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1. INTRODUCTION 
It is widely accepted now that turbulence 

enhances the rate of particle collisions (see 

overviews by Pinsky et al 2000; Vaillancourt and 

Yau 2000; Shaw 2003). There exist three major 

mechanisms that turbulence affects the collision 

rate: a) increase in the relative particle velocity 

(or increase in the swept volume); this effect is 

also known as turbulent transport effect; b) 

formation of concentration inhomogeneity 

(particle clustering), and c) turbulence effect on 

the hydrodynamic drop interaction (HDI) that 

leads to an increase in the collision efficiency.  

Published reports dedicated to turbulence 

effects on HDI are quite scarce. Small amount of 

such studies is surprising because gravity-

induced values of the collision efficiencies are 

small (0.001-0.1) (Pruppacher and Klett 1997) 

keeping a large volume for turbulence to 

increase the collision efficiency and the collision 

rate.  

Almeida (1979) and Koziol and Leighton 

(1996) analyzed the effects of turbulent vortices 

of scales smaller than HDI, which normally fall 

well into the viscous range. The effect of these  
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low - energy vortices on the collision efficiency 

was shown to be negligibly small (Pruppacher and 

Klett, 1997). Further estimations made by Pinsky 

et al (1999a) and Pinsky and Khain (2004), who 

took into account the effects of turbulent vortices 

within the inertial and transition ranges, indicated 

that turbulence can significantly (by hundred 

percent) increase collision efficiencies and kernels 

between cloud droplets. Direct numerical 

simulations (DNS) performed recently by Franklin 

et al (2004) and Wang et al (2005a) also indicate a 

pronounced increase in the collision efficiency in a 

turbulent flow generated by DNS models.  

Note that DNS are conducted with the 

Taylor microscale Reynolds numbers 

λRe ranged from 70 to 200. These values are 

much smaller than those typical of atmospheric 

turbulence (about 410)51( ×÷ ).   Pinsky and 

Khain (2004) calculated the collision efficiencies 

and kernels in a turbulent flow with high λRe  

typical of atmospheric clouds. In that study, 

however, only the Lagrangian accelerations 

were taken into account, while the effects of 

turbulent shears were disregarded. Pinsky et al 

(2006a) analyzed the effects of both turbulent 

accelerations and shears on droplet collisions in 

the absence of HDI. To perform the calculations, 

a statistical representation of a turbulent flow 

was proposed based on the results of the scale 
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analysis of characteristics of turbulence and 

droplet motion. The statistical properties of 

turbulent flow were represented by a set of non-

correlated samples of turbulent shears and the 

Lagrangian accelerations.  Each sample can be 

assigned to a certain point of a turbulent flow. 

Each such point can be surrounded by a small 

"elementary" volume with linear length scales of 

the Kolmogorov length scale, within which the 

Lagrangian acceleration and turbulent shears 

were regarded as uniform in space and 

invariable in time. Using the statistical model 

(Pinsky et al 2004), long series of turbulent 

shears and accelerations were generated 

reproducing the probability distribution functions 

(PDFs) of these quantities at high Reynolds 

numbers as they had been obtained in recent 

laboratory and theoretical studies. The swept 

volumes of droplets were calculated for each 

sample of the acceleration-shear pair, and the 

PDF of swept volumes was calculated for the 

parameters typical of cloud turbulence.  It was 

found that the magnitude of the mean swept 

volume increases both with the Reynolds 

number and the dissipation rate. At the same 

time such increase for cloud droplets did not 

exceed ~60 % even under turbulent conditions 

typical of strong cumulus clouds ( 4102Re ⋅=λ , 

321.0 −= smε ).  

Pinsky et al (2006b) extended the 

approaches developed in Pinsky et al (2006a) 

for the purpose of calculating turbulence effects 

on HDI for cloud droplets with radii below 20 

mµ . In this presentation we briefly describe the 

method of calculation of collision efficiency and 

collision kernels developed by Pinsky et al 

(2006b) and present tables of enhancement 

factors for collision kernels as compared to the 

gravitation collision kernels. Collision efficiencies 

and collision kernels between cloud droplets are 

calculated under turbulent conditions typical of 

actual clouds at 1000 mb and 500 mb pressure 

levels. Effects of turbulence on the droplet size 

distribution (DSD) is illustrated by solving the 

stochastic collision equation for different 

dissipation rates and λRe . 

  
2.  PHYSICAL MODEL  

The essential parts and general concepts of 

the study are described by Pinsky et al (2006a). 

For the sake of convenience, we briefly repeat 

here the main points and definitions introduced 

therein, and concentrate on the calculation of 

collision efficiencies.  

Droplet motion in a turbulent flow at small 

scales is determined by gravity, the turbulent 

Largangian accelerations iA  and the tensor of 

turbulent shears ijS ( 3,2,1, =ji ).  Statistical 

properties of a turbulent flow are represented here 

by a set of non-correlated samples of turbulent 

shears and Lagrangian accelerations.  Each 

sample can be assigned to a certain point of the 

turbulent flow.  Since the spatial and temporal 

scales of turbulent shears and acceleration exceed 

the corresponding Kolmogorov scales several fold, 

each such point can be surrounded by a small 

"elementary" volume with the characteristic 

lengths and time scales equal to the 

corresponding Kolmogorov scales, in which the 

Lagrangian acceleration and turbulent shears are 

considered to be uniform in space and invariable 

in time.  



