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2.  STOKESIAN PARTICLES COLLISION 1.  INTRODUCTION 
  

The rate of collisions is determined by 
collision kernel that describes the probability of 
collisions between two particles per unit time. It is 
accepted to represent this probability as the product 
of collision probability without hydrodynamic 
interaction (hereafter HDI) between particles and 
collision efficiency that takes into account the 
effects of HDI. The rate of collisions with and 
without HDI is determined by the volume, swept 
(hereafter referred to as SV) by colliding particles 
in their relative motion per unit time 
correspondingly with and without HDI. In this 
study we limit ourselves by the case without HDI. 

Collisions between small non-spherical ice 
crystals determine the formation of larger crystals 
and snowflakes in clouds. Collisions of non-
spherical ice crystals and water drops give rise to 
the formation of graupel in clouds. As a whole, 
particle collisions are the key processes 
determining particles size spectrum evolution. As 
such they are of crucial importance for 
understanding and appropriate description of ice 
microphysics and ice precipitation. 

At the same time investigation of these 
processes is far from being completed due to: a) 
difficulties in estimation of hydrodynamic forces 
and torques acting on particles; b) realistic 
representation of turbulent field, characteristic for 
cloudy conditions. Due to these difficulties there 
are only a few theoretical investigations on 
droplets collisions in a turbulent medium at 
present (e.g. De Almeida, 1976 and 1979; Grover 
and Pruppacher, 1985; Pinsky et al. 1999). All of 
them indicate that turbulence increases collision 
rate of cloud droplets several times. It is natural 
therefore to expect analogous influence of 
atmospheric turbulence on ice crystals. However 
no theoretical investigations on ice crystals 
collisions were reported in literature up to now 
(Pruppaher and Klett, 1997). 

For turbulent field representation an approach, 
elaborated by Pinsky et al. (2004, 2005), was 
employed. According to this approach, turbulent 
field is represented by a set of non-correlated 
samples of turbulent field. Each sample (hereafter, 
elementary volume) can be assigned to a certain 
point of a turbulent flow at a certain time moment. 
The scales of elementary volume are determined as 
those wit in which Lagrangian acceleration of air 
velocity,

h
A , and tensor of velocity strains, S, can 

be considered uniform in space and invariable in 
time. As was shown by Pinsky et al. (2005), these 
scales are of order Kolmogorov length and time 
scales. Similar statistical representation of a 
turbulent flow as a set of small volumes (packets) 
within which energy dissipation rate, velocity 
shears and particle concentration were assumed 
uniform was used recently by Koch and Pope 
(2002). 

The case of small Stokes number, or 
Stokesian, particles simplifies significantly the 
collision problem. In this study we represent a 
novel approach for evaluation of Stokesian non-
spherical particles collision statistics together 
with preliminary results. Prolate and oblate 
spheroids were chosen as an example of non-
spherical particles. Strongly elongated spheroids 
can model needle-like ice crystals, while oblate 
spheroids – plate-like hexagonal prism, one of the 
most abundant ice crystals form. 

Let us introduce the volume, within which 
HDI is important. Simple scale considerations 
show that the scales of HDI volume lie within 
elementary volume for mass equivalent radius 
1 2eqm r m0µ µ≤ ≤ . This is the particles size 
range for which one can regard collisions as 
occurring at constant A  and S. 

 
 
 To simulate large number o  collisions long 

series (50.000) of S and 
f
A  pairs (field 

realizations) were produced. These pairs were 
generated by means of statistical generators, 
reproducing Largangian accelerations and shears 
with probability distribution functions (PDFs) 
found   in   cloud   measurements   and   laboratory  
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experiments for high Reynolds numbers 
(Antonia et al., 1981; Belin et al., 1997; Hill and 
Thoroddsen, 1997; Kholmyansky et al., 2001; 
La Porta et al., 2001; Voth et al., 2002). 

Let’s define Stokes number to be t fSt τ τ≡ . 

