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1.  INTRODUCTION 
 

The stochastic collection (SCE) and the 
stochastic collection/breakup (SBE) equations describe 
the temporal change of the mean number of  particles of 
mass x. These equations give a deterministic description 
of the kinetics of the suspensión averaged over some 
volume of fluid. For collision/coalescence the population 
balance equation (PBE) is the well known SCE:  
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This equation, for a given initial spectrum 
( ),0f x  may be solved for ( ),f x t  for all 0t > . In (1), the 

coagulation kernel ( )1,K x x  contains the probability of 
coalescence of two drops of masses x, x1.   

The SCE gives the time rate of change of the 
average number of x droplets as the difference of two 
terms, the first term describes the average rate of 
production of x droplets due to coalescence between 
pairs of drops whose masses sum x, and the second 
term describes the average rate of depletion of x 
droplets due to their coalescences with other droplets. 
Nevertheless, as was pointed out by Gillespie (1975), 
the SCE is only an approximate time-evolution equation 
for ( ),f x t  because the numbers of droplets of different 
masses are statistically correlated, and the SCE 
equation contains no definite information concerning the 
size of the fluctuations about the average, which would 
be observed in independent realizations of the 
coalescence stochastic process. 

The combined equation for the evolution of 
droplet spectra through stochastic collection and 
breakup can be written in the form: 
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The first term in this equation describes the 
evolution of an average spectrum of drops due to the 
collision-collision coalescence process, and is calculated 
according to (1). The second term represents the time 
evolution of a spectrum of drops due to collision-induced 
breakup and is calculated with the equation: 
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The breakup equation is written in the form 
proposed by Gillespie and List (1976). The collection and 
breakup kernels, ( )1,C x x  and ( )1,B x x  are calculate 
according to: 

   ( ) ( ) ( )1 1 1, , ,C x x K x x E x x=                  (4) 

 ( ) ( ) ( )1 1 1, , 1 ,B x x K x x E x x⎡ ⎤= −⎣ ⎦           (5) 

here ( )1,K x x  is the collision kernel for a drop of mass x 

and one of mass x1, ( )1,E x x   is the coalescence 

efficiency for x and x1. Function ( );P m x  characterizes 
the distribution of fragments. 

As in the collision-coalescence case, the SBE 
describes the evolution of an average drop spectrum. 
But actually, when raindrops collide, a distribution of 
fragments is produced. While solving the SBE these 
distributions are commonly parameterized using the 
quasi-stochastic assumption. The results of collisions 
are parameterized using a deterministic formula based 
on the averaged of a series of collisions. The use of this 
approximation is appropriate when there are sufficient 
raindrop interactions to justify the use of such an 
average. 

A more realistic approach will be based on  the 
generation of independent realizations of the collision-
induced breakup process. By doing this, after a collision, 
a distribution of fragments is generated randomly. Within 
this framework, the distribution of fragments is a 
probability density functions, and the average number 
concentration is obtained after the averaging process for 
a sufficiently large number of realizations of the 
stochastic process. 

In our report, the stochastic algorithm of 
Gillespie (1976) for chemical reactions was adopted 



 

instead of the algorithm previously elaborated for droplet 
populations (Gillespie, 1975). This algorithm was 
reformulated to simulate the kinetic behaviour of 
aggregating systems by Laurenzi and Diamond (1999).   
  

