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1. INTRODUCTION

The stochastic collection (SCE) and the
stochastic collection/breakup (SBE) equations describe
the temporal change of the mean number of particles of
mass X. These equations give a deterministic description
of the kinetics of the suspension averaged over some
volume of fluid. For collision/coalescence the population
balance equation (PBE) is the well known SCE:
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This equation, for a given initial spectrum
f(x,0) may be solved for f(x,t) forall t>0.In (1), the

coagulation kernel K(x,x ) contains the probability of

coalescence of two drops of masses X, X;.

The SCE gives the time rate of change of the
average number of x droplets as the difference of two
terms, the first term describes the average rate of
production of x droplets due to coalescence between
pairs of drops whose masses sum x, and the second
term describes the average rate of depletion of x
droplets due to their coalescences with other droplets.
Nevertheless, as was pointed out by Gillespie (1975),
the SCE is only an approximate time-evolution equation

for f(x,t) because the numbers of droplets of different

masses are statistically correlated, and the SCE
equation contains no definite information concerning the
size of the fluctuations about the average, which would
be observed in independent realizations of the
coalescence stochastic process.

The combined equation for the evolution of

droplet spectra through stochastic collection and
breakup can be written in the form:
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The first term in this equation describes the
evolution of an average spectrum of drops due to the
collision-collision coalescence process, and is calculated
according to (1). The second term represents the time
evolution of a spectrum of drops due to collision-induced
breakup and is calculated with the equation:
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The breakup equation is written in the form
proposed by Gillespie and List (1976). The collection and
breakup kernels, C(x,%) and B(xX) are calculate

according to:
C(xx)=K(xx)E(xx) (4)

B(x%)=K(xx)[1-E(x%)] (5)
here K(x, xl) is the collision kernel for a drop of mass x

and one of mass x;, E(xX) is the coalescence

efficiency for x and x; Function P(m;x) characterizes

the distribution of fragments.

As in the collision-coalescence case, the SBE
describes the evolution of an average drop spectrum.
But actually, when raindrops collide, a distribution of
fragments is produced. While solving the SBE these
distributions are commonly parameterized using the
quasi-stochastic assumption. The results of collisions
are parameterized using a deterministic formula based
on the averaged of a series of collisions. The use of this
approximation is appropriate when there are sufficient
raindrop interactions to justify the use of such an
average.

A more realistic approach will be based on the
generation of independent realizations of the collision-
induced breakup process. By doing this, after a collision,
a distribution of fragments is generated randomly. Within
this framework, the distribution of fragments is a
probability density functions, and the average number
concentration is obtained after the averaging process for
a sufficiently large number of realizations of the
stochastic process.

In our report, the stochastic algorithm of
Gillespie (1976) for chemical reactions was adopted



instead of the algorithm previously elaborated for droplet
populations (Gillespie, 1975). This algorithm was
reformulated to simulate the kinetic behaviour of
aggregating systems by Laurenzi and Diamond (1999).

2. THE MONTE CARLO ALGORITHM

In our report, the stochastic algorithm of
Gillespie (1976) for chemical reactions was adopted
instead of the algorithm previously elaborated for droplet
populations (Gillespie, 1975). This algorithm was
reformulated to simulate the kinetic behaviour of
aggregating systems by Laurenzi and Diamond (1999).
In Laurenzi and Diamond (1999) a species are defined
as a type of aggregate with a specific size and
composition, in our specific case, species are defined as
droplets of specific size.

Within this framework, there is a unique index u
for each pair of droplets /, j that may react (collide). For a

system with N  species (%, S, N )

N(N+1) . wonllicinn®
pe—0—". The set {u} defines the total “collision

space, and is equal to the total number of possible
interactions (collisions). With this set the reaction

probability ~ density functon  P(z,x) can be
determined.This quantity is defined by

P(r,u)dz = Probability that at time the
next reaction (collision) in volume V will occur in the
infinitesimal interval (t+r, t+r+dr)and will be a u

reaction. In Gillespie (1976) this probability density
function has been derived for a system of N species as
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Here yeT . The functions aﬂ are calculated

according to
a(, ) :VflK(i, )X Xdt =Pr{ Probability that two

unlike particles i and j with populations (number of
particles) X; and X; will collide within the inminent
time interval} (7)

. S X (X -1) o
a(i,i)=V K(|,|)Tdt Pr{Probability

that two particles of the same species i with population
(number of particles) X; collide within the inminent time
interval} (8)

The reaction probability density function is the
basis of the Monte Carlo algorithm. For calculating the
evolution of the system, two random numbers 1 and y
must be generated. Equation (11) leads directly to the
answers of the aforementioned questions. First, what is
the probability distribution for times?. Summing

P(z,u)dz over all y (all possible collisions, (reactions))

results in
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The probability function for reactions can be
obtained in a similar way, by integrating the pdf

P(z,u)dr overall 7 from 0 to oOresults in

Py () =2 (13)

Equation (13) gives the probability of a
particular reaction u given an interval (r, 7+dr). Equation
(12) shows that the probability of a reaction (collision) in
time follows an exponential distribution, a characteristic
of a process in which events occurs randomly in time.

