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1. Introduction

Nowadays large scale models of the atmosphere like
weather forecast models and general circulation (cli-
mate) models usually have one prognostic variable
to represent the ice phase in the upper troposphere,
namely the cloud ice mixing ratio. However, microphysi-
cal and radiative properties of cirrus clouds depend sen-
sitively on the size of the ice crystals; thus it is desir-
able to have also the number concentration of the crys-
tals as a prognostic variable. While such double-moment
schemes are almost state of the art in cloud resolv-
ing modeling, this is not the case in large scale mod-
els. However, the only examples of such double moment
schemes are a special version of the ECHAM general cir-
culation model (Lohmann 2002; Lohmann and Kärcher
2002) and a special version of the NCAR GCM (Ghan et
al. 1997). The proper representation of clouds in large–
scale models is still fraught with a multitude of difficulties
. The first–order problem for a proper representation of
cirrus clouds in large scale models is the combination
of small- and large–scale dynamics that induces forma-
tion of these clouds (DelGenio 2002). However, also the
processes within the cirrus clouds and the interactions
of the cirrus and their supersaturated surroundings are
important, because they control the optical properties
and the lifetime of the clouds as will be discussed be-
low. One particular point in this respect is the represen-
tation of ice crystal fall speeds. Ice crystals fall relative
to the ambient air due to gravity. This gravitational set-
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tling is an important structure building process in clouds,
as big crystals fall faster than small crystals. Typically,
in a cirrus cloud the top of the cloud (where the crystals
are nucleated) contains small but numerous ice crystals,
whereas the bottom of the cloud consists of a few large
crystals. This structure implies that there are vertical gra-
dients of optical properties in cirrus clouds, such that dif-
ferent cloud layers can have different cooling or warming
effects (Khvorostyanov and Sassen 2002). Atmospheric
models are generally very sensitive to the treatment of
cloud ice, but because of the importance of sedimenta-
tion for the cloud structure the models are particularly
sensitive to the numerical formulation of sedimentation.
Jakob (2002) has demonstrated that, in the weather fore-
cast model of the European Centre for Medium Range
Weather Forecast (ECMWF), the global mean integral
radiation flux divergence decreases from 110 W m−2 to
90 W m−2 for assumed fixed values of the crystal fall-
speed of 0.1 and 2 m s−1, respectively. The difference
of 20 W m−2, although resulting from extreme assump-
tions, is tremendous when compared with the 3.5 W m−2

radiative forcing due to the greenhouse effect for dou-
bling CO2. Hence, the treatment of sedimentation in
large scale models must be done with extreme care.

In the forthcoming models that have both crystal num-
ber density and ice mass concentration as prognostic
values, one has the chance of an improved mapping of
the real world cloud structure into the model world. This
can be achieved by using different fall velocities for crys-
tal number and crystal mass. This is not a novel strat-
egy because it has been implemented in many cloud re-
solving models since 1978 when Srivastava (1978) used
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it probably for the first time in a model of warm clouds.
However, to implement this concept in a GCM is some-
thing new. Here we review the strategy and formulate it
as a derivation from a flux density concept, and we show
as an illustration its effects on the cloud structure, radia-
tive properties, and cloud lifetime using a single–column
model with high vertical resolution.

2. Treatment of ice crystal sedimen-
tation in a two–moment scheme

The flux density concept allows to formulate sedimenta-
tion in double–moment schemes in a coherent way once
the analytical type of crystal mass distribution f(m) is
specified. This specification does not mean that f(m)
cannot vary with time; only the distribution type is fixed,
its parameters vary with time according to the cloud evo-
lution. The a priori specification of a certain kind of mass
(or size) distribution is inevitable in a bulk scheme. For
the mass distribution we assume the following normali-
sation: ∫ ∞

0

f(m) dm =: µ0 = N,

that is, the moment of order zero, µ0, equals the number
of ice crystals per unit volume. With this normalisation,
the mean value of a quantity x with respect to f(m), x is
given by

x = N−1

∫ ∞

0

x(m)f(m) dm

and the general moment is µk =
∫

mkf(m) dm, so that
the mean mass is m = µ1/µ0. The sedimentation is
defined via the number and mass flux densities, respec-
tively, namely:

number flux density fn := N · vt,n (1)
mass flux density fm := IWC · vt,m. (2)

Here, IWC = Nm is the mass of ice per unit volume
(usually termed ice water content), and vt,n, vt,m are cor-
responding bulk terminal velocities for number and mass,
respectively.

