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1. Motivation

Clustering of droplets in cloud due to turbulence is be-
lieved to have important consequences for warm rain for-
mation (1), yet a detailed understanding is still lacking.
To study the dependence of inertial particle clustering on
turbulence parameters we have investigated the spatial
distribution of particles in laboratory turbulence. The lab-
oratory has the advantage of allowing user-control of tur-
bulent flow and droplet properties, and it provides statisti-
cally stationary turbulence where robust, long-time aver-
aging can be accomplished. The facility used is unique in
providing nearly-homogeneous, isotropic turbulence, at
Reynolds numbers approaching geophysical Reynolds
numbers.

Physically, inertial clustering can be understood as
the result of particles being centrifuged out of turbulent
vortices and thus congregating in regions of high strain
(2; 3; 4). The clustering is therefore significant at dissipa-
tion scales and below because it is in this range that tur-
bulent vorticity and accelerations are strongest (5; 6). It
should be noted, however, that alternate interpretations
and approaches exist (7; 8; 9), adding impetus to the
need for experimental data capable of elucidating mech-
anisms and constraining theory. To that end, it is the
purpose of this letter to describe an experimental study
of inertial clustering and its dependence on particle size
and turbulence conditions.
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Suitable quantification of clustering is provided by the
particle pair correlation function η(r) (4; 10), whose mag-
nitude characterizes the strength of clustering at scale r.
Intuition on the properties of η(r) can be gain by exam-
ining how it is calculated from experiment:

η(r) =
〈ρp(r)〉

ρp
− 1 (1)

where 〈ρp(r)〉 is the particle density at distance r rel-
ative to each particle averaged over all particles; ρp

is the global particle density. Previous studies (6; 11;
12), suggest that under ideal conditions (homogenous
and isotropic turbulence, single-size particle population,
particle-fluid coupling following Stokes’s law, dilute parti-
cle loading, and negligible role of gravity) η(r) satisfies a
simple power law:

η(r) ∝ (r/rk)−f(St) (2)

where rk is the Kolmogorov length scale (loosely, the
size of the smallest turbulent eddies), f(St) > 0 and
increases monotonically with St, the Stokes number,
which characterizes the particle inertia. In this context,
St is the ratio of the particle inertial response time τd

to the Kolmogorov time τk (coherence time scale for the
smallest eddies) (13):

St =
τd
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=
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Figure 1: Experimental setup, including wind tunnel with
active grid, spray nozzles, and the phase Doppler inter-
ferometer for measuring droplet arrival time, size, and
longitudinal speed.

where ρd is the droplet mass density, d is the droplet di-
ameter, and the Kolmogorov microscale rk = (ν3/ε) de-
pends on the kinematic viscosity ν of the fluid (air) and
the turbulent kinetic energy dissipation rate ε.

2. Experiment Description

The experimental setup, shown in Fig. 1, consists of a
wind tunnel with well-characterized turbulence, sprays
for particle generation, and a particle detector. Homoge-
nous and nearly isotropic turbulent flow is generated by a
motorized ‘active grid’ capable of achieving Taylor-scale
Reynolds number (Rλ) as high as 750. Detailed descrip-
tion of the wind tunnel and active grid can be found in
(14). Water droplets are introduced via four spray noz-
zles, with the resulting size distribution being quite broad
(d̄ = 22 µm, σd = 13 µm). Downstream, a Phase Doppler
Interferometer (PDI) (15) simultaneously measures the
diameter (di), downstream speed (vi), and arrival time
(ti) of any droplets that traverse its view volume (which
has a linear dimension of roughly 150 µm). The PDI sys-
tem was built and calibrated by Artium Technologies, Inc.
and is designed for in situ measurement, such that the in-
strument does not disturb the flow through the measure-
ment volume when aligned parallel to the mean flow. To
characterize the turbulence, the wind tunnel and active
grid are run with the sprays off, and air velocity statis-
tics are measured with a hot-wire anemometer (HWA).
The results of these ‘dry’ measurements are applicable
to the experiments with droplets because of the small
liquid-to-air volume ratio (< 2.3 × 10−5) and mass ratio

