, produces velocity fields with realistic spectral prop-
erties (Goedecke et al., 2004). Previous research has
demonstrated the utility of QWs for modeling scattering
of acoustic waves by turbulence (Goedecke et al., 2001;
Wilson et al., 2004) and for synthesizing random, kine-
matic fields with statistical properties resembling actual
turbulence (Goedecke et al., 2006). Other possible ap-
plications (pending further advances with QW models) in-
clude identification of coherent turbulent structures, for-
mulation of subgrid-scale models in turbulence simula-
tions, synthesis of random terrain elevations and geoligic
structure, and electromagnetic and seismic wave scatter-
ing.

In this paper, earlier QW formulations are extended
in two main ways. First, multiple QW fields with corre-
lated properties are formulated. It is shown how a QW
model can be constructed to produce a constant scalar
flux layer. This technique could be used to model heat flux
in the atmospheric surface layer. Second, a QW model
with intermittency is developed based a multifractal for-
mulation similar to Frisch et al. (1976). These exten-
sions would be difficult (if not impossible) to systemati-
cally achieve with spatially infinite basis functions such
as Fourier modes. They make possible the synthesis of
wind and temperature fields in an atmospheric surface
layer that have very realistic cross spectral and intermit-
tent properties.

2. SYNOPSIS OF VELOCITY AND MONOPOLE
SCALAR MODELS

Like customary wavelets, QWs are derived from
translations and dilatations of a dimensionless, spatially
localized parent function. We assume that the parent
function f (ξ) is spatially symmetric. Here ξ is the magni-
tude of the vector ξ ≡ (r− bαn) /aα, r is the spatial coor-
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dinate, bαn is the center of the QW, and aα is its size. The
index α indicates the size class of the QW, with α = 1 be-
ing the largest size and α = N the smallest. The index n
indicates a particular QW within that size class. The size
a1 is associated with the outer scale of the turbulence and
aN with the inner scale.

To construct a scalar (e.g., temperature) QW model,
let us write the field perturbation associated with an indi-
vidual QW as

Tαn (r) = hαn∆Tαf
|r− bαn|

aα
, (1)

where hαn is a random sign factor and ∆Tα is an am-
plitude factor. The hαn are assumed to be statistically
independent and equal to +1 or −1 with equal probabil-
ity. Therefore hhαni = 0 and hαnhβm = δαβδnm, where
δαβ = 1 if and only if α = β. The locations bαn are
statistically independent and randomly distributed in the
volume V .

The total field is found by summing the contributions
of the individual QWs:

T (r) =
N

α=1

N®

n=1

Tαn (r) , (2)

where Nα is the number of QWs for the size class α. We
write the Fourier transform of the field as

T (k) =
1

(2π)3
d3r T (r) e−ik·r. (3)

Applying to Eqs. (2) and (1), we have

T (k) =
N

α=1

N®

n=1

Tαn (k) , (4)

where

Tαn (k) = hαna3α∆Tα exp (−ik · bαn)F (kaα) , (5)

and
F (y) =

1

(2π)3
d3ξ f (ξ) e−iy·ξ (6)

is the spectral parent function.
The scalar spectral density may be defined by the

following equation

ΦT (k) =
(2π)3

V
T (k)

2

. (7)



Substituting with (5) and applying the independence of
the sign factors yields

ΦT (k) =
N

α=1

Φα
T (k) , (8)

where

Φα
T (k) = (2π)

3 nα Tαn (k)
2

(9)

= (2π)3 nαa
6
α∆T 2αF

2 (kaα) ,

and nα = Nα/V is the number density of the class α.
To formulate a solenoidal representation of a turbu-

lent velocity field, we write the velocity field of each QW,
vαn(r), as∇×Aαn(r). HereAαn(r) is a vector potential
given by

Aαn(r) = Ωαna2α g (ξ) , (10)

where Ωαn is the angular velocity vector of the QW. For
a homogeneous, isotropic turbulence model, the Ω̂αn are
statistically independent and distributed with random uni-
formity over all directions. The symmetric function g (ξ)
is analogous to f (ξ) for the scalar case. The presence
of a2α in the definition provides dimensional consistency.
Writing out the curl of the potential leads to the following
result for the rotational velocity field associated with the
QW:

vαn(r) = Ωαn × (r− bαn) −ξ−1∂g/∂ξ . (11)

Transformation of Eq. (11) leads to

vαn(k) = i (k×Ωαn) exp (−ik · bαn) a5αG (kaa) . (12)