The quantities characterizing collisions were 

calculated for each elementary volume. As it 

was shown by Pinsky et al (2006a), droplet 

velocity relative to the environment flow relaxes 

in the majority of cases to its adapted (quasi-

stationary) value 
ad

jV '  within the time periods 

shorter than the temporary scales of turbulent 

shears and accelerations. It means that within 

each elementary volume we can use adapted 

relative droplet velocities when dealing with 

droplet collisions. The equation system for the 

motion of isolated droplets can be written in this 

case as:  
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and tV  are droplet velocity,  air velocity and the 

terminal fall velocity induced by gravity, 

respectively;  τ is the drop relaxation time that is 

the measure of droplet inertia. For cloud droplets 

)/)(/)(9/2( 2 νρρτ aaw= , where aw and ρρ  

are the water and air densities, respectively, and 

a  is the droplet radius. Eq. (1) is valid if τ  is 

less than a certain critical value depending on 

the shear tensor. Cases when this condition was 

not satisfied for droplets with radii below 20 

mµ were quite rare and rejected from the 

analysis. Taking into account that these cases 

are very rare, neglecting those does not affect 

the mean values of swept volumes and collision 

efficiencies. As regards the PDF of collision 

efficiencies, these rare cases contribute to the 

far tail only.  

The equation for the relative droplet velocity 

between two non-interacting droplets 

iii VVV 12
~ −=  within an elementary turbulent 

volume can be written as (see Pinsky at al 2006a): 
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where iii xxx 12
~ −=  is the position vector between 

the centers of two droplets, and 
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see from (3) that the relative velocity between non-

interacting droplets does not depend on the 

location of the droplet pair within the elementary 

volume, but rather on the vector connecting their 

centers only.   

The growth rate of a droplet with radius 2a , 

caused by collisions with droplets of radius 1a , is 

determined by the flux Φ  of the 1a -radius droplets 

onto the 2a -radius droplet. This flux is assumed to 

cross the spherical surface of )( 21 aa + radius, 

and hence can be expressed as: 

∫
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where 1N  is the concentration of the 1a - radius 

droplets and +Ω is the fraction of the spherical 

surface, where 0~~ <ii xV . Fig. 1 illustrates this 

definition of the drop flux. In the figure, the 

)( 21 aa +  radius sphere represents the target; 



the curves with arrows represent relative droplet 

trajectories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of the drop flux definition. 

The )( 21 aa + - radius sphere represents the 

target; the curves with arrows represent relative 

droplet trajectories. Surface +Ω  represents 

the area where relative trajectories are directed 

inside the target. 

 

Taking into account that the inertia-induced 

fluctuations of droplet concentration for cloud 

droplets are quite small (especially if the 

differential sedimentation velocity is taken into 

account, see abstract 14.3), the concentration 

1N  can be considered constant within 

elementary volumes. Consequently, instead of 

the droplet flux, it appears more convenient to 

deal with relative velocity fluxes which can be 

defined as 
N

F Φ
= . Using (3) and (4), one can 

express the swept volume normalized to its 

value in the pure gravity case as: 
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As it follows from eqs. (1) and (5), to 

calculate droplet flux in the absence of HDI one 

must know the Lagrangian acceleration and the 

turbulent shear in each elementary volume.  

Pinsky et al (2006a) calculated long series of 

acceleration-shear pairs (or samples of 

elementary volumes) using a statistical model by 

Pinsky at al (2004). This model reproduces the 

probability distribution functions (PDF) of 

accelerations and the shears at high λRe  as 

they were obtained in the recent laboratory 

studies (Belin et al 1997, La Porta et al 2001) 

and theoretical studies (Hill 2002). The same 

series of accelerations and turbulent shears are 

used to calculate collision efficiencies. 
 

3. DEFINITION AND CALCULATION OF 
COLLISION EFFICIENCY 
3.1  Definition of the collision efficiency  

The collision efficiency E between two 

populations of a1 and a2- radii droplets is 

generally defined as the ratio of the droplet 

fluxes:                                                

noHDIHDIaaE ΦΦ=),( 21  , (6a)                       

where HDIΦ
 
is the flux of a1 –radii droplets onto 

a2-radius droplet when colliding droplets 

experience HDI, and noHDIΦ
 
is the droplet flux 

in the absence of HDI.  As the droplet 
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concentration is assumed to be uniform 

throughout the elementary volume, the collision 

efficiency can be also defined as the ratio of 

relative velocity fluxes:                                                                             

noHDI

HDI

F
FaaE =),( 21                                   (6b)                                                                                                   

              

Thus, evaluation of the collision efficiency 

requires calculation of these fluxes under 

turbulent conditions typical of atmospheric 

clouds.   

The procedure of calculation of droplet 

fluxes is described below.  

a. The technique of calculation of a flux in 

the absence of HDI. To calculate this velocity 

flux (see Pinsky et al 2006a for more detail), the 

)( 21 aa + - radius target surface is divided into 

hexagonal pixels of equal square d +Ω using the 

icosahedron-based method (Tegmark 1996). 

The number of pixels has been chosen so as to 

be large enough to provide a high accuracy of 

calculations. The high resolution is especially 

important when calculating small collision 

efficiencies, since the fluxes are determined with 

the accuracy equal to the magnitude of the flux 

crossing a single pixel. In the absence of HDI, 

the velocity flux kdF  corresponding to the k-th 

pixel is calculated as:  

( )
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The flux noHDIF
 

was calculated by 

integrating (7) over the surface +Ω .  

b. Calculation of the droplet flux in the 

presence of HDI. To perform this task, the 

following procedure was used.  We start the 

description with the simplest case, namely when 

droplet trajectories in the presence of HDI do not 

deviate significantly from the non-disturbed 

trajectories (see Figure 2). Using Eq. (3) we 

calculated the non-disturbed relative trajectories 

of droplets, which cross the spherical surface 

210
~ aax i +=  (the dashed circle in Fig. 2) 

during droplet approach in the absence of HDI. 

For this purpose, Eq. (3) was integrated back in 

time using the initial positions located on the 

target surface as it was discussed above. Such 

trajectories were calculated beginning from the 

centre of each pixel. The backward trajectories 

were calculated for the same time periods, by 

the end of which the droplets were separated by 

the distance of about 10 radii of the larger 

droplet in the droplet pair. This distance is large 

enough to provide accurate calculation of mutual 

droplet tracks (Pruppacher and Klett, 1997).   