In order to obtain a random pair (1, p),

according to the probability density function P(z,u) we

first generate a random number r; distributed uniformly
in the interval [0,1], then, the inversion method to obtain
random numbers is applied. In the inversion method this
random number is taken as the probability of a reaction

in the time period 1 according to R (7). This probability
is obtained by integrating R (7)from Oto r:
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Considering that 1-ry=ry is also a uniformly

distributed random number in the interval [0,1], then the
time 1 can be calculated from (14) in the form:

,=1.n[ﬂ (15)
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The reaction number p is calculated similarly. A
random number r, uniformly distributed in the interval

[0.1] is generated. Then the pdf P, (v) (13) must be

integrated over v until the addition of the y probability
exceeds the random number r, The inequality to obtain
the reaction index u has the form (Gillespie, 1976)
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The former results lead to the Gillespie’s direct
algorithm:
1) Initialize (set initial numbers of species, set t=0,
set stopping criteria).
2) Calculate the function a, for all .

rl =
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3) Choose 1 according to the exponential
distribution R (7)=aexp(-ar)dr

4) Calculate p according to the distribution

a
Pz(#)Zf-

5) Change the numbers of species to reflect the
execution of a reaction.
6) If stopping criteria are not met, go to step 2.

2.1 TREATMENT OF THE COLLISION-INDUCED
BREAKUP

In the expressions (7) and (8), K(i,j) is the
collision kernel and V is the cloud volume. It is assumed
that the two events, denoted by C (collision coalescence)
and B (breakup) are mutually exclusive, i.e., that
whatever does not coalesce results in breakup. Then the
probability of “C” or “B” is just the sum of the individual
probabilities.

P(CUB) = P(C) + P(B) 9)

Then, the probability that two unlike particles i
and j will collide within the inminent time interval can be
decomposed in the sum:

a(i, ) =VC(, )X X;dt+VIB(i, j) X X; (10)
where the first term is the probability of collection and the
second the breakup probability. The collection and
breakup kernels are calculated according to (4) and (5).
In general, the coalescence efficiency E(i, j) is based

on the sizes of the colliding drops and the collisional
kinetic energy (Low and List, 1982a). The choice
between coalescence and breakup can be defined from
expression (16), by noting that
a,=ay,+py

with

a, =VIC(i, ) X X jdt
and

B =V B, ))X; X jdt

Then if B, causes r,a to be exceeded in

equation (16) then the event to come will be breakup,
otherwise, the event will be a coalescence.

Is the event to come is a collisional breakup
event, then it is calculated by randomly generating the
distribution of fragments with the aid of the function
P(m,x, %) .

Within the stochastic framework, the fragment
distribution P(m,x,x,) can be interpreted as a probability

density function. After a collision of droplets with masses
x and x; the satellite drops are generated as random
numbers. The random generation process stops when
the total mass of satellite drops exceeds the total mass
of the colliding droplets. The final distribution is obtained
by relocating the fragments in the bins according to its
mass.

Feingold et al. (1988) found an analytical
solution of the SBE equation with a constant breakup

kernel and by choosing a fragment distribution of the
form:

P(M;x, %) = 7% (X + X ) exp(~ym) (11)

with y:n% where N and M, are the
0

drop number concentration and liquid water content of
the initial distribution. For the drop number concentration
they found the time evolution:
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In this case, the fragment distribution can be
interpreted as an exponential probability density function.
After a collision of droplets with masses x and x; the
satellite drops are generated as exponentially distributed
random numbers. The performance of the algorithm can
be checked by a direct comparison with the analytical
solution (12).

N(t) = (12)

3. SIMULATION RESULTS

For pure coalescence, the results from the
Monte Carlo algorithm are the averages over 1000
realizations of the stochastic process. For monodisperse
initial conditions, we consider a cloud of 1 cm® volume,
initially containing N, droplets of 10 um. These droplets
were placed in bin 1 of the size distribution. Fig.1 shows
a comparison between the Monte Carlo algorithm and an
analytical solutions of the SCE for the contant kernel.
The monodisperse initial distribution was set equal to
Ny=100 cm™. As can be observed simulations, yielded
the same results as the analytical solutions of the SCE.
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Fig. 1. The number of particles averaged over 1000
simulation runs and normalized to the initial number of
particles (Ny=100), versus time is shown by the dashed
line. The results from the analytical solution are shown
by the solid line.



In order to check the algorithm for the
collisional breakup case, the results from the Monte
Carlo are compared with the analytical solution (12).

The Monte Carlo simulation was performed with
a constant breakup kernel with the exponential
distribution (11) for the formed satellite drops. The initial
concentration was 100 cm™ (50 36.8 pm droplets and
50 37 um droplets). The results obtained with the Monte
Carlo algorithm and the analytical solution are shown in
Figure 2. As can be observed, a good correspondence
between the deterministic and the stochastic process is
obtained. A further increase in the number of realizations
for this case is needed in order to reduce the fluctuations
associated with the Monte Carlo algorithm.
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Fig. 2. The results from the analytical solution (12) are
shown by the solid line, versus the Monte Carlo results
averaged over 1000 simulation runs.

4. CONCLUSIONS

The chemical reactions stochastic algorithm
developed by Gillespie (1976) was implemented in order
to calculate the drop growth by collision-coalescence
and collision induced breakup. Within this framework, the
collision-induced breakup is introduced by considering
the collision induced-breakup probabilty as a new
reaction channel. The results obtained with the Monte
Carlo algorithm were compared with the analytical
solutions derived by Scott (1968) for the collision-
coalescence process for a constant kernel. A very good
correspondence between the Monte Carlo and the
deterministic solutions were founded.

For collision-induced breakup, the Monte Carlo
framework was compared with the analytical solutions
derived by Feingold et. al (1988). Although a good
correspondence was obtained, a further increase in the
number of realizations is needed in order to reduce the
random fluctuations inherent to the stochastic process.
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