We may define the spectral density tensor Φij(κ) of
the velocity fluctuations as

Φij(k) =
(2π)3

V
ṽi(k)ṽ

∗
j (k) , (13)

where hi is the ensemble average (average of a large
number of random realizations) over the Ω̂ and b vari-
ables. Substituting with Eq. (12) and recalling that the
QWs have statistically independent orientations, we find

Φij(k) =
N

α=1

Φα
ij(k), (14)

where

Φα
ij(k) = (2π)

3 nα ṽαni (k) ṽαnj (k)
∗

. (15)

Substitution with (12) leads to

Φα
ij(k) = (2π)

3 nαa
10
α G2(kaα) (16)

h[(k×Ωαn) · ei] [(k×Ωαn) · ej ]i ,

in which ei is the unit vector along the ith coordinate axis.
Since the angular velocity magnitude is the same for all
members of a size class, we may define Ωα = |Ωαn|.
Writing out the components of this equation and noting

that the cross correlations of the angular velocity compo-
nents (e.g., Ωαn

x Ωαn
y ) are zero, whereas the autocorre-

lations (e.g., (Ωαn
x )2 ) must equal Ω2α/3, we have

Φα
ij(k) =

(2π)3

3
k2δij − kikj nαa

10
α Ω2aG

2(kaα). (17)

As is well known in the theory of isotropic turbu-
lence, the spectral tensor can be written as Φij(k) =
E (k) k2δij − kikj / 4πk4 , where E(k) is the turbu-
lent kinetic energy (per unit mass) spectrum (Batchelor,
1953). Thus

E(k) =
32π4

3
k4

N

α=1

nαa
10
α Ω2aG

2(kaα). (18)

To mimic the properties of turbulence, we choose nα,
∆Tα, and Ωα in a manner consistent with Kolmogorov’s
hypothesis. First, we assume that the packing fraction,
defined as

ϕ = nαa
3
α, (19)

is the same for all QW sizes. In the inertial subrange,
the rotation rate Ωα should depend only on the eddy size
(aα in our notation) and the dissipation rate of specific
turbulent kinetic energy, � (dimensions length2 divided by
time3). By dimensional analysis, we must have

Ωα = cΩa
−2/3
α �1/3, (20)

where cΩ is a constant. Similarly, ∆Tα should depend
only on the eddy size, dissipation rate, and the scalar de-
struction rate χT (dimensions T 2 divided by time). Hence

∆Tα = cT a
1/3
α χ

1/2
T �−1/6, (21)

where cT is a constant (not to be confused with the
structure-function parameter). Applying these relation-
ships to (8) and (17), we have

ΦT (k) = (2π)
3 ϕc2TχT �

−1/3
N

α=1

a11/3α F 2 (kaα) , (22)

and

E(k) =
32π4

3
ϕc2Ω�

2/3k4
N

α=1

a17/3α G2(kaα). (23)

The final step involves setting the dependence of the
eddy sizes aα on α and converting the two previous ex-
pressions to integrals. As with normal wavelets, we as-
sume that the ratio of one size class to the next is con-
stant. The following equation has this property

aα = a1e
−μ(α−1). (24)

Here, μ controls the spacing between the size classes. In
the limit of small μ, the summations can be replaced by
integrals according to the rule

N

α=1

→ μ−1
a1

aN

da

a
. (25)
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FIG. 1: Visualization of a velocity field synthesized with
quasi-wavelets. Shown is the vertical velocity component
in a horizontal plane.

We thus have for (22) and (23)

ΦT (k) =
(2π)3 ϕ

μ
c2TχT �

−1/3k−11/3
ka1

kaN

dy y8/3F 2 (y) ,

(26)
and

E(k) =
32π4ϕ

3μ
c2Ω�

2/3k−5/3
ka1

kaN

dy y14/3G2(y). (27)

For wavenumbers within a well developed inertial sub-
range, a1 À k−1 À aN , the integrals are nearly constant.
Hence ΦT (k) ∼ χT �

−1/3k−11/3 and E(k) ∼ �2/3k−5/3,
as would be expected.