The final points of the backward trajectories 

form the surface of the second order referred to 

in Fig. 2 as noHDIA . As a result, there is a one-to-

one pixel correspondence between the points of 

surface noHDIA  and the points on the target 

surface 210
~ aax i += . Trajectories connecting 

the corresponding pixels (e.g. A-A’, B-B’) can be 

regarded as a stream tube that transports the 

flux kdF (7). 

To determine the velocity flux in the 

presence of HDI, we calculated the absolute 

trajectories of droplets of radius 1a  and 

2a forward in time, as shown in Figure 2.  These 

trajectories start at the final points of the 

backward trajectories, i.e., from the centers of 
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the pixels located on the surface noHDIA . Two 

examples of such trajectories that start from 

points A’ and B’ are schematically shown in 

Fig.2. Due to HDI, only  a certain fraction of the 

trajectories leads to collisions (for example, the 

droplet starting at point A’ collides, while the 

droplet that starts at point B’ does not).  Taking 

into account that each of these trajectories is 

responsible for its own velocity flux kdF , we 

calculated the total velocity flux HDIF  in the 

presence of HDI by summing up the elementary 

fluxes of the trajectories which lead to droplet 

collisions. The ratio of the fluxes with and 

without HDI determines the value of the collision 

efficiency.  
 

 
 
Figure 2. Scheme illustrating the procedure of 

calculation of droplet velocity fluxes in case HDI 

is taken into account. Notations: the 

)( 21 aa + radius spherical surface is the target. 

(see text for more detail)  The final points of the 

backward relative trajectories (e.g. AA’, BB’) 

form noHDIA  surface. The noHDIA  surface is 

divided into pixels, thus the k-th pixel on the 

surface corresponds to the velocity flux kdF . 

The absolute trajectories of 1a -radius droplets 

start from the centers of all the pixels situated on 

the noHDIA  surface. In the presence of HDI, only 

a fraction of these trajectories leads to droplet 

collision. 
 
Figure 3 illustrates the definition of the 

collision efficiency. The black sphere in the figure 

represents the target of )( 21 aa + radius. The 

surface noHDIA  represents the source of the total 

flux noHDIF .  The fraction of this surface denoted 

as HDIA  forms the flux HDIF  of droplets that collide 

with the target, when HDI is taken into account. 

 

 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 3. An example of the droplet collision 

geometry for 10 mµ  and 20 mµ - radii droplet 

pair for one of the samples of the turbulent flow.  
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Notations: the blue sphere is the )( 21 aa +  

radius target. The noHDIA  surface formed by the 

final points of the backward-in-time trajectories 

is shown in the upper part of the figure, marked 

green.  Droplets that start moving from this 

surface collide with the target in the absence of 

hydrodynamic droplet interaction. Droplets 

starting from the area HDIA  , marked red, collide 

with the target in the presence of hydrodynamic 

droplet interaction. The figure illustrates the 

simplest case when the HDIA  area is fully 

located inside noHDIA  area. 

 

Fig. 3 illustrates the case when the surface 

HDIA  is fully located within the surface noHDIA . 

In some cases, however, HDI affects the tracks 

of approaching droplets so significantly that the 

area HDIA  is not fully located within the 

surface noHDIA . To take these cases into 

account, a more complicated algorithm was 

used related to utilization of an ancillary 

spherical surface of a larger radius that 

surrounds the )( 21 aa + -radius target.  

It is noteworthy that in the pure gravity case 

the definition (6) of collision efficiency as the 

ratio of velocity fluxes reduces to the commonly 

used definition of collision efficiency as the ratio 

of collision areas and areas of geometrical 

cross-sections (Pruppacher and Klett 1997). As 

it follows from eq.(3), in calm air  the relative 

velocity between droplets at the infinity is equal 

to the difference between their terminal fall 

velocities. Thus, in expression (7) for droplet 

fluxes, this constant relative velocity can be 

factored out of the integral, and fluxes of relative 

velocity (or droplets) thus become proportional 

to the area of the cross-sections of the flux tubes 

(the areas of pixel projections on the horizontal 

plane).  As a result, in the pure gravity case the 

ratio 
noHDI

HDI

F
F

 is transformed into the ratio of the 

collision and geometrical cross-section areas.  

 

3.2 The modification of the 
superposition method   

 

In order to perform collision efficiency 

calculations, the problem of hydrodynamic 

interaction between two spheres moving in the 

airflow is considered. We use the superposition 

method (Pruppacher and Klett 1997), according to 

which each sphere is assumed to move in a flow 

field induced by its counterpart moving alone. The 

method was first proposed by Langmuir (1948), 

and was later successfully used by many 

investigators (Shafrir and Gal-Chen 1971; Lin and 

Lee 1975; Schlamp et al 1976) for the calculation 

of collision efficiencies between droplets within a 

wide range of sizes. The superposition method 

was used by Pinsky et al (2001) for calculation of 

detailed tables of gravity-induced collision 

efficiencies for droplets within the 1 mµ  to 300 

mµ -radii range. The calculated values of collision 

efficiencies allowed us to obtain an accurate 

reproduction of drop-collector growth measured in 

the vertical wind tunnel at the University of Mainz 

(Vohl et al 1999). Wang et al (2005b) have 

recently shown that the center-point formulation of 

the superposition method provides a good 

agreement with the exact solutions available. 

Pinsky et al (1999a, 2001, the present study) use 



the center-point formulation of the superposition 

method for calculation of collision efficiency in a 

turbulent flow.  

