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Abstract 

 
This work represents a continuation in the investigation of techniques to estimate the parameters for rain-
drop-size-distribution (DSD) functions. Although moment estimators are often used to estimate these pa-
rameters, our previous work (Smith and Kliche, 2005; Smith et al., 2005) showed that the method of mo-
ments produces biased results that can lead to misleading extrapolations, and that the resulting functions 
often do not represent correctly the drop populations.  These findings triggered our interest in searching 
for more robust parameter-fitting techniques. In the present paper we describe some findings of our in-
vestigation using Maximum Likelihood (ML) estimators as an alternative to the moment method.  The ML 
method is asymptotically unbiased and seeks to find the parameter values of the assumed gamma size 
distribution function by maximizing the likelihood function.  Monte Carlo simulation of raindrop sampling 
with various sample sizes was considered in this investigation. In cases where the data encompassed the 
full range of raindrop sizes, the ML method gave better estimates for the parameters of the gamma DSD 
function than the moment method. We also investigated the case of poor instrument response at small 
raindrop sizes by removing the drops smaller than a given threshold from all samples. The MLE parame-
ter values are quite sensitive to missing observations of small drops, and the method of moments often 
gave superior results in estimating the parameters for the gamma function in these situations. 
 

 
1. INTRODUCTION 
 
Determining the correct drop-size-distribution 
(DSD) function for raindrop samples is an impor-
tant issue for radar meteorologists, cloud physi-
cists and cloud modelers. The radar meteorolo-
gists are interested in finding the mathematical 
relationships between radar echoes and the ex-
perimental records of rainfall rate.  The DSD is of 
concern for cloud physicists in studies of precipita-
tion physics. Cloud modelers are interested in hav-
ing a mathematical function that describes the 
drop size distribution for the purpose of simulating 
the lifetime of clouds and for a better representa-
tion of the cloud microphysics.  
 
The traditional approach with experimental DSD 
data is the use of moment methods to estimate the 
parameters for the DSD functions. However, it is 
well known that such methods are biased; Smith 
and Kliche (2005) gave examples of this bias for 
the case of sampling from an exponential raindrop 
size distribution, and examples for the gamma  

 
DSD are described in Smith et al. (2005). The fact 
that the estimated or “fitted” parameters obtained 
using the moment method tend to differ signifi-
cantly from the true values of the parameters of 
the underlying raindrop population, especially for 
small sample sizes, represents a serious problem. 
The biased values can lead to wrong conclusions 
about the features of the DSD being sampled. 
 
The present work shows some preliminary results 
of our search for more robust parameter-fitting 
techniques. To test various techniques and their 
ability to estimate the parameters of a DSD, we 
decided to start with a known gamma DSD from 
which we took numerous random samples. We 
used computer-simulated gamma populations (with 
DSD shape parameter µ = 2) and applied a Monte 
Carlo procedure to repetitively sample rain-drops 
from any given population. The moment method 
and the maximum likelihood (ML) method were 
then used to estimate the parameters of the known 
DSD. The analysis using the method of moments is 
described in detail in Smith and Kliche (2005) and 
Smith et al. (2005). The ML method is described in 
detail in the appendix of the present paper. 
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2. SIMULATION OF RAINDROP SAMPLING 
 

To test the effectiveness of the moment method 
and ML method in recovering the parameters of 
the known gamma DSD function, we designed a 
computer-simulated raindrop population. For sim-
plicity, we started with the gamma DSD expressed 
in terms of NT, the total drop concentration, µ, the 
distribution shape parameter, and Dm, the mass-
weighted mean drop diameter. Thus the DSD form 
is 
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Here D is the drop diameter and Dm is related to 
the usual gamma size (scale) parameter λ by Dm = 
(μ + 4) / λ. 
 
This form can be treated as the product of the 
mean number concentration NT and the gamma 
probability density function (PDF) of drop size. The 
unknown parameters in this case are NT, μ and 
Dm. For our simulations, we used a new dimen-
sionless variable y = D/Dm which allows us to cre-
ate simulations which are independent of the spe-
cific value of Dm.  So, (1) becomes 
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For the gamma distribution with µ = 2, our simula-
tions started from selecting values of NT, which we 
designated to be the mean number of drops in a 
sample. This assumption is similar to considering 
a sampling instrument with a sample volume of 
1 m3, and it also applies for a sample volume of α 
m3 and a mean drop concentration of NT /α, be-
cause it leads to the same mean sample size. 
Once NT is selected, we draw from a Poisson dis-
tribution with mean value NT to determine the ac-
tual number of drops in a given sample.  For each 
value in the Poisson array, we then extract corre-
sponding values of y from the gamma PDF and 
establish the sizes of the drops in each sample (in 
this case y representing the normalized values). 
 