It is straightforward to define vt,n with use of f(m):

Nvt,n = Nvt =
∫ ∞

0

vt(m)f(m) dm,

hence vt,n ≡ vt. For vt,m we have

IWC vt,m = Nmvt,

so that vt,m = mvt/m. Here, obviously, vt,m 6≡ vt,n,
and we have two different sedimentation velocities in the
model. Let us also assume that vt depends on the crys-
tal mass in the following way:

(
vt(m)

V

)
= α

( m

M

)β

,

where V, M are unit velocities and masses, respectively,
and α, β are certain parameters, that depend on the crys-
tal habit. Such a relation between ice crystal mass and
fallspeed can be traced back to the empirical relation-
ships derived by Heymsfield (1972) and was applied al-
ready in the cirrus model of Starr and Cox (1985). But
also the most recent papers on ice crystal terminal ve-
locities (e.g. Heymsfield and Iaquinta 2000) suggest re-
lations of this type.

When the parameters α, β are constants, the fall-
speeds can directly be formulated via the general mo-
ments µk of the mass distribution, viz.

(vt,n

V

)
=

α

Mβ

µβ

µ0
(3)

and (vt,m

V

)
=

α

Mβ

µβ+1

µ1
. (4)

These expressions are valid for any assumed mass
distribution as long as the moments exist up to the order
β + 1.

Since large particles fall faster than small ones, vt,m >
vt,n must be valid for any a priori choice of a mass distri-
bution. This implies the following inequality between the
moments:

µβ+1µ0 ≥ µβµ1. (5)

This inequality is valid for all probability distributions that
are defined only on the non–negative real axis. This as-
sures that whatever mass distribution we specify in the
initialisation of a model run, and whatever may evolve
from it in the course of the simulation, the inequality
vt,m > vt,n is always obeyed.
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3. Description of the reference sim-
ulations and microphysical re-
sults

For our study we implement a double–moment bulk ice
microphysics scheme for cold temperature regions (i.e.
T < −38◦C) into the 3D anelastic, non–hydrostatic
model EuLag (see e.g. Smolarkiewicz and Margolin
1997). We use the microphysical variables water vapour
mixing ratio, ice water mixing ratio, and ice crystal num-
ber density. The following microphysical processes are
included for this study: deposition growth and evapora-
tion of ice crystals (Koenig 1971; Gierens 1996), and
sedimentation as described in section 2, including the
possibility to use the same terminal velocity for ice wa-
ter content and for ice crystal number densities, so that
these two approaches and their impact on the simulated
clouds can be compared. In contrast to other models all
ice crystals start to fall relative to the ambient air once
they are formed, i.e. there are no different classes for
cloud ice and sedimenting ice. Crystal aggregation is
not yet implemented in our microphysics code. Although
aggregation could in principle modify quantitatively the
results of our study, the basic findings would probably
be unaffected, in particular because ice–ice aggregation
at cold temperatures does not seem to be an impor-
tant process outside of cumulonimbus anvils, hurricanes,
or mesocale convective systems (see e.g. Kajikawa and
Heymsfield 1989). We carry out several numerical sim-
ulations to investigate the effect of equal vs. different
terminal velocities for a model cloud. For this purpose
we use the following setup:

We run EuLag as a single column model in the ver-
tical range between 0 and 14 km with 50 m vertical
resolution (i.e. 281 vertical levels). In this domain we
initialize the vertical profiles for pressure, density, tem-
perature and relative humidity according to the anelastic
profiles by Clark and Farley (1984) as representing at-
mospheric conditions for an idealized atmosphere with
constant stability; here we assume a Brunt–Vaisala fre-
quency N = 0.0094 s−1, i.e. an almost constant temper-
ature gradient dT/dz ≈ 0.0078 K/m. At zTP = 12 km we
prescribe the tropopause with a change in the tempera-
ture gradient: for z > zTP we again assume an almost

linear gradient of dT/dz ≈ 0.0016 K/m. The tempera-
ture profile is representative for midlatitude spring condi-
tions. We choose the following relative humidity profile:
In the range 10500 ≤ z ≤ 11500 m a saturated cloud layer
(i.e. RHi(z) = 100%) of thickness ∆z = 1 km is initial-
ized. Down to the surface the relative humidity is con-
stant and subsaturated (RHi1 = 60%). Above the cloud
layer the relative humidity is also constant and subsatu-
rated (RHi3 = 5%).