According to the superposition method, the 

perturbed velocity field induced by each drop in 

calm air is calculated as for the case of a single 

isolated droplet. Each of the interacting drops 

experiences the velocity field induced by its 

counterpart droplet. The expression for the 

induced velocity field can be found in 

Pruppacher and Klett (1997) and in Pinsky et al 

(1999).  

In the present study we apply a modified 

superposition method allowing simplification of 

the governing equations. The idea of the 

modification is the following: each droplet’ 

velocity '
iV  relative to the surrounding air is 

represented as the sum of two components: a 

non-disturbed velocity '
iV
)

  without the impact of 

the counterpart droplet, and a disturbed 

velocity '
iV
(

, induced by the counterpart droplet. 

As it was shown by Pinsky et al (2006a),  '
iV
)

 

rapidly adapts to ad
iV '  , which depends on the 

Largangian acceleration, turbulent shear and the 

terminal fall velocity of the droplet. Within each 

elementary volume, ad
iV '  is constant with a high 

accuracy.  This allows us to simplify the 

corresponding motion equation by utilizing the 

condition '
iV
)

 = ad
iV '  (see eqs. 1 and 8b). In the 

course of HDI the velocity component '
iV
(

 can 

experience significant changes caused by the 

rapidly varying velocity field induced by the 

counterpart droplet. Hence, the time derivative in 

the equation for the component '
iV
(

 should be 

taken into account (see eq. 8a).   

As a result, the system of equations governing 

the motion of any interacting droplets can be 

reduced to the following form: 
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To describe the mutual motion and collision of 

two interacting droplets, two coupled equation 

systems similar to (8a-8c) should be solved.  

Since '
iV
(

tends to zero at large separations (~10 

radii of the larger droplet), the initial droplet 

velocity is equal to 

 it
ad

ijiji VVxSV 3
' δ++=                                 (9)                       

In the absence of HDI, 0' =iV
(

 and eqs. (8) 

coincide with eqs. (12-13 in Pinsky et al 2006a) for 

the motion of non-interacting droplets. Note also 

that in calm air )0;0( == iji SA  eqs. (8) are 

reduced to the classical system of equations for 

the superposition method in the pure gravity case.  
The advantage of the approach proposed is 

that equation (8a) for '
iV
(

 contains the “viscous” 

term (the first right-hand one), which allows the 

utilization of a simple and computationally efficient 

time-explicit middle point numerical scheme.  

The following verification of the accuracy of 

calculations was performed: 



• Sensitivity of trajectory integration to 

value of time step. The time step t∆ of 

integration of eqs (8a-c) was 

chosen st τ1.0≤∆ , where sτ is the 

characteristic relaxation time of the smallest 

droplet in the droplet pair. Calculations showed 

that further decrease of the time step did not 

influence the results.  

• Sensitivity to the number of pixels 

used for calculation of droplet fluxes.  The 

accuracy is determined by the resolution that 

can be evaluated as 4/n, where n is the number 

of pixels covering the target surface. For 

spheres of )( 21 aa + radius, n=2252 was used, 

so that the error in the calculations of droplet 

velocity fluxes did not exceed 0.2 %.  As was 

mentioned above, the number of pixels was 

increased proportionally to the surface square of 

the ancillary sphere to preserve high resolution. 

• Sensitivity with respect to the 

numerical scheme used for the calculation of 

droplet trajectories was analyzed by comparing 

the results (the values of collision efficiency) 

obtained using a one-step time-explicit 

numerical scheme applied in the calculations, 

with the results obtained using the time 

consuming Runge-Kutta scheme of the 5-th-

order with the automatic choice of time steps. 

Simulations showed that the simple scheme 

provided the same values of collision efficiency.   

• Sensitivity to the initial separation 

distance between droplets.  Supplemental 

experiments indicate that the utilization of the 

initial separation distance of ~ 30-40 largest 

droplet radii, instead of the separation distance of 

~10 radii of the largest droplet, results in a few 

percent change in collision efficiencies.  These 

results indicate that that the HDI zone falls well 

into elementary volumes. Therefore, calculations 

were performed with the initial separation distance 

equal to ~10 radii of the largest droplet.  

• Sensitivity with respect to the size of 

the ancillary sphere. The analysis of a great 

number of simulations showed that utilization of 

the ancillary sphere with the maximum radius of 

)(3 21 aa +  was suitable for actually any 

combinations of acceleration-shear and droplet 

radii. Further increase of the ancillary sphere 

radius did not affect collision efficiency. 

• Verification of the modified 

superposition method has been performed in 

several boundary cases. In the absence of HDI, 

the method reproduces the values of the swept 

volume calculated with accuracy better than 0.1% 

(see Pinsky et al 2006a). For the pure gravity 

case, the difference between the values of 

collision efficiency obtained using eqs. (8a-c) and 

those obtained using the classical method (Pinsky 

et al 2001) is about 3% and does not exceed 5%. 

An important evidence of the validity of the 

calculations is that E(a1, a2)= E(a2, a1), which 

means that the algorithm is invariant with respect  

to the choice of droplets indices 1a  and 2a . 

•  Sensitivity to the volume of statistics. 

Sensitivity experiments with different volumes of 

statistical information related to turbulent shear 

flows indicate that the increase of statistical data 

set in addition to the set used in the present study 

( 3105.2 ⋅  for the calculation of average values and 
510  for the calculation of PDF) has a negligible 

effect on the results. Relative errors are within the 

range 0.4-3%. 
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We believe, therefore, that the overall error 

in the calculation of the collision efficiency and 

the collision kernel does not exceed a few 

percent. 

 
4. RESULTS 
4.1 The magnitudes of the collision 
efficiencies and collision kernels 

 

Collision efficiencies were calculated for the 

turbulent conditions typical of clouds. Probability 

distribution functions of collision efficiency and 

collision kernels were performed in Pinsky et al 

(2006b).  We present here the dependences of 

averaged values of the collision efficiencies and 

kernels on drop size, dissipation rate and λRe . 