For the simulations the drop sizes are classified in 
intervals of , starting from y = 0 and 
truncating the gamma PDF at y = 3.0. This size 
channeling method is a common procedure for the 
drop measuring instruments. The goal is to use 

about 1,000,000 drops in the simulations; there-
fore for N

02.0=Δy

T = 10, a total of 100,000 samples are 
selected, for NT = 50, the total number of samples 
is 20,000, and for NT = 500, 2,000 samples are 
selected.   
 
3. THE BIAS IN MOMENT ESTIMATORS 
 
The general form for the moments of a gamma 
DSD can be written as 
 

 ( )( ) ( ) ( )
i

m
Ti

DiNM ⎥
⎦

⎤
⎢
⎣

⎡
+

+++=
4

...21
μ

μμμ  (3) 

 
In these simulations the sample moments are ex-
pressed as  where the mi

miiS DmM = i represent 
the normalized sample moments.  This format has 
the advantage of allowing dimensionless expres-
sions for the parameter estimates of the DSD, 
where the actual drop size is not included. For this 
study we usually only considered the case of esti-
mators based on M2, M3, and M4. In this new for-
mat, the estimated parameters  
for the gamma DSD are calculated using the fol-
lowing moment expressions: 
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For each sample we calculated the gamma DSD 
parameters using the moment methods. Figure 1 
(taken from Smith et al., 2005) shows the variation 
of the median value of gamma DSD shape pa-
rameter μ̂  with mean sample size NT. The figure 
demonstrates that the gamma functions “fitted” 
this way tend to have overestimated shape pa-
rameters. Three sets of sample moments were 



used for this illustration; the first set is based on 
moments M2, M3, M4, as suggested in Smith 
(2003), and leads to (4) above. The second set is 
based on moments M3, M4, M6, as used by Ulbrich 
(1983), Kozu and Nakamura (1991), and Tokay 
and Short (1996), and the third one is based on 
moments M2, M4, M6, as suggested by Ulbrich and 
Atlas (1998). In this simulation the underlying DSD 
population is a gamma distribution with shape pa-
rameter µ = 2; the horizontal dashed line repre-
sents the population value. Figure 1 shows that 
the “fitted” parameters determined by the moment 
methods are biased, and this bias increases with 
the order of the moments used in the “fitting” proc-
ess.  Consequently, we use only the M2, M3, M4 
set in the work below. As the sample size in-
creases, the bias decreases, which suggests that 
for samples having hundreds or thousands of 
drops, the moment estimators’ bias can be small 
or negligible. 
 

 

 
4. MAXIMUM LIKELIHOOD APPROACH 

 
Although the moment method has the advantage 
of simplicity, its bias in estimating DSD parame-
ters, which can lead to erroneous inferences, is of 
concern. The results of our simulations showed 
that the bias is strong with small sample sizes.  
Since the size of in situ drop samples is usually 

limited, this bias is definitely a problem. Haddad et 
al. (1996, 1997) suggested the use of maximum 
likelihood methods as an alternative, since such 
methods should produce minimum-variance esti-
mates. Choi and Wette (1969) showed that the ML 
methods are not without bias, but the advantage in 
using them is that the bias should be much smaller 
than the one produced by the method of moments.  
 
The purpose of this work is to determine whether 
the ML method gives better estimates than the 
moment method. If we consider only the gamma 
PDF part of (1) then the two parameter gamma 
density function is given by  
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The maximum likelihood estimate of the shape 
parameter µ is obtained by solving the equation: 
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where n is the number of drops in the sample, ψ 
the “psi” or “digamma” function defined by 
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' , and D  is the arithmetic mean of 

variable D. By writing Di = yiDm, (9) can be rewrit-
ten as 
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Figure 1: Variation of median value of gamma 
DSD shape parameter μ̂ , as estimated from the 
indicated sets of three sample moments, with 
mean sample size NT. Population DSD: gamma, 
μ = 2 (horizontal dashed line indicates population 
value). 

 
where yi is the corresponding dimensionless size 
value for each drop in the sample and y  is the 
arithmetic mean. 
 