 
2. THE MONTE CARLO ALGORITHM 
 

In our report, the stochastic algorithm of 
Gillespie (1976) for chemical reactions was adopted 
instead of the algorithm previously elaborated for droplet 
populations (Gillespie, 1975). This algorithm was 
reformulated to simulate the kinetic behaviour of 
aggregating systems by Laurenzi and Diamond (1999).  
In Laurenzi and Diamond (1999) a species are defined 
as a type of aggregate with a specific size and 
composition, in our specific case, species are defined as 
droplets of specific size. 
             Within this framework, there is a unique index µ 
for each pair of droplets i, j that may react (collide). For a 
system with N species ( )1 2,, ... , NS S S  
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space, and is equal to the total number of possible 
interactions (collisions). With this set the reaction 
probability density function ( ),P τ µ  can be 
determined.This quantity is defined by 
                           ( ),P dτ µ τ ≡  Probability that at time the 
next reaction (collision) in volume V will occur in the 
infinitesimal interval ( ),t t dτ τ τ+ + + and will be a µ 
reaction. In Gillespie (1976) this probability density 
function has been derived for a system of N species as  
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according to 
            1( , ) ( , ) i ja i j V K i j X X dt−= =Pr{ Probability that two 
unlike particles i and j with populations (number of  
particles) Xi  and Xj will collide within the inminent                                                                                                     
time interval}                                                                (7) 
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               The reaction probability density function is the 
basis of the Monte Carlo algorithm. For calculating the 
evolution of the system, two random numbers τ and µ 
must be generated. Equation (11) leads directly to the 
answers of the aforementioned questions. First, what is 
the probability distribution for times?. Summing 

( ),P dτ µ τ  over all µ (all possible collisions, (reactions)) 
results in 
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              The probability function for reactions can be 
obtained in a similar  way, by integrating the pdf 
( ),P dτ µ τ  over all τ from 0 to ∞ results in 
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              Equation (13) gives the probability of a 
particular reaction µ given an interval (τ, τ+dτ). Equation 
(12) shows that the probability of a reaction (collision) in 
time follows an exponential distribution, a characteristic 
of a process in which events occurs randomly in time.  
              In order to obtain a random pair (τ, µ), 
according to the probability density function ( ),P τ µ  we 
first generate a random number r1 distributed uniformly 
in the interval [0,1], then, the inversion method to obtain 
random numbers is applied. In the inversion method this 
random number is taken as the probability of a reaction 
in the time period τ according to ( )1P τ . This probability 

is obtained by integrating ( )1P τ from 0 to τ: 
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               Considering that 1-r1=r*
1 is also a uniformly 

distributed random number in the interval [0,1], then the 
time τ can be calculated from (14) in the form: 
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               The reaction number µ is calculated similarly. A 
random number r2 uniformly distributed in the interval 
[0,1] is generated. Then the pdf ( )2P ν  (13) must be 
integrated over ν until the addition of the µ probability 
exceeds the random number r2. The inequality to obtain 
the reaction index µ has the form (Gillespie, 1976) 
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               The former results lead to the Gillespie’s direct 
algorithm: 

1) Initialize (set initial numbers of species, set t=0, 
set stopping criteria). 

2) Calculate the function aµ for all µ.  



 

3) Choose τ according to the exponential 
distribution ( ) ( )1 expP dτ α ατ τ= −  

4) Calculate µ according to the distribution 

( )2
a

P µµ
α

= . 

5) Change the numbers of species to reflect the 
execution of a reaction. 

6) If stopping criteria are not met, go to step 2. 
 
2.1 TREATMENT OF THE COLLISION-INDUCED  
BREAKUP 
 
               In the expressions (7) and (8), ( , )K i j  is the 
collision kernel and V is the cloud volume. It is assumed 
that the two events, denoted by C (collision coalescence) 
and B (breakup) are mutually exclusive, i.e., that 
whatever does not coalesce results in breakup. Then the 
probability of “C” or “B” is just the sum of the individual 
probabilities. 
                      P(CUB) = P(C) + P(B)                            (9) 
               Then, the probability that two unlike particles i 
and j will collide within the inminent time interval can be 
decomposed in the sum: 

( )1 1( , ) ( , ) ,i j i ja i j V C i j X X dt V B i j X X− −= +         (10) 
where the first term is the probability of collection and the 
second the breakup probability. The collection and 
breakup kernels are calculated according to (4) and (5). 
In general, the coalescence efficiency ( ),E i j  is based 
on the sizes of the colliding drops and the collisional 
kinetic energy (Low and List, 1982a). The choice 
between coalescence and breakup can be defined from 
expression (16), by noting that  
                        aµ µ µα β= +  
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and 
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−=  