Figure 4 shows the collision efficiencies 

between 15 mµ -(left) and 20 mµ -radii (right) 

collectors with smaller droplets under different 

dissipation rates and λRe . The pure gravity 

values of the collision efficiencies are shown as 

well. One can see that strong turbulence 

increases significantly the collision efficiencies 

between cloud droplets. Especially significant 

increase in the collision efficiency takes place for 

droplets of close size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Collision efficiencies between 15- 

mµ (first) and 20- mµ  radii (second) collectors with 

smaller droplets under different dissipation rates and 

λRe  (after Pinsky et al 2006b). Results obtained by 

Wang et al (2005) for 32100 −= scmε  are marked by 

crosses on the second panel. 

 

  Comparison of the values of collision 

efficiencies obtained by Pinsky and Khain 

(2006b) calculated under the conditions 

relatively to those used by Wang et al (2005a) 

( 32100 −= scmε , drop collector radius 20 mµ ) 

indicates a reasonably good agreement in the 

results. 

Figure 5 shows the dependence of the 

averaged normalized collision kernel for the 10 

mµ - and 20 mµ - radii droplet pair on the 

dissipation rate ε  under different λRe . 
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Figure 5.  Dependence of the averaged 

normalized collision kernel for the 10 mµ - and 

20 mµ - radii droplet pair on the dissipation rate 

ε  under different λRe  (after Pinsky et al 

2006b). 

 

While the factor of the swept volume 

increase was found to be 1.6 at very strong 

turbulence intensity (Pinsky et al 2006a), the 

collision kernel increases by the factor as large 

as 4.8. Thus, the effect of turbulence on the HDI 

appears to be the main mechanism by means of 

which turbulence increases the rate of cloud 

droplets collisions. Note that the 10 mµ -20 mµ -

radii droplet pair indicates the minimum turbulent 

enhancement factor. The increase in the 

collision kernel of droplet pairs containing 

droplets of close size or droplets smaller than ~3 

mµ  in radii is much more pronounced. One can 

see in Fig. 16 that the collision kernel increases 

both with the increase in ε  and λRe . Thus, the 

accounting for the effect of  λRe  is as important 

as accounting for the effect of the dissipation 

rateε .  

 Figure 6 shows collision kernel enhancement 

factor for three typical cases: stratiform clouds 

( 32001.0 −= smε
,

3105Re ⋅=λ ) (upper panel), 

cumulus clouds ( 3202.0 −= smε , 4102Re ⋅=λ ) 

(middle) and cumulonimbus 

( 321.0 −= smε , 4102Re ⋅=λ ) (lower panel).  

 

 

 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 

 

 
 

 
 

 
 



 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 
Figure 6. Collision kernel enhancement factor (as 

compared to the gravity value) for three typical 

cases: stratiform clouds 

( 32001.0 −= smε
,

3105Re ⋅=λ ) (upper panel), 

cumulus clouds ( 3202.0 −= smε , 4102Re ⋅=λ ) 

(middle) and cumulonimbus 

( 321.0 −= smε , 4102Re ⋅=λ ) (lower panel). 

 

The collision kernel enhancement factors are 

presented  in tables 1-3 for corresponding levels of 

turbulence intensity. 

 

 

 

Table 1. Stratocumulus clouds ( 32001.0 −= smε
,

3105Re ⋅=λ ) 