Table 1: Experiment flow parameters.
Experiment 3m20Hz 3m30Hz 5m20Hz 5m30Hz
Rλ 515 664 443 590
ε (m2s−3) 1.56 5.36 0.556 2.01
U (ms−1) 4.69 6.78 4.59 6.81
u (ms−1) 0.80 1.23 0.57 0.91
rk (µm) 210 154 272 197

(< 4.8 × 10−2), where flow modulation by the droplets
is negligible (16). Comparison of velocity statistics ob-
tained by PDI and HWA under identical flow conditions
confirm this assumption.

The PDI probe is stationed far enough downstream
(X = 3 and 5 m) such that the droplets (except the
largest drops, which are not included in this study) have
ample interaction time with the turbulence to achieve
equilibrium dynamics. This follows from the fact that the
transit time of droplets is much larger than Kolmogorov
time scale (all results shown here are for St . 1 so τk

is a conservative bound). For the largest drops with St
sufficiently greater than unity, the above reasoning does
not apply since such droplets tend not to respond to the
smallest eddies because of their relatively short coher-
ence time. The behavior of these large drops is still an
open question, and future work will address the statis-
tics of St ≫ 1 particles, and the time required for such
particles to lose memory of their initial conditions.

To obtain the droplet spatial distribution (xi) needed
for the evaluation of η(r) (using equation (1)), we adopt
‘Taylor’s hypothesis’ (13) which states that when there
is large mean flow, the small-scale features of the tur-
bulence experience negligible evolution as they are ad-
vected passed a fixed measurement point. For our pur-
poses, this translates to xi = tiU , with U ≡ vi being the
mean speed of the flow (note that errors resulting from
the use of Taylor’s hypothesis are negligible compared to
uncertainties due to counting statistics, to be discussed
later). Table 1 lists the flow parameters of the various
experiments carried out in the wind tunnel: the exper-
iments differ in Rλ and ε, and therefore have different
rk. Each experiment is referred to by a name based on
the distance downstream from the active grid (in meters)
where measurements are taken and the speed of the fan
(in Hz) that drives the wind tunnel. Within each experi-
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Figure 2: (color online) η(r) versus r̂ (≡ r/rk) with error
bars of 2ση(r), and with η(r) parameterized by St from
experiment 3m30Hz. Each line is η(r) calculated from
droplets within a particular St range with the order from
bottom to top corresponding to successively larger St.

ment, the dependence of clustering on particle inertia is
studied by selecting droplets conditioned on their Stokes
number St and then evaluating η(r) for that subset of
droplets. In practice, a range of Stokes numbers is used
such that acceptable counting statistics are obtained.

3. Inertial Clustering Results

The essential experimental results on particle clustering
are presented in Figs. 2 and 3, which depict the depen-
dence of η(r) on r̂ ≡ r/rk for various flow conditions;
Note that in light of Eq. 2 the data are plotted on a log-log
scale. Fig. 2 illustrates how η(r) changes with St within
a single experiment (3m30Hz). We note that strong clus-
tering is mainly limited to scales r̂ . 30 and that cluster-
ing is stronger for droplets of larger St. Onset of cluster-
ing in the dissipation subrange, and monotonic increase
of clustering with St is consistent with theories valid for
St < 1 (6; 11). In the inertial subrange, 50 . r̂ . 300,
the correlation functions tend to a plateau signifying rel-
atively weak clustering, and then fall off again at larger

