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1. Introduction

One of the most challenging problems in atmospheric
science is the prediction of future climate change. So far,
estimates of the net radiative forcing of clouds is very un-
certain. Especially, the role of cirrus clouds which could
contribute to a net heating of the underlying troposphere
is heavily discussed. For determining the contribution of
cirrus clouds to the global warming and predicting their
role in a changing climate we have to increase our knowl-
edge on their formation processes including realistic es-
timates of their lifetime, their spatial spread and disper-
sion. Currently, observational information about the life
cycles of cirrus clouds including their specific formation
regions, i.e. the ice supersaturated regions, is very lim-
ited.

Additionally and as suggested by recent studies, the
impact of mesoscale dynamical processes as well as
the possible impact of aerosols on the life cycle of cir-
rus clouds is crucial for a reliable estimate of the radia-
tive forcing. As discussed in Dean et al. (2005), exclu-
sive consideration of synoptic-scale dynamics underesti-
mates the frequency of occurrence of cirrus clouds. As
suggested in that paper, mesoscale processes should
be taken in to account, e.g. cirrus clouds generated by
internal gravity waves.

From an experimental point of view, mountain-wave in-
duced cirrus clouds constitute an ideal natural laboratory
to investigate the properties and the life cycle of their
cloud particles. Several experimental studies document-
ing these processes have been published so far. How-
ever, numerical simulation of orographic cirrus clouds are

∗peter.spichtinger@env.ethz.ch

rare, especially full 2D/3D model studies. Here, first of all
we focus on numerical experimentation. The goal of this
study is to determine the influence of mesoscale dynam-
ics on the generation and evolution of mountain-wave in-
duced cirrus clouds.

Cirrus clouds formed by orographic waves are sim-
ulated with the anelastic, non-hydrostatic geophysical
fluid solver EuLag. Recently, a bulk scheme for dif-
ferent classes of ice was developed and implemented
into this model. Our microphysical scheme is able to
discriminate between the different nucleation processes
(homogeneously and heterogeneously formed ice crys-
tals). For each ice class, a background aerosol number
concentration was included which acts as a limiting fac-
tor for the number of nucleated ice crystals. In this way,
we are able to investigate the impact of the competiting
formation processes on the generation and evolution of
mountain-wave induced cirrus clouds.

In section 2 we describe the model, especially the
newly implemented ice microphysical scheme. In sec-
tion 3 the setups for the reference experiments are de-
scribed. Then, in section 4 we present first results. Fi-
nally, we summarize our results and present an outlook
on future studies.

2. Description of the model

Our numerical experiments are performed with the mul-
tiscale, nonhydrostatic anelastic model EULAG (see e.g.
Smolarkiewicz and Margolin 1997). An up-to-date com-
prehensive description of the model and its capabilities
can be found in (Grabowski and Smolarkiewicz 2002)
and (Prusa and Smolarkiewicz 2003). The governing
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equations are solved by means of finite difference ap-
proximations using a second-order accurate nonoscilla-
tory forward-in-time approach. In the following, we dis-
cuss the bulk ice microphysics scheme.

In general, prognostic equations for both the ice water
content (IWC) and the ice crystal number (N) concentra-
tion are solved with the same finite difference approxima-
tions as the equations for momentum and heat. Hence,
our microphysical approach relies on a so–called dou-
ble moment scheme. Here, we have to assume a mass
distribution f(m) for the ice crystals at each grid point,
µk[m] :=

∫
mkf(m)dm denotes the kth moment of the

distribution. Our ice microphysics scheme treats arbi-
trary many classes of ice. These classes are only dis-
criminated by the individual formation processes, i.e. the
nucleation of ice crytals. Additionally, for each formation
process a background aerosol (number concentration of
the background aerosol) is included which triggers the
formation process directly.

In the present study, we only consider two classes, ho-
mogeneously and heterogeneously formed ice crystals.
For each class of ice we prescribe a log–normal distribu-
tion as mass distribution with geometric mean mass mm

and geometric mass standard deviation σm. In the fol-
lowing, we assume columnar shape for the ice crystals
with size–mass relations according to Heymsfield and
Iaquinta (2000). The parameterized processes in the
microphysical scheme consist of nucleation, deposition
growth/evaporation and sedimentation of ice crystals.