Here 310t sτ −≈  characterizes particle adjustment 
time to fluid translation, and 1 Shfτ ≈  is a 
characteristic time of fluid velocity variation (Sh - 
characteristic shear). The truncation error is of 
order ( , k being first neglected term in (8). For 
example, omitting terms of order i  for 

)kSt

0.04
2≥

St =  (corresponds to 20 meqr µ= ) one 

obtains truncation error less then 0. . The 
important consequences of (8) are that 

2%
'v  is 

defined basically by the Lagrangian acceleration of 
the fluid and increases approximately as a2. Both 
these conclusions imply . 1St

Another important feature of our approach 
is that we approximate particle motion in 
elementary volumes with the help of 
approximate analytical solution. This solution 
allows obtaining particle orientation and 
velocities (translation and angular) probability 
distribution functions (PDFs). This is a 
generalization of an approach used by Pinsky et 
al. (2005) for investigation of small cloud 
droplets collisions. The knowledge on these 
PDFs allows in its turn calculation of SV as the 
integral over all possible collision variants 
properly weighted. 

Estimation of SV for generated series of A  
and S produce SV series. Mean SV was 
estimated by averaging over these series. SV 
PDF was obtained by calculation series 
histograms. 

 
 
3.2  Angular velocity 
 

The approximate solution is: 
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3. ANALYTICAL SOLUTION 

ξ  is the spheroid angular velocity in the non-

inertial limit. Matrix  and vectors wK ξ  and  

{ }iR  are all functions of spheroid orientation.  

Consequently spheroid angular velocity is also 
determined by orientation. A ain there exists 
recurrent relation for vectors {

g

}iR

)k

. The truncation 

error in (9) scales again as ( . St

 
Equations, describing spheroid motion in 

the creeping flow approximation, are (for, 
example, Broday et al., 1998): 

3( ) (1 )f

p

dvm K u v mg
dt

ρ
ρ

= − − − ,          (6) e

( )d w dII w Q u
dt dt

+ = ℜ× −Ωw .              (7) 

u

m

 is a fluid velocity; K, Q and  are tensors of 
particle resistance to translation and rotation. 
These equations imply: a) small particle 
Reynolds number approximation; b) assumption 
on constant S. We apply the method of 
successive approximations (Korn and Korn, 
1968), using solution in the non-inertial limit 
( ) as a starting point. 

Ω

0→

If exact solutions of (6) and (7) are bounded 
(stable behavior), then any arbitrary initial velocity 
approaches quickly (on time scale of tτ ) to a 
solution, shown schematically in fig. 1 by a dashed 
line (limit solution). Solutions (8) and (9) do not 
describe transient processes but converge directly 
to this solution. We therefore refer to them as limit 
solutions. Main inaccuracy when using (8) and (9) 
arises rather due to the difference between limit 
and exact solutions than due to truncation 
procedure. This difference however is small for 
small St. If exact solutions of (6) and (7) are 
unbounded (unstable behavior), solutions (8) and 
(9) diverge. It means that they can not describe the 
so-called sling effects. Such events however are 
rare for Stokesian particles in atmosphere (Pinsky 
et al., 2005). 

 
 

3.1 Translation velocity 
 
The approximate solution is: 

( ) ( )
1

v i
i

v u K e G e
∞

=
= + ⋅∑ ,              (8)  

Matrix  and vectors {vK }iG  are functions of 

spheroid orientation, . Consequently spheroid 
velocity deviation from air velocity, ,  
is  also function of its orientation only. This 
solution provides relatively simple recurrent 
relation for vectors {

e
'v v= − u

}iG . 

To check solutions (8) and (9), we compared 
them with numerical solution of (6) and (7) in 
several situations: a) simple shear flow; b) 
Poiseuille flow; c) realization of turbulent filed. In 
all the cases the difference did not exceed 0.1%. 
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Fig. 1 Stable and unstable velocity scenarios. 
Limit solution is shown by dashed line. 

Fig. 2 SV PDFs for oblate spheroids with  eqr
15 mµ  and 10 mµ   
  
  
 4.   RESULTS 
-  mean SV for spheroids is higher than that for 

droplets  of  the  same mass; the effect enlarges 
with aspect ratio deviation from unity, being 
more pronounced in case of elongated spheroids. 