r̂. This inertial-subrange behavior typifies correlations
arising from mixing of a passive scalar by turbulence
(e.g., correlation function scaling as 1 − (r/l)2/3 (17)).
Essentially, mixing progresses from large-scale inhomo-
geneities in the droplet spatial distribution induced by the
spray injection that are subsequently stretched and dis-
torted in the turbulent cascade, as the droplets are ad-
vected downstream. Consequently, we expect and ob-
serve (not shown here) that this plateau region is lower in
magnitude for experiments with X = 5 m, where the mix-
ing is more complete, relative to X = 3 m. Finally, while
this study is focussed on St . 1, a curve for 1.1 < St < 4
is included in panel a) to illustrate an intriguing possibil-
ity: It can be seen that the onset of inertial clustering (sig-
nified by the sudden change in slope near the dissipation
range) occurs at larger r̂ for St > 1. This hints at the pos-
sibility that droplets with St > 1 may exhibit strong iner-
tial clustering, contrary to computational and theoretical
findings (9; 12), and experiments at low Reynolds num-
bers (18). A possible reason is that the particles tend to
form clusters of larger size, induced by inertial-subrange
eddies of size a for which Sta = τd/τa ≈ 1 is satis-
fied. Note that a similar phenomenon has been observed
in simulations of two-dimensional turbulence (7). This
phenomenon is unlikely to be appreciable in turbulence
simulations and experiments with relatively low Reynolds
numbers and, consequently, a limited range of scales in
the inertial subrange (given that Rλ ∼ (l/rk)2/3).

The uncertainty in η(r) is estimated by assuming
Poisson statistics for counting of droplets in the range
[r, r + △r] relative to each droplet. This yields ση(r) =
√

〈η(r) + 1〉/Nρp△r, where N is the total number of
droplets present. 〈.〉 signifies ensemble average, but
the calculated value of η(r) is used as an estimator for
this purpose. Other sources of error are negligible com-
pared to this counting uncertainty, as discussed earlier.
We also note that these measurements were made in
one spatial dimension, but inertial clustering is inherently
three dimensional. It has been shown that the resulting
spatial averaging can suppress the true clustering sig-
nature (19), but this is not a significant problem in these
experiments because the averaging scale is always less
than the correlation scale r.

Droplets with different diameters but equal Stokes
numbers from the various experiments are compared in
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Figure 3: (color online) Stokes-similarity results shown
in two panels for clarity. a) St-similarity for droplets
with St=0-0.4 (circles) and St=0.7-1.1 (triangles). Plots
for other St groups from Fig. 2, 3m30Hz, are shown in
the background for comparison. The marker colors rep-
resent η(r) from different experiments (blue=3m20Hz,
green=3m30Hz, red=5m20Hz, cyan=5m30Hz). b) St-
similarity for St=0.4-0.7 (circles) and St=1.1.-1.4 (trian-
gles).

Fig. 3, demonstrating ‘Stokes similarity’ as expected from
scaling arguments for inertial clustering. The η(r) values
for the same St range coincide to within the experimen-
tal error even though each is obtained from different flow
conditions and droplet sizes. This is, to the knowledge
of the authors, the first experimental report of such St-
similarity in turbulence. The plots in Fig. 3 are obtained
by re-normalizing each η(r) such that they coincide in
the inertial subrange (the plateau region). Conceptu-
ally, the fine-scale correlations due to droplet inertia are
‘superimposed’ on the larger-scale correlations resulting
from traditional turbulent (scalar) mixing — and therefore
comparison of fine-scale features requires that the large
scales first be matched. Large-scale correlations, to first
order, lead to a multiplicative constant on the magnitude
of η(r) for r smaller than the correlation scale, thus the
re-normalization is achieved by multiplying a constant
factor to each η(r). The effect is most pronounced when
comparing results from 3 m and 5 m because the lat-
ter has mixed more thoroughly. For example, we found
that η(r) curves corresponding to 5 m are consistently
diminished by a constant factor from their 3 m counter-
parts. Similar variations are also observed among some
experiments at the same X due to other variabilities in
the injecting sprays and the mixing process.

In some experiments we observe signs of departure
from Stokes similarity, as evident in panel b) for one set
of triangular markers for 0.7 < St < 1.1. For that set
of experimental conditions we find that η(r) has signif-
icantly lower values at the smallest scale resolvable by
our instrument, as compared to the other experiments
with the same St range. Although the data with St > 1
are prone to uncertainties in counting statistics and the
question of droplet equilibration, we find that Stokes sim-
ilarity is less robust for St > 1. This phenomenon is a
focal point of future experiments.

