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1. Motivation

Small scale turbulence in clouds plays a major role
for mixing processes and the interaction between cloud
droplets and the turbulent flow in the atmosphere. Mixing
processes include internal mixing but also entrainment of
dry and sub-saturated air into the cloud (so-called “en-
trainment”). However, the nature of cloud turbulence on
sub-meter scale has not yet been investigated in more
detail since most experimental data are based on fast-
flying aircraft yielding a spatial resolution of about one
meter.

In this paper, we present first in-situ data of the
three-dimensional wind vector with a spatial resolution
on the decimeter range. The data were taken dur-
ing a helicopter-borne experiment with ACTOS (Airborne
Cloud Turbulence Observation System) in shallow cumu-
lus clouds of different life stages (Siebert et al. 2006c).

A special focus was devoted to the edges of freshly
evolving cumulus clouds where regions of down-drafts
(due to subsidence) and up-drafts are close together re-
sulting in strong wind shear turbulence.

2. Experimental Setup

The helicopter-borne autonomous measurement pay-
load ACTOS was used to perform turbulence measure-
ments with a spatial resolution in the order of a decime-
ter. A technical description of the balloon-borne ver-
sion can be found in Siebert et al. (2003), the modified
helicopter-borne version is introduced in Siebert et al.
(2006a) and Siebert et al. (2006c¢) (this issue).
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3. Measurements

A data set from the first helicopter-borne cloud experi-
ment with ACTOS is analyzed in terms of small-scale tur-
bulence. The 20 min long record was taken on 27 April,
2005 in approximately 2200 m height near Koblenz, Ger-
many. The true airspeed of the helicopter was 15 ms—!,
that is, the complete record is about 18 km long. Several
cumulus clouds were sampled close to cloud top with a
Liquid Water Content (LW C) between 0.6 and 1.2 gm—3
(cf. Fia. 1).
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Figure 1: Time series of the LWC, w, and &,. The data was

taken in a height of 2200 m and a true airspeed of 15 ms™!.

The cloud field was inhomogeneous with several cloud
holes and strong fluctuations of LWC around cloud
edges. The middle panel of Fig. 1 shows the vertical ve-



locity w corrected for payload attitude and motion. The
values of w span a range of £4ms~! with highest am-
plitudes typically observed around cloud edges or in sin-
gle cloud core regions with maximum values of LWC.
The lower panel shows a logarithmic plot of local en-
ergy dissipation rates (¢,) as estimated from = 1 s long
subsequences (corresponding to a length of 15 m) us-
ing second-order structure functions (Muschinski et al.
2004; Siebert et al. 2006b). The local energy dissipa-
tion rates are used as a measure for the degree of turbu-
lence. The degree of turbulence is significantly increased
in and around the clouds; . is often two orders of mag-
nitude higher inside the cloud compared with adjacent
cloud-free regions.

A 500 m long portion of the record is shown in Fig. 2
(cf. dotted box in Fig. 1). These data describe an actively
growing cloud which is characterized by strong down-
drafts at the cloud edges (w ~ —4ms~1!) next to strong
up-drafts in the cloud core region (w ~ +4ms~1) result-
ing in a strong wind shear zone. The horizontal gradient
of w 8,w at the first cloud edge is about 0.3 s~1.

The energy dissipation rate in this region reaches
maximum values ~ 10 'm2s 3 compared to
103 m?2s~2 in the cloud core.
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Figure 2: Enlarged portion of the data shown in Fig. 1.

4. Summary and Discussion

The small-scale dynamics of cumulus clouds has been
investigated in terms of local energy dissipation rates
with 15 m resolution.  Actively growing cloud parts
with strong down-draft and up-draft regions at the cloud
edges show significantly increased values of €. In gen-
eral, several different mechanisms contribute to the pro-
duction/dissipation of turbulent kinetic energy (cf. bud-
get equation for turbulent kinetic energy in Stull (1988)),
however, due to the strong wind shear one might spec-
ulate that the high values of e, can be explained by the
wind shear term only. Assuming steady-state conditions,
neglecting other terms than shear, and assuming that
the horizontal gradient of w is dominating other velocity
gradients, we find:

(1)

with the eddy diffusivity coefficient K which can be ap-
proximated (Hanna 1968) by K = 0.30,,1, with [ a typical
length scale ~ o2 /e. From our observations we found
0w~ 1m2s 2 ande, ~ 10! m?s—3 for the shear region,
that is, K ~ 1 m2s~! and egnear ~ 107! m? s~3 which was
observed as local values for the wind shear region.

From this estimate we can conclude that the most am-
mount of energy dissipation around the cloud edge can
be explained by shear generation.

Eshear = K 0w,
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