The expression (10) is solved by iteration, follow-
ing the description in Bowman and Shenton (1988) 
and the steps described in the Appendix. 
 
5. PRELIMINARY RESULTS 

 
The shape parameter µ for each sample is esti-
mated using both the moment method and the 
maximum likelihood method. Figure 2 illustrates 
the sampling distribution obtained for a mean 



sample size of NT = 50; the moment-method “fit” is 
based on the M2, M3, and M4 moments. The verti-
cal line represents the true value of the shape pa-
rameter (μ = 2) for the underlying population. The 
mean value for the shape parameter as estimated 
using the moment method is found to be 3.80, 
while the mean ML estimate of the shape parame-
ter is 2.18. The cumulative histograms for all 
20,000 samples in the case of NT = 50 show 
clearly that the bias resulting from the method of 
moments is much stronger than the bias observed 
using the ML method; the scatter of the moment 
estimates is also much greater.  
 

igure 3 shows that for the cases of NT = 10, 

 different picture emerges when small drops are 

case of µ = 2, 88% of the drops in the population  

 

cumulative histograms 
ow obtained for the estimated gamma DSD 

 
 

 
F
NT = 50, and NT = 500, the bias in the parameter 
estimates diminishes with increasing sample size, 
with both moment and ML estimators. However, 
ML estimates have much smaller bias than the 
moment estimates, and the latter become com-
petitive only at large sample sizes. 
 
A
not included in the sample. Sampling small drops 
can be a major instrumental problem, so this is a 
legitimate concern. We decided to investigate the 
effect of this problem in estimating the parameters 
of the DSD by withdrawing small drops from the 
simulated samples. For a start, we chose to elimi-
nate from each generated sample the drops that 
have y < 0.2 (e.g. drops smaller than 0.2 mm with 
Dm = 1 mm or 0.6 mm with Dm = 3 mm).  For the 

have y ≥ 0.2, so that on average with NT = 50 six 
of the drops will be removed from each sample by
imposing this threshold.  This has little effect on 
the moment estimates, but introduces a significant 
bias into the MLE results.  
 

Figure 4 represents the 

MM

ML
ML 

MM 

 μ = 2 
Figure 3: Variation of median value of gamma 
DSD shape parameter 

 NT = 50 
μ̂ , as estimated by 

method of moments (MM) and maximum likeli-
hood (ML), with mean sample size. Population 
DSD: gamma, μ = 2 (horizontal dashed line 
indicates population value.)  

Figure 2: Sampling distributions of values of 
gamma DSD shape parameter μ̂ , as estimated by 
method of moments (MM) and maximum likelihood 
(ML). Population DSD: gamma, μ = 2 (vertical line 
indicates population value). Mean sample size: 50 
drops. 

n
shape parameter using the moment method and 
the ML method.  The vertical line again represents 
the true value of the shape parameter for the un-
derlying population; the mean value calculated 
using the moment method is 4.10, while the mean  
 

 
 
 
 
 
 

Figure 4: Same as Fig. 2, but with drops smaller 
than 0.2 Dm (i.e., y < 0.2) removed for each sam-

ML 

MM 

μ = 2  
 NT = 50

ple. The resulting effective mean sample size is 
about 44 drops. 



value calculated with the ML method is now not 

he same minimum drop-size threshold was ap-

6. DISCUSSION AND CONCLUSIONS 

ur results confirm the suggestions made in 

much different, namely 3.96.  Comparison of Fig-
ure 4 with Figure 2 clearly shows that the bias in 
estimating the shape parameter is stronger when 
a minimum-size threshold is applied to each sam-
ple, but the effect on the ML method is much 
greater.  
 
T
plied for various mean sample sizes, NT = 10, 
NT = 50, and NT = 500. Figure 5 illustrates the 
trend of the median shape parameter with increas-
ing sample size. The bias in the ML estimates of 
the shape parameter does decrease with the in-
crease of the sample size, but only slightly. Thus 
the moment method, although it has much 
stronger bias at small sample sizes than the ML 
method, actually becomes superior as the sample 
size increases into hundreds of drops. 
 