               Then if βµ causes 2r α  to be exceeded in 
equation (16) then the event to come will be breakup, 
otherwise, the event will be a  coalescence.  
               Is the event to come is a collisional breakup 
event, then it is calculated by randomly generating the 
distribution of fragments with the aid of the function 

1( , , )P m x x . 
              Within the stochastic framework, the fragment 
distribution 1( , , )P m x x can be interpreted as a probability 
density function. After a collision of droplets with masses  
x and x1 the satellite drops are generated as random 
numbers. The random generation process stops when 
the total mass of satellite drops  exceeds the total mass 
of the colliding droplets. The final distribution is obtained 
by relocating the fragments in the bins according to its 
mass. 
              Feingold et al. (1988) found an analytical 
solution of the SBE equation with a constant breakup 

kernel and by choosing a fragment distribution of the 
form:  
              2
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drop number concentration and liquid water content of 
the initial distribution. For the drop number concentration 
they found the time evolution: 
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where 0B Mα γ=  
               In this case, the fragment distribution can be 
interpreted as an exponential probability density function. 
After a collision of droplets with masses x and  x1 the  
satellite drops are generated as exponentially distributed 
random numbers. The performance of the algorithm can 
be checked by a direct comparison with the analytical 
solution (12). 
 
3. SIMULATION RESULTS 
 
               For pure coalescence, the results from the 
Monte Carlo algorithm are the averages over 1000 
realizations of the stochastic process. For monodisperse 
initial conditions, we consider a cloud of 1 cm3 volume, 
initially containing N0 droplets of 10 µm. These droplets 
were placed in bin 1 of the size distribution. Fig.1 shows 
a comparison between the Monte Carlo algorithm and an 
analytical solutions of the SCE for the contant kernel. 
The monodisperse initial distribution was set equal to  
N0=100 cm-3. As can be observed simulations, yielded 
the same results as the analytical solutions of the SCE. 
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Fig. 1. The  number of particles averaged over 1000 
simulation runs and normalized to the initial number of 
particles (N0=100), versus time is shown by the dashed 
line. The results from the analytical solution are shown 
by the solid line. 
 



 

               In order to check the algorithm for the 
collisional breakup case, the results from the Monte 
Carlo are compared with the analytical solution (12). 
              The Monte Carlo simulation was performed with 
a constant breakup kernel with the exponential 
distribution (11) for the formed satellite drops. The initial 
concentration was 100 cm-3 (50  36.8 µm droplets and 
50 37 µm droplets). The results obtained with the Monte 
Carlo algorithm and the analytical solution are shown in 
Figure 2. As can be observed, a good correspondence 
between the deterministic and the stochastic process is 
obtained. A further increase in the number of realizations 
for this case is needed in order to reduce the fluctuations 
associated with the Monte Carlo algorithm. 
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Fig. 2. The results from the analytical solution (12) are 
shown by the solid line, versus the Monte Carlo results 
averaged over 1000 simulation runs. 
 
4. CONCLUSIONS 
 
              The chemical reactions stochastic algorithm 
developed by Gillespie (1976) was implemented in order 
to calculate the drop growth by collision-coalescence 
and collision induced breakup. Within this framework, the 
collision-induced breakup is introduced by considering 
the collision induced-breakup probability as a new 
reaction channel. The results obtained with the Monte 
Carlo algorithm were compared with the analytical 
solutions derived by Scott (1968) for the collision-
coalescence process for a constant kernel. A very good 
correspondence between the Monte Carlo and the 
deterministic solutions were founded. 
              For collision-induced breakup, the Monte Carlo 
framework was compared with the analytical solutions  
derived by Feingold et. al (1988). Although a good 
correspondence was obtained, a further increase in the 
number of realizations is needed in order to reduce the 
random fluctuations inherent to the stochastic process. 
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