An idealized cirrus cloud is initialized in the saturated
layer in the range 10500 ≤ z ≤ 11500 m. We prescribe
ice crystal number density (Nc = 100L−1) and ice water
content (i.e. IWC = 10mg m−3). As we use bulk mi-
crophysics, we have to prescribe a distribution type for
the ice crystal mass. In our case, the ice crystal mass
is log-normally distributed with constant geometric stan-
dard deviation σm and initial geometric mean mass

m0 =
IWC

Nc · exp
(

1
2 (log(σm))2

) (6)

For our simulations we set σm = 3.25, the equiv-
alent value for the size distribution using the mass–
length–relation acc. to Heymsfield and Iaquinta (2000)
(m/M) = a ·(l/L)b is σl = 1.71. All crystals are assumed
to be of column habit. The simulation time is t = 4 h with
a timestep of dt = 1 s. We run the model for two kinds
of simulations: In the first type we use the same terminal
velocity for ice water content and for ice crystal number
density, namely vt,n = vt,m = mvt/m. In the second kind
we use different terminal velocities for ice water content
and for ice crystal number density, namely vt,n 6= vt,m.

The two sedimentation schemes lead to completely
different cloud structures in all simulations that we have
run. Here we show in particular the mean crystal lengths
for several time instances (every hour) as a function of
altitude. Some important differences between the two
simulations can be observed: When sedimentation is the
same for ice mass and number concentrations, then the
mean crystal mass (or mean crystal length) stays nearly
constant during the 4 hr simulation time; the size distri-
bution changes little with time and little with the vertical
position in the cloud. The cloud seems to sink down al-
most as a solid body, which is unrealistic. The situation
changes dramatically, when two different terminal veloc-
ities are used. This results in small crystals at the cloud
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Figure 1: Mean ice crystal lengths vs. altitude in the
reference simulations for each hour; top: single moment
scheme, bottom: double moment scheme

top and increasingly larger crystals towards cloud bottom
and, in particular, fallstreaks evolve beneath the cloud
with large crystals, which is not at all the case in the
simulation with the single-moment scheme. The crystals
that remain within the initial cloud layer are 30 to 120 µm
in length, while the larger ones fall out. This result agrees
well with our expectation from the physical fact that large
crystals fall faster than smaller ones. After one hour the
crystals in the fall streak get smaller, a consequence of
their evaporation in the subsaturated air. An additional
effect can be observed: Due to evaporation, the larger
crystals at the bottom of the cloud shrink, hence they fall

velocity becomes smaller. Above them, larger crystals
fall down, hence we can observe how some crystals be-
low are larger than the ones on the bottom. This feature,
which also can be observed in nature, can be easily seen
in Fig. 1.

We have also carried out several sensitivity studies on
the impact of different width of the ice crystal mass dis-
tribution, cloud layers at different altitudes and with dif-
ferent initial ice water content. In principle, we could find
the described characteristics of the different sedimenta-
tion schemes for each of these cases (see detailed dis-
cussion in Gierens et al., submitted to Quart. Jour. Roy.
Met. Soc.).

4. Impact of different sedimenta-
tions schemes on radiation

The optical thicknesses for the two reference clouds is
given in fig 2. For determining the optical properties (e.g.
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Figure 2: Cloud optical thickness vs. time in the pair of
reference simulations

optical thickness) of the simulated clouds we use the for-
mulation of the effective radius as described in Ebert and
Curry (1992), assuming columnar crystal shape. The
necessary aspect ratios of the columns are computed
according to Heymsfield and Iaquinta (2000). The radia-
tion code used in this study is the radiative transfer code
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of the CCCma single column model (SCM; Lohmann et
al. 1999).

Here we use the ice crystal effective radius and the
ice water content from EuLag in 67 levels (interpolated
to 200 meter increments from the surface to 12 km and
with the standard CCCma levels above) as input param-
eters for the radiation code. The SCM uses the tem-
perature, specific humidity, ice water content and effec-
tive radius as input and assumes that the cloud fully oc-
cupies a layer, i.e. the fractional cloud cover for this
model is 1 (which is no problem since EuLag is run as
a single–column model). For atmospheric trace gases
and albedo, reference values from the ARM site in Okla-
homa are used. We use a solar zenith angle of 60◦. Both
clouds get optically thinner during the 4 hr simulation
time. While the variation of the optical thicknesses with
time is similar in both cases until t0 ≈ 120min into the
simulations, there arise larger differences after that time,
when the cloud treated with the double–moment sedi-
mentation scheme continues to get optically thinner at a
much smaller rate than its conterpart cloud. The cloud
that was treated with the double–moment sedimentation
scheme remains visible during the whole simulation time,
i.e. for at least one hour more than the other cloud.