An important observation from Fig. 3 is the apparent
power-law dependence of η(r) on spatial scale r̂. As dis-
cussed in the introductory section, this is consistent with
theoretical expectations for St . 1 (see Eqtn. 2). Within
the limited resolvable scales, the correlation functions
appear to be linear on the log-log scale, with slope in-
creasing monotonically with St, also qualitatively consis-
tent with theory (6; 11). (For St & 1 there is an apparent
change in slope near r̂ ≈ 3 that suggests deviation from
the St . 1 theory.) Quantitative comparison between the
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experimental results and computational and theoretical
findings is troublesome because idealized studies treat
all droplets as having the same St. In real experiments
narrow size bins are very difficult to achieve with reason-
able counting statistics, and therefore broad St ranges
must be used. However, when the data presented in
Figs. 2 and 3 are processed with progressively narrower
St bins (not shown here), an unambiguous increase in
the magnitude of η(r) at fine scales is observed. Indeed,
this observation is further evidence that the fine-scale
clustering is due to droplet inertia: theory suggests that
droplets respond to the turbulent flow such that the max-
imum spatial correlation is between droplets of identical
St. For droplets with different St the power-law expo-
nent is reduced, and when the difference is too large the
power-law dependence is lost altogether. A goal of sub-
sequent experiments, therefore, will be to close this gap
between theory and experiment, at least in part by in-
creasing counting statistics.

The experiments described here provide strong sup-
port for the inertial clustering mechanism, and are
in qualitative agreement with theoretical predictions.
Briefly, clustering distinct from that expected for a pas-
sive scalar constituent is observed at dissipative scales,
where fluid acceleration and vorticity reach a maximum.
The magnitude of the clustering increases monotonically
with droplet St, which characterizes coupling between
the particles and the fluid. Finally, under distinct flow
conditions and with varying droplet sizes, the dissipation-
range clustering is observed to exhibit Stokes similarity.
These experimental results lead naturally to several ad-
ditional aspects of the problem that will require additional
measurements and analysis. We conclude with a brief
discussion of problems for future work. Much remains to
be studies regarding the behavior of drops with St > 1,
and this will require improved counting statistics to re-
duce counting uncertainties, and a thorough investiga-
tion of drop equilibration times. The effects of gravity
have not been considered here because of the large ε
for all flows; but as the energy dissipation rate is de-
creased, a second dimensionless parameter, the ratio
of Kolmogorov and gravitational settling speeds, is ex-
pected to play a role. The dependence of inertial clus-
tering on turbulence Reynolds number is an open ques-
tion (20), and has important implications for geophysical
problems; improved counting statistics and additional ex-

periments should allow for further investigation of possi-
ble dependence on Reλ.

Acknowledgement This work was supported by the
U.S. National Science Foundation (grant ATM-0320953)
and by the Max Planck Institute for Dynamics and Self-
Organization. We are indebted to E. Bodenschatz, L.
R. Collins, J. P. Fugal, A. B. Kostinski, D. Lamb, and
M. Larsen for insightful comments and suggestions. We
thank J. Small, W. Bachalo and the staff at Artium Tech-
nologies for technical assistance with the PDI instru-
ment.

References

[1] M. Pinsky and A. Khain, Quart. J. Roy. Meteor. Soc.
123, 165 (1997).

[2] M. R. Maxey, J. Fluid Mech. 174, 441 (1987).

[3] J. K. Eaton and J. R. Fessler, Int. J. Multiphase Flow
20, 169 (1994).

[4] S. Sundaram and L. R. Collins, J. Fluid Mech. 335,
75 (1997).

[5] L. P. Wang and M. R. Maxey, J. Fluid Mech. 256, 27
(1993).

[6] J. Chun, D. L. Koch, S. L. Rani, A. Ahluwalia, and L.
R. Collins et al., J. Fluid Mech. 536, 219 (2005).

[7] L. Chen, S. Goto, and J. C. Vassilicos, J. Fluid
Mech. 553, 143 (2006).

[8] K. Duncan, B. Mehlig, S. Östlund, and M. Wilkinson,
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