Figure 1 is an example realization of a QW wavelet
velocity field. Shown is the vertical velocity field in a
horizontal plane. To generate this realization, the QWs
were randomly positioned inside a volume with dimen-
sions 150m by 150 m by 50 m. A Gaussian QW par-
ent function was used as described in Goedecke et al.
(2001). The packing fraction ϕ was set to 1 and μ to
0.693, which corresponds to aα/aα+1 = 2. The largest
QW size is a1 = 50 m and the smallest aN = 0.5 m.
(Although this value for aN is larger than the Kolmogorov
microscale, it is not necessary to generate smaller eddies
in this case since they would not be visible at the resolu-
tion of the visualizations.) The visualizations show a 100
m by 100 m cross section in the x−y plane. A 25-m buffer
on each side mitigates edge effects that otherwise would
result from missing large QWs that are partly inside the
volume but whose centers lie outside of it.

3. DIPOLE SCALAR MODEL

The scalar model described in the previous section
can be described as a monopole scalar model, since
each QW is isotropic and has only sign associated with it.

We could also construct a dipole scalar model by making
each QW proportional to a function that has a single axis
of symmetry, and is positive in one region and negative
in another. The utility of the dipole scalar model will be-
come apparent later when we consider fluxes. The dipole
can be created by differentiating the spherically symmet-
ric function f (ξ) along an axis passing through its origin.
Designating this axis as dαn, we set

Tαn (r) = ∆Tαaα (d
αn ·∇) f (ξ) . (28)

The axis dαn represents the random orientation of the
dipole. Taking the Fourier transform of (28) yields

Tαn (k) = ia4α∆Tα (d
αn · k) exp (−ik · bαn)F (kaα) ,

(29)
from which

Φα
T (k) = (2π)

3 nα Tαn (k)
2

(30)

= (2π)3 nαa
8
α∆T 2α (k · dαn)2 F 2 (kaα) .

For an isotropic model, dαni dαnj = δij/3. Hence

(k · dαn)2 = k21d
2
1 + k22d

2
2 + k23d

2
3 = k2/3, (31)

and

ΦT (k) =
(2π)3

3
nαa

8
α∆T 2αk

2F 2 (kaα) . (32)

Substituting with (19) and (21), we have

ΦT (k) =
(2π)3

3
ϕc2TχT �

−1/3k2
N

α=1

a17/3α F 2 (kaα) . (33)

In the limit of small μ, this becomes

ΦT (k) =
(2π)3 ϕ

3μ
c2TχT �

−1/3k−11/3
ka1

kaN

dy y14/3F 2 (y) .

(34)
This result differs from (26) only by a factor of 1/3 and
by the y14/3 (instead of y8/3) under the integral. Note in
particular that, as before, ΦT (k) ∼ χT �

−1/3k−11/3 in the
inertial subrange.

4. VELOCITY-SCALAR COVARIANCE

An important feature of the atmospheric surface layer
is that it has nearly constant vertical fluxes of momentum
and heat across its depth. In this section, we consider
formulation of a constant scalar flux QW model, such as
would apply to heat flux. Our modeling approach as-
sumes each QW has both a scalar field and velocity field
associated with it. The center locations for the two fields,
bαn, coincide.

As is well known in the literature on boundary-layer
meteorology, the turbulent flux of a scalars in direction i
is proportional to the covariance between the scalar and
the velocity component in that direction. The covariance
can be determined by integrating the cross spectrum over
the wavenumber space. For a particular size class α, the



cross spectrum between the scalar and velocity compo-
nent i is

Φα
Ti (k) = (2π)

3 nα Tαn (k) [υαni (k)]∗ . (35)

Suppose first we construct the scalar perturbations
Tαn (k) with the monopole equation (5), and the veloc-
ity field with (12). Then

Φα
Ti (k) = i (2π)3 ϕa5α∆TαΩα (36)

ei · k× hαnΩαn F (kaα)G (kaa) ,

where Ωαn ≡ Ωαn/Ωα is the unit vector along the axis
of rotation. Regardless of the value of hαnΩαn , the
preceding equation is an odd function of each of the
wavenumbers k1, k2, and k3. Hence when it is integrated
over the wavenumber space, it is zero. Therefore the
monopole scalar model is incapable of producing a flux.
This outcome could have been anticipated from a sim-
ple physical argument. Each QW has an “updraft” and
“downdraft” of equal strength distributed about its axis of
rotation. Since the scalar field has the same sign and
is symmetrically distributed in the updraft and downdraft
regions, the net flux must be zero.

Let us next consider the dipole scalar model. This
model allows the scalar field to have different signs in the
updraft and downdraft. In this case, the cross spectrum
for the size class α is

Φα
Ti (k) = (2π)

3 ϕa6α∆TαΩα (37)

ei · (k · dαn) k×Ωαn F (kaα)G (kaa) .