 1 µm  2 µm  3 µm  4 µm 5 µm  6 µm  7 µm  8 µm 9 µm 10 µm 11 µm 12 µm 13 µm 14 µm 15 µm 16 µm 17 µm 18 µm 19 µm 20 µm 21 µm
1 µm 1.595 1.719 1.43 1.363 1.366 1.39 1.387 1.404 1.451 1.539 1.559 1.635 1.671 1.722 1.736 1.872 1.951 2.038 2.02 2.169 2.184
2 µm 1.719 1.595 1.471 1.223 1.177 1.151 1.146 1.148 1.13 1.14 1.149 1.149 1.142 1.153 1.149 1.162 1.163 1.21 1.233 1.211 1.254
3 µm 1.43 1.471 1.449 1.427 1.198 1.137 1.12 1.113 1.111 1.107 1.11 1.089 1.109 1.095 1.095 1.083 1.085 1.094 1.081 1.079 1.09
4 µm 1.363 1.223 1.427 1.416 1.404 1.187 1.13 1.12 1.096 1.094 1.101 1.089 1.092 1.101 1.088 1.087 1.072 1.082 1.044 1.047 1.033
5 µm 1.366 1.177 1.198 1.404 1.399 1.394 1.182 1.122 1.114 1.094 1.095 1.086 1.082 1.09 1.077 1.072 1.076 1.069 1.07 1.056 1.045
6 µm 1.39 1.151 1.137 1.187 1.394 1.392 1.39 1.171 1.125 1.107 1.088 1.086 1.079 1.069 1.059 1.044 1.028 1.012 0.998 0.978 0.97
7 µm 1.387 1.146 1.12 1.13 1.182 1.39 1.394 1.398 1.176 1.127 1.103 1.097 1.086 1.071 1.064 1.056 1.05 1.035 1.008 0.961 0.946
8 µm 1.404 1.148 1.113 1.12 1.122 1.171 1.398 1.393 1.388 1.185 1.128 1.098 1.089 1.082 1.082 1.069 1.055 1.019 1.009 0.99 0.968
9 µm 1.451 1.13 1.111 1.096 1.114 1.125 1.176 1.388 1.435 1.483 1.192 1.124 1.091 1.089 1.086 1.072 1.045 1.043 1.025 1.017 0.997
10 µm 1.539 1.14 1.107 1.094 1.094 1.107 1.127 1.185 1.483 1.467 1.452 1.174 1.124 1.096 1.089 1.082 1.071 1.069 1.04 1.025 1.026
11 µm 1.559 1.149 1.11 1.101 1.095 1.088 1.103 1.128 1.192 1.452 1.452 1.453 1.172 1.11 1.091 1.087 1.082 1.08 1.066 1.046 1.04
12 µm 1.635 1.149 1.089 1.089 1.086 1.086 1.097 1.098 1.124 1.174 1.453 1.456 1.46 1.167 1.115 1.09 1.078 1.084 1.08 1.068 1.057
13 µm 1.671 1.142 1.109 1.092 1.082 1.079 1.086 1.089 1.091 1.124 1.172 1.46 1.464 1.468 1.169 1.109 1.093 1.093 1.081 1.081 1.073
14 µm 1.722 1.153 1.095 1.101 1.09 1.069 1.071 1.082 1.089 1.096 1.11 1.167 1.468 1.462 1.455 1.162 1.103 1.087 1.082 1.076 1.08
15 µm 1.736 1.149 1.095 1.088 1.077 1.059 1.064 1.082 1.086 1.089 1.091 1.115 1.169 1.455 1.457 1.459 1.16 1.102 1.09 1.089 1.083
16 µm 1.872 1.162 1.083 1.087 1.072 1.044 1.056 1.069 1.072 1.082 1.087 1.09 1.109 1.162 1.459 1.469 1.479 1.147 1.109 1.09 1.083
17 µm 1.951 1.163 1.085 1.072 1.076 1.028 1.05 1.055 1.045 1.071 1.082 1.078 1.093 1.103 1.16 1.479 1.477 1.476 1.155 1.105 1.088
18 µm 2.038 1.21 1.094 1.082 1.069 1.012 1.035 1.019 1.043 1.069 1.08 1.084 1.093 1.087 1.102 1.147 1.476 1.48 1.484 1.153 1.103
19 µm 2.02 1.233 1.081 1.044 1.07 0.998 1.008 1.009 1.025 1.04 1.066 1.08 1.081 1.082 1.09 1.109 1.155 1.484 1.5 1.516 1.144
20 µm 2.169 1.211 1.079 1.047 1.056 0.978 0.961 0.99 1.017 1.025 1.046 1.068 1.081 1.076 1.089 1.09 1.105 1.153 1.516 1.521 1.525
21 µm 2.184 1.254 1.09 1.033 1.045 0.97 0.946 0.968 0.997 1.026 1.04 1.057 1.073 1.08 1.083 1.083 1.088 1.103 1.144 1.525 1.521 

 

 

 



Table 2. Cumulus clouds ( 3202.0 −= smε , 4102Re ⋅=λ ) 

 1 µm  2 µm  3 µm  4 µm 5 µm  6 µm  7 µm  8 µm 9 µm 10 µm 11 µm 12 µm 13 µm 14 µm 15 µm 16 µm 17 µm 18 µm 19 µm 20 µm 21 µm
1 µm 4.53 5.075 3.859 3.602 3.64 3.788 3.864 4.018 4.22 4.646 4.809 5.17 5.398 5.729 5.91 6.513 6.853 7.291 7.355 7.961 8.146
2 µm 5.075 4.53 3.985 2.666 2.3 2.137 2.063 2.046 2.028 2.056 2.102 2.155 2.187 2.261 2.311 2.405 2.426 2.578 2.686 2.683 2.844
3 µm 3.859 3.985 3.867 3.748 2.437 2 1.831 1.729 1.664 1.64 1.632 1.6 1.625 1.61 1.624 1.62 1.626 1.667 1.668 1.684 1.725
4 µm 3.602 2.666 3.748 3.698 3.649 2.342 1.903 1.715 1.579 1.522 1.494 1.457 1.449 1.447 1.444 1.458 1.458 1.511 1.518 1.569 1.607
5 µm 3.64 2.3 2.437 3.649 3.633 3.617 2.305 1.844 1.649 1.527 1.468 1.426 1.41 1.427 1.427 1.452 1.502 1.557 1.631 1.693 1.777
6 µm 3.788 2.137 2 2.342 3.617 3.616 3.616 2.279 1.812 1.619 1.492 1.439 1.418 1.429 1.465 1.514 1.575 1.641 1.714 1.763 1.812
7 µm 3.864 2.063 1.831 1.903 2.305 3.616 3.631 3.647 2.281 1.838 1.596 1.498 1.458 1.464 1.514 1.58 1.65 1.699 1.723 1.69 1.64
8 µm 4.018 2.046 1.729 1.715 1.844 2.279 3.647 3.643 3.638 2.39 1.851 1.601 1.509 1.51 1.569 1.632 1.699 1.71 1.658 1.582 1.509
9 µm 4.22 2.028 1.664 1.579 1.649 1.812 2.281 3.638 3.916 4.193 2.488 1.871 1.612 1.562 1.604 1.666 1.711 1.686 1.614 1.528 1.45
10 µm 4.646 2.056 1.64 1.522 1.527 1.619 1.838 2.39 4.193 4.117 4.04 2.417 1.845 1.632 1.619 1.685 1.731 1.686 1.584 1.491 1.427
11 µm 4.809 2.102 1.632 1.494 1.468 1.492 1.596 1.851 2.488 4.04 4.079 4.119 2.428 1.833 1.667 1.696 1.751 1.701 1.594 1.489 1.424
12 µm 5.17 2.155 1.6 1.457 1.426 1.439 1.498 1.601 1.871 2.417 4.119 4.162 4.205 2.425 1.852 1.72 1.756 1.732 1.622 1.511 1.431
13 µm 5.398 2.187 1.625 1.449 1.41 1.418 1.458 1.509 1.612 1.845 2.428 4.205 4.249 4.293 2.443 1.867 1.785 1.789 1.68 1.548 1.455
14 µm 5.729 2.261 1.61 1.447 1.427 1.429 1.464 1.51 1.562 1.632 1.833 2.425 4.293 4.313 4.332 2.45 1.899 1.83 1.758 1.601 1.488
15 µm 5.91 2.311 1.624 1.444 1.427 1.465 1.514 1.569 1.604 1.619 1.667 1.852 2.443 4.332 4.378 4.425 2.466 1.945 1.856 1.704 1.544
16 µm 6.513 2.405 1.62 1.458 1.452 1.514 1.58 1.632 1.666 1.685 1.696 1.72 1.867 2.45 4.425 4.504 4.582 2.48 2.015 1.845 1.639
17 µm 6.853 2.426 1.626 1.458 1.502 1.575 1.65 1.699 1.711 1.731 1.751 1.756 1.785 1.899 2.466 4.582 4.64 4.697 2.545 2.062 1.806
18 µm 7.291 2.578 1.667 1.511 1.557 1.641 1.699 1.71 1.686 1.686 1.701 1.732 1.789 1.83 1.945 2.48 4.697 4.794 4.891 2.612 2.085
19 µm 7.355 2.686 1.668 1.518 1.631 1.714 1.723 1.658 1.614 1.584 1.594 1.622 1.68 1.758 1.856 2.015 2.545 4.891 5.034 5.178 2.677
20 µm 7.961 2.683 1.684 1.569 1.693 1.763 1.69 1.582 1.528 1.491 1.489 1.511 1.548 1.601 1.704 1.845 2.062 2.612 5.178 5.31 5.441
21 µm 8.146 2.844 1.725 1.607 1.777 1.812 1.64 1.509 1.45 1.427 1.424 1.431 1.455 1.488 1.544 1.639 1.806 2.085 2.677 5.441 5.31 
 