In our scheme, two different nucleation processes are
considered: First, homogeneous freezing of supercooled
aqueous solution droplets and second, heterogeneous
freezing on solid aerosol particles. The homogeneous
nucleation rates are parameterized according to Koop
et al. (2000) in terms of temperature and water activ-
ity (i.e. relative humidity). Additionally, the volume of
the solution droplets (in this case aqueous sufuric acid
droplets) is calculated from a prescribed size distribu-
tion of the sufuric acid aerosol and deliquescence ac-
cording to Koehler’s theory. For simulating the heteroge-
neous nucleation we start with a very simple approach:
If the environmental relative humidity with respect to ice
is larger than a threshold value, i. e. RHi ≥ RHihet,
then all particles of the background aerosol Na are trans-
ferred to ice crystals with an initial ice crystal mass
mhet = 10−16 kg. This mass is equivalent to a size of

lhet = 0.22µm (using the size–mass relation).
For deposition growth and evaporation we use a mod-

ified approach by Koenig (1971), which was sucessfully
applied in former studies (e.g. Gierens 1996): dIWC

dt =
a · µb[m]. Detailed descriptions of the individual param-
eterisations of nucleation and deposition in the cirrus
cloud model can be found in Spichtinger et al. (submitted
to ACPD).

For the sedimentation of the ice crystals we use two
different terminal velocities (mass weighted and number
weighted, vt,m, vt,n) derived from the flux density con-
cept, see Gierens et al. (submitted to Quart. Jour.).
In this parameterisation, larger crystals fall faster than
smaller ones which should be self–evident but this is not
always fulfilled in large-scale models (see extended ab-
stract by Spichtinger et al. in this volume).

3. Description of the reference ex-
periments

3a. Vertically propagating hydrostatic wave

For the generation of vertically propagating hydrostatic
waves we use the following setup: we prescribe a 2D do-
main (x–z–plane) with a horizontal extension of 639 km
and a vertical extension of 15 km. The horizontal and
vertical resolutions amounts to dx = 1 km and dz = 50 m,
respectively. A Gaussian hill with halfwidth w = 15 km
and height 600 m is located at the lower bottom in the
center of the domain. The simulation time amounts to
4.5 h with a dynamical time step dt = 5 s and an optional
microphysical timestep dtccp = dt/10 = 0.5 s.

The model is initialized with the following vertical pro-
files: For the ambient potential temperature θ we pre-
scribe a piecewise linear profile: In the range 0 ≤ z ≤
12 km the temperature gradient has the slope dθ/dz =
0.0025 K/m, in the range 12 ≤ z ≤ 15 km the poten-
tial temperature increases with dθ/dz = 0.3 K/m, and at
the tropopause (ztp = 12 km) the transition of both is
continuous. For the ambient pressure profile p(z) is pre-
scribed according to Clark and Farley (1984). From θ(z)
and p(z), the physical temperature T (z) and the density
ρ(z) can be calculated.

Additionally, a horizontal wind profile u(z) is pre-
scribed: In the vertical range 0 ≤ z ≤ 1 km u(z) in-
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Figure 1: Vertical profile of potential temperature θ for
the trapped wave case.

creases linearly with altitude until a value u0 is reached.
In the vertical range up to the tropopause the wind re-
mains constant (u(z) = u0), above that level, u(z) de-
creases linearly until u(z = 15 km) = −10 m/s.

The relative humidity with respect to ice in the whole
2D domain is prescribed as RHi = 40% in the vertical
range z ≤ 12 km and RHi = 5% in the stratosphere. Ad-
ditionally, a supersaturated box (RHi = RHi2 ≥ 100%)
in the horizontal range 60 ≤ x ≤ 160 km and the vertical
range z1 ≤ z ≤ z2 is prescribed. In this supersaturated
layer we expect the cirrus cloud formation due to the adi-
abatic cooling in the uplift region of the mountain wave.
We vary the altitude of the supersaturated layer, but the
layer has always a thickness of ∆z = z2 − z1 = 1 km.
For the reference simulation we choose: RHi2 = 110%,
u0 = 20 m/s, z1 = 9.5 km, and z2 = 10.5 km, respectively.

3b. Trapped waves

For the simulation of trapped waves we use the same
2D domain but apply higher spatial and temporal reso-
lutions: dx = 500 m, dz = 100 m and dt = 2 s. Here,
the mountain with a height of 1000 m is located at 3/5 of
the whole horizontal extension. The relative humidity is
prescribed as in the case of the hydrostatic wave. Verti-
cal profiles of θ(z) and u(z) are prescribed as shown in
Figs. 1 and 2 (see also Hertenstein and Kuettner 2005).
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Figure 2: Vertical profile of the horizontal wind speed for
the trapped wave case.