 

 
O
Haddad et al. (1996, 1997) that the maximum like-
lihood methods can produce minimum-variance 
estimates and demonstrate what statisticians de-
scribe as the ML method being asymptotically un-
biased.  Both techniques tested, the moment 
method and the ML method, have biases when 
estimating the gamma DSD parameters. The bias 
is significantly stronger with the moment method 
when the entire range of drop sizes is considered, 
i.e., small drops are included in the samples. Thus 
in the case of considering the full simulated sam-

ples, the ML method gives better estimates of the 
gamma parameters. 
 
The computer-simulated gamma DSD populations 
had the advantage of including drops with all sizes 
in the interval 0 ≤ D ≤ 3.0 Dm. However, in reality 
the available instruments respond poorly to small 
raindrop sizes. We explored the possible implica-
tion of such a problem by removing from the sam-
ples all drops having D < 0.2 Dm. Our computer 
simulation then shows that the ML method would 
have significant problems if applied to typical 
measured raindrop data; the bias in estimating the 
gamma parameters can equal, or even exceed, 
the bias encountered with the moment method for 
the same samples. The moment method bias de-
creases substantially with increased sample size, 
while that of the ML method diminishes only 
slightly. Thus in the case of samples on which a 
size threshold is imposed, the moment method 
can provide a better approximation of the gamma 
parameters than the ML method does when large 
samples are available. 
 
The method of L-moments (Hosking, 1990; Hosk-
ing and Wallis, 1997) is currently being investi-
gated for the parameter estimation problem de-
scribed above. We hope to provide results of this 
procedure at the conference in July. 
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APPENDIX 
 
Equations for Maximum Likelihood Estimates 

of Gamma DSD Parameters 
 
This appendix shows how the expressions used to 
calculate the ML estimates of gamma DSD pa-
rameters are developed.  The moment-method 
procedures as used in these simulations are de-
scribed in detail in Smith et al. (2005). At this time 
we concentrate on showing the steps followed in 
the Maximum Likelihood method.   
 
The general form of the gamma density function 
with the two parameters µ (shape) and λ (size) is 
given by 
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The parameter λ is related to the mass-weighted 
mean diameter Dm by λ = (μ + 4)/Dm, and equation 
(8) in the text gives the form of the gamma density 
function f (D; μ,Dm). 
 
To implement the ML method mathematically, we 
note that the likelihood function is given by the 
product 
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using the form in (8), where n is the number of 
drops in the sample.  
 
The next step is to maximize the likelihood 
L(Di;μ,Dm) over the parameters µ and Dm. How-
ever, it is equivalent to maximize the log of the 
likelihood instead. One may maximize the log of 
the likelihood function by differentiating with re-
spect to parameter µ and parameter Dm. The re-
sulting equations are given by 
 

 ( ) ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

=+ψ−+

∏ =

nn
i i

MLEMLE

D

D
/1

1

ln1ˆ1ˆln μμ (A3) 

 
and 
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where ψ  is the “psi” (or “digamma”) function which 
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(A3) becomes equation (10) as shown in the text. 
The maximum likelihood estimate for the shape 
parameter is then obtained by solving (10). 
 
Following Bowman and Shenton (1988) we may 
solve (10) by iteration using the recursion 
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until the sequence converges to α. Then the 
maximum likelihood value for the shape parameter 
is given by 1ˆ −= αμMLE . Bowman and Shenton 
(1988) indicated that this iterative procedure “is 
quite powerful and converges rapidly, on the evi-
dence of computational results”. 

 
To implement the iterative procedure it is neces-
sary to evaluate the “psi” function. We use a 
method proposed by Moody (1967).  
 
a. Apply the identity 
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(repeatedly if necessary) to reduce the digamma 
calculation to computing  with x between 
0 and 1. 

( 1+ψ x

b.  Then use 
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where 

 
i ic  
1 +0.64493313 
2 -0.20203181 
3 +0.08209433 
4 -0.03591665 
5 +0.01485925 
6 -0.00472050 

 
and γ = 0.57721566490153286061… is Euler’s 
constant. This approximation is good to within 
1.3×10-8 for 0 ≤ x ≤ 1. 
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