Although the optical thickness behaves similar for both
sedimentation schemes initially, the vertical structure for
the optical properties in the two simulated cloud layers
is different: As we have seen earlier, there are strong
differences in ice water content and crystal number den-
sities, resulting in different vertical profiles of effective
radius, local extinction coefficients and other optical pa-
rameters. Hence, in spite of similar overall optical thick-
ness, the two clouds differ greatly when considering the
heating rate profiles. In order to show this more clearly
we consider only the heating rates induced by the clouds
by taking the difference full heating rates (with clouds)
minus clear sky heating rates. Figure 3 shows the net
heating rates for both reference simulations and their cor-
responding differences. The net rates differ between the
two simulations by up to 5 K/d in some cloud layers. Such
largely different local heating rates would, in turn, lead
to large variations in the dynamic and microphysical re-
sponse to the radiative effects, but such important feed-
backs are currently beyond the capability of our cloud
model, and are therefore not further discussed here.

We have also investigated the optical properties for the
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Figure 3: Cloud radiative heating and cooling rate vs.
altitude in the two reference simulations at every hour;
top: single moment scheme, middle: double moment
scheme, bottom: difference single - double.

sentitivity studies mentioned above, but the same state-
ments hold for the optical properties in the different simu-
lations: The heating rates and the optical thickness show
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qualitatively the same behaviour.

5. Summary and outlook

In this study we have derived terminal velocities for mass
and number concentrations from a flux density concept.
We have then tested a double–moment bulk ice micro-
physics scheme against a single–moment scheme with
respect to its microphysical and optical effects. The test
consisted in a comparison of a pair of simulations of an
initially 1 km thick cirrus cloud.

The double–moment sedimentation scheme lets larger
crystals accumulate at cloud bottom while small crystals
remain at the cloud top, which is in agreement with many
observations (e.g., Heymsfield and Iaquinta, 2002). In
contrast, the simple method leads to a cloud with rather
uniform crystal size distribution throughout the depth of
the cloud, which is contrary to our physical understand-
ing.

Also the life time of the double–moment cloud was
larger than that of the single–moment cloud. This fact
was also evident in the optical properties, where the
single–moment scheme lead to an invisible cloud after
about 3 hr whereas the cloud modelled with the double–
moment scheme remained visible throughout the 4 hr
simulation period. Although the optical thicknesses of
the clouds were similar for the first two hours of simu-
lation, the clouds had largely differing vertical structures
(distributions of ice mass, hence extinction etc.). This
lead to large differences in shortwave, longwave, and net
cloud heating rates (within the cloud layer up to 5 K/d),
which, when fed back into the dynamics would certainly
increase the differences between the two clouds simula-
tions.

The simple process studies have shown great differ-
ences in the resulting clouds, their microphysical prop-
erties, their vertical structure, lifetime, and optical prop-
erties. In particular the latter points show that these ef-
fects may be of great importance for climate models and
the treatment of sedimentation therefore deserves great
care in large–scale models. In agreement with Wacker
and Seifert (2001) we have found that double-moment
sedimentation is superior to single–moment sedimenta-
tion. However, not only the microphysical properties but
also the radiative properties of cirrus clouds are strongly

affected by different sedimentation schemes. Our rec-
ommendation is therefore to use different terminal veloc-
ities for mass and number density as soon as a model
makes the step forward to double–moment bulk cloud
physics.
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Lohmann, U. and Kärcher, B., 2002: First interactive
simulations of cirrus clouds formed by homogeneous
freezing in the ECHAM GCM. J. Geophys. Res., 107,
4105, doi:10.1029/2001JD000767.

Smolarkiewicz, P. and Margolin, L., 1997: On forward–
in–time differencing for fluids: an Eulerian/Semi–
Lagrangian non–hydrostatic model for stratified flows.
Atmosphere–Oceans, 35, 127–152.

Srivastava, R. C., 1978: Parameterization of raindrop
size distributions. J. Atmos. Sci., 35, 108–117.

Starr, D. O’C. and Cox, S. K., 1985: Cirrus clouds. Part I:
Cirrus cloud model. J. Atmos. Sci., 42, 2663–2681.

Wacker, U. and Seifert, A., 2001: Evolution of rain water
profiles form pure sedimentation: Spectral vs. param-
eterized description. Atmos. Res., 58, 19–39.

7