 
We calculated mean SV and SV PDF for a 

wide range of turbulent field parameters: 
 and 3 35 10 Re 20 10λ× ≤ ≤ × 0.002 0.1ε≤ ≤  

( Reλ - Taylor scale based Reynolds number; ε  - 
energy dissipation rate). This range covers cloudy 
turbulence from stratiform up to deep cumulus 
clouds. The calculations were performed for 
spheroids of different sizes (1 20eqm r mµ µ≤ ≤

20
) 

and different aspect ratios ( 0.05 β≤ ≤ ). Here 
we present some of the results.  

- influence of turbulence on mean SV becomes 
especially large for small particles (of order 
1 mµ ) and particles of similar size. 

Fig. 2 shows SV PDF (histogram) for pair of 
oblate spheroids with radii 15 mµ  and 10 mµ  

( , ). Fig. 3 shows 
mean SV for the pair of prolate spheroids with 
equivalent radii 15

3Re 20 10λ = × 2 3m s−

m

0.05ε =

µ  and 10 mµ  

( ). Fig 4 shows the same results 
for oblate spheroids of the same mass. SV is 
normalized everywhere by SV in a pure gravity 
case. Figures 5 and 6 give analogous results for 
spheroids with equivalent radii 2

3Re 20 10λ = ×

mµ  and 1 mµ . 
Fig. 7 and 8 show SV for prolate and oblate 
spheroids of similar size: 1 15r meq µ= , 

2 15eqr m eqrµ δ=
320 10×

− . Reynolds number in this 

case is , dissipation rate – 0.05 m s2 3− . 

eqrδ  varies between 0.2 mµ  and 1 mµ . The 
results manifest that: 

The proposed method incorporates three main 
approximations: a) small particle Reynolds number 
approximation; b) assumption on constant  and S 
during collision; c) approximation of motion 
equations solution by means of the limit solution. 
While it is not possible to evaluate error due to the 
second approximation, one can check the validity 
of the first and third approximations. 

A

To check small Reynolds approximation we 
evaluated characteristic value of spheroid Re in all 
50.000 realizations and calculated the part, in 
which Re turned out to be larger than 0.1. While 
for 15eqr mµ=  spheroid accuracy turned out to be 

sufficient in all cases, for 20eqr mµ=  error 
becomes large for intensive turbulent field. For 

2r meq µ=  all realizations resulted in . Re < 0.1

To check the third approximation we 
compared numerical and limit solutions and 
calculated the part of realizations, in which this 
difference exceeded 5%. Again 15eqr mµ=  
spheroid      provided      sufficient      accuracy. 
Accuracy for r 20eq mµ=  spheroid was sufficient 
in the case of oblate spheroid, but in the case of 
elongated form and intensive turbulent field it 
became low. For 2eqr mµ=  spheroid accuracy 
was again excellent in all cases. 

-  SV PDF differs significantly from Gaussian 
due to enhanced large SV part of distribution. 

-  turbulence magnifies mean SV for several tenth  
of  percent  comparing  with  the  pure gravity 
case; the effect enlarges with flow intensity. 
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Fig. 3  Mean SV for the pair of prolate spheroids 
(  are 15eqr mµ  and 10 mµ ) as a function of 
dissipation rate. 
 

 
 

 
Fig. 4  The same as in fig. 3 for oblate spheroids 
of the same masses. 

 
 
 

 
Fig. 5 The same as in fig. 3 for prolate spheroids  
with  eqr 2 mµ  and 1 mµ . 

 

 
Fig. 6 The same as in fig. 3 for oblate spheroids 
with  eqr 2 mµ  and 1 mµ . 

 
 
 
 

 
Fig. 7 Mean SV for the pair of prolate spheroids 
(  are 15eqr mµ  and 15 eqm rµ δ− ) as a function of 

eqrδ . 
 

 
Fig. 8 The same as in fig. 7 for oblate spheroids of 
the same masses. 
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grant 173/03) and The Israel Ministry of Science 
(German-Israel collaboration in Water Resources, 
grant WT 040). 

As a whole, together with the restriction due 
to assumption on constant field parameters, 

20eqr mµ≈  may be regarded as the upper limit 
for the validity of the method proposed. It is 
worthy noting, however, that the errors due to 
both small Reynolds and employment of limit 
solution reduce quickly with decreasing ε  and 
for , for example, main limitation 
comes from the assumption on constant 

2 3m s−0.01ε =
A  and 

S. 
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