If the dαn and Ωαn are independent random variables,
(k · dαn) k×Ωαn = (k · hdαni) k× Ωαn =

0, and the cross spectrum vanishes. Some statistical
dependence between dαn and Ωαn are required to pro-
duce a flux. Some recasting of (37) will help us bet-
ter understand the flux-producing relationship. By a
well known identity involving the vector and dot product,
dαn× k×Ωαn = k dαn ·Ωαn −Ωαn (dαn · k). Ap-
plying k× to both sides, and recognizing that k× k = 0,
yields (k× dαn)× k×Ωαn = − k×Ωαn (dαn · k).
Hence

(k · dαn) k×Ωαn = − (k× dαn)× k×Ωαn . (38)

Furthermore, − (k× dαn) × k×Ωαn =

Ωαn [k · (dαn × k)] − k k · dαn ×Ωαn . The
first term on the right side of this equation can be shown
to vanish. Finally, we have

Φα
Ti (k) = (2π)

3 ϕa6α∆TαΩαki (39)

k · Ωαn × dαn F (kaα)G (kaa) .

Hence, when Ωαn × dαn is non-zero, a flux may be
generated. This can be understood from a mental picture
in which the dipole is perpendicular to the rotational axis
of the QW. In that case, the signs of the scalar field in the
updraft and downdraft are opposite. The flux is thus finite
and symmetric in planes passing through the rotational
axis.

The correlation uα = Ωαn × dαn can be expected
to depend on the size class α. For larger eddies, which
carry most of the flux, we would expect uα = |uα| to
be comparatively large. At smaller scales, the turbulence
tends toward isotropy, and therefore uα becomes small.
Let us suppose uα is described by a power-law relation-
ship:

uα = u1
aα
a1

ν

. (40)

Substituting this relationship into (39), applying (20) and
(21), and summing over QW size classes, we have

ΦTi (k) = (2π)
3 ϕcΩcTχ

1/2
T �1/6a−ν1 (k · u1) (41)

ki

N

α=1

a17/3+να F (kaα)G (kaa) .

In the limit of small μ,

ΦTi (k) =
(2π)3 ϕ

μ
cΩcTχ

1/2
T �1/6 (k · u1) (ka1)−ν (42)

kik
−17/3

ka1

kaN

dy y14/3+νF (y)G (y) .

As before, in the inertial subrange, the integral is ap-
proximately constant. When (42) is integrated over the
wavenumber space to determine the covariance, only
terms consisting of even functions of the wavenumber
components survive. Therefore, in the dot product k · u1,
only kiei · u1 contributes to the covariance.

5. INTERMITTENT TURBULENCE

Intermittency refers to the tendency of turbulence to
occur in bursts of activity. More precisely, it can be de-
fined as concentration of the TKE dissipation rate in cer-
tain regions of space. Up to this point, we have assumed
that the eddies positions (the bαn) were smoothly distrib-
uted in space. In intermittent turbulence, however, the
eddies must occupy a progressively smaller space as α
increases. To accomodate this behavior, we suppose that
the space available to the eddies, the so-called active re-
gion, decreases according to a power law

Vα = V
aα
a1

λ

. (43)

The packing fraction ϕ for the eddies within the active re-
gion Vα is assumed to be constant (independent of class);
that is, the eddies fill the same amount of space within the
active region, regardless of their size. The average of the
packing fraction for size class α over all of space is

ϕα =
Nαa

3
α

V
=

Nαa
3
α

Vα

aα
a1

λ

= ϕ
aα
a1

λ

. (44)



Hence the space-averaged packing fraction decreases
with increasing α.

Eq. (44) is a generalization of (3.2) in Frisch et al.
(1976), where the authors consider the case aα =
2−(α−1)a1 and ϕ = 1. They hypothesize that the pack-
ing fraction ϕα is given by an equation

ϕα = βα−1, (45)

where β is a model parameter. With aα = 2
−(α−1)a1, (44)

becomes ϕα = 2−λ(α−1). Hence the parameter β = 2−λ.
From Eqs. (3.2) and (3.9) in Frisch et al, β = 2Df−3,
where Df is the fractal dimension. Therefore λ = 3−Df .
For turbulence, the authors suggest Df ≈ 2.5.

The discussion so far in this section addresses only
the size of the space the eddies occupy, but not where
this space may be. Frisch et al. (1976) suggest that
the space occupied by the α + 1 class is a subset en-
tirely contained by the space occupied by the α class
(Vα+1 ⊂ Vα). Although Frisch et al. explicitly discuss the
case where the characteristic size of one generation is
half is predecessor, we may presume that the argument
applies to smoother distributions of eddy sizes, as well.
Such a construction implies that the positions of the ed-
dies in the α+1 class are not independent of the positions
of the α class.