 

Table 3. Cumulonimbus ( 321.0 −= smε , 4102Re ⋅=λ ) 

 
 1 µm  2 µm  3 µm  4 µm 5 µm  6 µm  7 µm  8 µm 9 µm 10 µm 11 µm 12 µm 13 µm 14 µm 15 µm 16 µm 17 µm 18 µm 19 µm 20 µm 21 µm

1 µm 9.509 10.72 7.719 7.312 7.438 7.774 8.02 8.403 8.937 9.804 10.33 11.12 11.66 12.51 12.91 14.25 15.06 16.07 16.16 17.51 17.96
2 µm 10.72 9.509 8.301 5.267 4.49 4.116 3.975 3.932 3.938 4.02 4.163 4.311 4.412 4.641 4.855 5.155 5.373 5.88 6.354 6.667 7.399
3 µm 7.719 8.301 8.051 7.801 4.771 3.817 3.431 3.236 3.17 3.225 3.374 3.516 3.845 4.15 4.605 5.085 5.704 6.524 7.364 8.358 9.568
4 µm 7.312 5.267 7.801 7.691 7.581 4.578 3.627 3.276 3.139 3.251 3.515 3.847 4.382 5.014 5.732 6.621 7.537 8.811 9.893 11.35 12.74
5 µm 7.438 4.49 4.771 7.581 7.54 7.498 4.526 3.591 3.369 3.46 3.824 4.338 5.016 5.874 6.718 7.681 8.765 9.816 10.94 11.95 13.02
6 µm 7.774 4.116 3.817 4.578 7.498 7.49 7.481 4.519 3.725 3.723 4.052 4.683 5.451 6.331 7.252 8.129 8.936 9.614 10.13 10.34 10.37
7 µm 8.02 3.975 3.431 3.627 4.526 7.481 7.52 7.56 4.63 4.096 4.268 4.894 5.715 6.581 7.475 8.184 8.664 8.771 8.554 7.921 7.238
8 µm 8.403 3.932 3.236 3.276 3.591 4.519 7.56 7.545 7.529 5.057 4.579 4.991 5.805 6.727 7.581 8.078 8.234 7.829 7.059 6.219 5.503
9 µm 8.937 3.938 3.17 3.139 3.369 3.725 4.63 7.529 8.157 8.785 5.539 5.222 5.826 6.775 7.607 8.003 7.823 7.087 6.169 5.33 4.669
10 µm 9.804 4.02 3.225 3.251 3.46 3.723 4.096 5.057 8.785 8.638 8.492 5.716 5.752 6.556 7.433 7.899 7.654 6.733 5.66 4.826 4.247
11 µm 10.33 4.163 3.374 3.515 3.824 4.052 4.268 4.579 5.539 8.492 8.615 8.738 6.173 6.367 7.245 7.896 7.738 6.696 5.534 4.63 4.047
12 µm 11.12 4.311 3.516 3.847 4.338 4.683 4.894 4.991 5.222 5.716 8.738 8.891 9.043 6.656 7.082 7.808 7.929 6.964 5.654 4.646 3.977
13 µm 11.66 4.412 3.845 4.382 5.016 5.451 5.715 5.805 5.826 5.752 6.173 9.043 9.223 9.404 7.275 7.676 8.198 7.596 6.084 4.838 4.046
14 µm 12.51 4.641 4.15 5.014 5.874 6.331 6.581 6.727 6.775 6.556 6.367 6.656 9.404 9.544 9.684 7.871 8.24 8.233 6.845 5.246 4.238
15 µm 12.91 4.855 4.605 5.732 6.718 7.252 7.475 7.581 7.607 7.433 7.245 7.082 7.275 9.684 9.919 10.15 8.533 8.723 7.98 6.078 4.63
16 µm 14.25 5.155 5.085 6.621 7.681 8.129 8.184 8.078 8.003 7.899 7.896 7.808 7.676 7.871 10.15 10.48 10.81 9.152 9.134 7.438 5.375
17 µm 15.06 5.373 5.704 7.537 8.765 8.936 8.664 8.234 7.823 7.654 7.738 7.929 8.198 8.24 8.533 10.81 11.12 11.44 9.96 9.243 6.777
18 µm 16.07 5.88 6.524 8.811 9.816 9.614 8.771 7.829 7.087 6.733 6.696 6.964 7.596 8.233 8.723 9.152 11.44 11.9 12.36 10.69 9.092
19 µm 16.16 6.354 7.364 9.893 10.94 10.13 8.554 7.059 6.169 5.66 5.534 5.654 6.084 6.845 7.98 9.134 9.96 12.36 12.99 13.62 11.33
20 µm 17.51 6.667 8.358 11.35 11.95 10.34 7.921 6.219 5.33 4.826 4.63 4.646 4.838 5.246 6.078 7.438 9.243 10.69 13.62 14.25 14.88
21 µm 17.96 7.399 9.568 12.74 13.02 10.37 7.238 5.503 4.669 4.247 4.047 3.977 4.046 4.238 4.63 5.375 6.777 9.092 11.33 14.88 14.25 
 