These upstream profiles are based on rotor observa-
tions in the lee of the Sierra Nevada during the Sierra
Wave Project in 1952. They allow a combined simula-
tion of vertically propagating waves in conjunction with
trapped waves in the lee. The negative vertical shear
above 13 km altitude leads to stratospheric wave break-
ing (not discussed here). In contrast to the numerical
experiments of Hertenstein and Kuettner (2005), no ex-
plicit friction was used in our simulations.

4. Results

First, we present pictures from the life cycle of the hy-
drostatic wave (fig 3). After approximately 90 min, the
hydrostatic wave has reached the upper troposphere. In
the ascending branches of the mountain wave, the back-
ground relative humidity of RHi = 40% increases up
to a value of 80% due to the adiabatic cooling. The
elevated supersaturated layer is advected toward the
mountain wave. By passing the wave, the air parcels
are lifted, RHi increases, and homogeneous nucleation
takes place. The resulting ice crystals propagate down-
stream of the wave crest. However, the subsequent
warming of the downdraft is strong enough to evaporate
most of the ice crystals. Hence, only the cirrus lenticu-
laris over the mountain can be simulated during the short
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Figure 3: Relative humidity RHi (%, color shaded) and
potential temperature θ (K, grey contour lines with ∆θ =
2 K) and ice water content (mg/m3, black contour lines
with ∆IWC = 1 mg/m3) for the case of a vertically prop-
agating hydrostatic wave at t = 90, 180, and 270 min (top,
middle, bottom), respectively.

period of the passing supersaturated layer. After that
time, the pre-cirrus state is reached directly above the
mountain crest whereas the box itself lost its supersatu-
rated initial state.

Figure 4 presents snapshots form the life cycle of a
cirrus cloud formed above a region of trapped waves.
In this case, wave energy propagates vertically as well
as horizontally. After about 105 min, three crests of the
trapped waves formed downstream of the mountain ridge
with a typical horizontal wavelength of about 10 to 15 km.
Above that region and below the tropopause, the verti-
cally propagating hydrostatic wave generated an ascend-
ing branch where ice crystals formed during the period of
the passing supersaturated box. In contrast to the verti-
cally propagating hydrostatic mountain wave case, here,
the lifted region extends horizontally downstream more
than 50 km (Fig. 4b). This results in a cirrus cloud with a
longer life time and a more diffusive downwind tail. Fur-
thermore, and probably due to the steeper hill, the up-
stream edge of the cirrus clould is much sharper than
that of the cloud shown in (fig 3b). It is interesting to note
that the initially coherent supersaturated box becomes
disrupted upstream of the steep displacements of isen-
tropes above the mountain (Fig. 4b). In this way, the fi-
nal picture in Fig. 4c resembles orographic cirrus clouds
downstream of real mountains.

5. Summary and outlook

Using a bulk ice microphysical scheme which was re-
cently implemented in the EULAG we were able to simu-
late the formation and evolution of cirrus clouds formed
in the updrafts of orographic waves.

In our idealized numerical experiments we considered
the formation of a cirrus cloud in a vertically propagat-
ing hydrostatic mountain wave and a mountain-wave in-
duced cirrus cloud formed above a region of trapped
waves. The life cycle of the simulated cirrus clouds de-
pended strongly on several conditions, like the initial su-
persaturation ratio of the supersaturation layer, the al-
titude of the layer, the height and width of the hill, the
horizontal velocity and the thermal stability.

For all these parameters, the sensitivities were tested
and different behaviour of the simulated cirrus clouds
and their lifecycles was analysed. Additionally, we
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Figure 4: Relative humidity RHi (%, color shaded) and
potential temperature θ (K, grey contour lines with ∆θ =
2 K) and ice water content (mg/m3, black contour lines
with ∆IWC = 1 mg/m3) for the case of a trapped lee
wave at t = 105, 135, and 185 min (top, middle, bottom),
respectively.

will present numerical simulation results initialized with
ECMWF data for observed cirrus clouds from the re-
cent field campaign T-REX (Terrain-Induced Rotor Ex-
periment, see: http://www.joss.ucar.edu/trex/).
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