Fortunately, the assumption that the eddy positions
bαn are statistically independent and distributed uni-
formly in a volume was never actually used in the previous
derivation for non-intermittent turbulence. The derivation
leading up to (18) is unchanged. What must be modi-
fied is the subsequent discussion of the packing fraction
and rotation rate. Using the α-dependent packing frac-
tion, (18) becomes

E(k) =
32π4k4

3

N

α=1

ϕαΩ
2
αa

7
αG

2(kaα)

=
32π4ϕk4a−λ1

3

N

α=1

Ω2αa
7+λ
α G2(kaα). (46)

The specific kinetic energy for the size class α is

Eα ∼ ϕαυ
2
α ∼ ϕαΩ

2
αa

2
α. (47)

The energy transfer within the active volume still takes
place over a time tα ∼ Ω−1α .Hence the rate of energy
transfer for the size class α is

�α ∼ Eα/tα ∼ ϕαΩ
3
αa

2
α. (48)

For conservation of energy, �α must again equal �ϕ. (The
correct relationship is �α = �ϕ rather than �α = �ϕα, since
the dissipation occurs by hypothesis within the active re-
gion. If the eddies are space-filling within the active re-
gion, then we would have �α = �.) Therefore, solving (48)
for Ωα, we have

Ωα = c2Ω (ϕα/ϕ)
−1/3 a−2/3α �1/3 = c2Ωa

λ/3
1 a−(2+λ)/3α �1/3.

(49)

Eq. (49) implies that the eddies, in comparison to the non-
intermittent formulation, the eddies must spin faster as
the size decreases. Substituting (49) into (46) yields

E(k) =
32π4ϕc2Ω�

2/3k4a
−λ/3
1

3

N

α=1

a(17+λ)/3α G2(kaα).

(50)
Substituting with (24) and taking the limit of a continuous
distribution of size classes, we have

E(k) ' 32π4ϕc2Ω�
2/3k−5/3 (ka1)

−λ/3

3μ
(51)

×
ka1

kaN

dy y(14+λ)/3G2 (y) . (52)

This is a generalization of (27) to intermittent turbulence.
When λ = 0, (51) reduces to (27). In the inertial sub-
range, where the integral is approximately constant, it
agrees with (3.8) in Frisch et al. (1976).

The method for constructing the fractal active volume
described in preceding analysis leaves out a lot of prac-
tical details that are needed to synthesize a random field
with QWs. For example, it assumed that the turbulent re-
gions are either active or completely inactive. Since the
QWs taper off gradually, completely inactive regions can-
not be created. Also, Frisch et al. (1976) assume the
size classes exactly fill the active region, which makes
it unclear how to handle a region composed of a frac-
tional number of eddies. Most importantly, the formula-
tion in this paper has random QW positions; therefore, it
is unclear how to position the QWs so they are contained
within the active region.

To resolve some of the problems, we adopt here
the following simplified procedure. To create fractal ac-
tive regions, we generate the active volume by removing
cubes of size a3α at each stage until the desired Vα is ob-
tained. The eddy centers are randomly positioned any-
where within this active region. As a result, much of the
eddy may actually be outside of the active volume. Since
this process does not correspond directly to the one de-
scribed above, the relationship between λ and the fractal
dimension Df cannot be expected to be the same.

Figure 2 is an example realization of a QW wavelet
velocity field including intermittency (λ = 0.5). Except
for the intermittency, it was created in the same manner
as Figure 1. The intermittent version has a considerably
smoother appearance outside of the regions of intense
turbulent activity.

6. CONCLUSION

Quasi-wavelets provide a method for constructing
random fields from spatially compact functions that have
a resemblence to actual turbulent eddies. Their spatial
compactness is very well suited to the problem of con-
structing an intermittent turbulence field. In particular, we
have shown in this paper that intermittent turbulence de-
scribed by the well known beta model can be readily con-
structed. We have also shown that constant-flux layers,



x (m)

y 
(m

)

 

 

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

v z (
m

/s
)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIG. 2: Same as Figure 1, except that intermittency
(λ = 0.2) has been included in the QW realization.

such as occur in the atmospheric surface layer, can be
constructed from a scalar/velocity QW model in which the
orientations are correlated.
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