 

 

 

 

 



One can see that collision enhancement factor is 

quite significant, especially for drops of close 

sizes as well as for droplets of very different 

sizes. 

 

Collision enhancement factors were calculated 

for 500 mb level as well. The enhancement 

factor at 500 mb level is larger than that for 1000 

mb level by factors 1.5-2 that agrees with the 

results obtained by Pinsky et al (2001). The 

factor increases because the increase in the 

relative sedimentation velocity caused by the 

decrease of air density with height. 

Note that enhancement factors presented in 

Figure 6 and tables 1-3 were calculated with no 

effect of droplet clustering.  

 

4.2 Parameterization of droplet clustering 

effect 
 

To parameterize effects of droplet clustering in a 

turbulent flow we used an empirical dependence 

of clustering intensity on the St number, 

presented by Pinsky and Khain (2003). The 

dependence has been obtained as a result of 

statistical analysis of a long series of drop arrival 

times measured in situ in ~60 cumulus clouds. 

The parameterization formula is as follows: 

317.0

2/12

577.0)(
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StStf
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N
⋅== ,         (10)                                                                                                                     

where N  is the cloud averaged droplet 

concentration,  
2/12'N  is the r.m.s. of the 

concentration fluctuations.                                                                                    

Under assumption of strong spatial correlation of 

concentration fluctuations of cloud droplets of 

different size, we introduced a “correction” factor 

of the collision kernel between droplets 

characterized by the Stokes numbers 1St  and 

2St  as follows: 
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Function ),( 21 StStG  depends on both droplet 

sizes and on the intensity of turbulence (on the 

dissipation rate).  

 

4.3 Examples of droplet spectrum evolution 

 

To illustrate effects of turbulence on DSD 

development and raindrop formation we 

integrated the stochastic collision equation (12) 
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 for the period of 30 min. In (12) f is the DSD 

function. Two droplet spectra typical of 

intermediate (droplet concentration 

N=500 3−cm , CWC=1.8 3−gm ) and more 

continental clouds (N=800 3−cm , CWC=2.3 

3−gm ) were chosen.  The initial DSD are 

centered at radii of ~ 9 mµ .  Calculations were 

performed both for pure gravity case, as well as 

for turbulent conditions. The calculations under 

turbulent conditions were performed both with 

and without effects of droplet clustering taken 

into account. In simulations without the 



clustering effect  )()( 21 mfmf  was 

calculated as )()( 21 mfmf  in accordance 

with the common practice in cloud modeling. To 

take the clustering effect into account the 

expression )()( 21 mfmf  has been multiplied 

by factor ),( 21 StStG  determined in (11). In all 

turbulent simulations collision kernel 

),( 21 mmK  has been multiplied by the 

enhancement factors presented in Tables 1-3. 

Note that turbulence effects were taken into 

account only for cloud droplets with radii below 

21 mµ . No changes for drops of larger size 

were made. Thus, the result possibly 

underestimates the turbulent effect. At the same 

time, it allows us to evaluate effects of 

turbulence on formation of large cloud droplets 

and small raindrops which trigger precipitation 

formation.  

Results of calculations are presented in Figure 

7, showing DSD obtained toward t=30 min. in 

simulations mentioned above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7. DSDs obtained by solving the stochastic collision equation during t=30 min.  DSD obtained toward 

t=30 min in case of pure gravity case are marked by green. Three values of the dissipation rate were used: 
32323232 1.0  05.0,02.0,01.0 −−−−= smandsmsmsmε .  DSD obtained when collision kernel 

enhancement is determined only by HDI and transport effect (Tables 1-3) are marked by green.  DSDs 

obtained when the enhancement factor by clustering effect is taken into account is marked by red.  

 

One can see that at high droplet 

concentration and low turbulent intensity the 

effect of turbulence is not significant (at least 

during the time period of 30 min). Turbulence of 

larger intensity significantly accelerates 

collisions, indicating the formation of raindrops, 

while no raindrops were formed in pure gravity 

case. 

 

5. CONCLUSIONS 
 

The collision efficiencies and collision 

kernels were calculated for conditions typical of 

real cloud of different type for 1-21 micron- radii 

droplets. Detailed tables of collision kernel 

enhancement are presented.  

A parameterization of the effect of droplet 

concentration fluctuation is proposed.  The 

method is based on statistical analysis of in situ 

data in 60 clouds. 

Effect of turbulence is illustrated by 

calculation of droplet size distribution evolution 

using a stochastic collision equation. A 

significant acceleration of rain formation in a 

turbulent flow was demonstrated for droplet 

spectra typical of intermediate and continental 

clouds. It is shown that increase in the collision 

rate between cloud droplets may serve as a 

triggering mechanism for raindrop formation, at 

least for not extremely maritime clouds. 

The tables of the collision kernel 

enhancement factors are available upon 

request. 
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