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1. INTRODUCTION 
 

Hexagonal ice columns are one of the main ice 
crystal types in atmospheric clouds and they can be 
solid or hollow. It has been found that a large 
percentage of ice columns found in cirrus clouds is 
the hollow type. The diffusion growth rate of hollow 
ice columns has not been studied rigorously and 
compared with that of the solid columns. This study 
examines the diffusion growth of stationary 
hexagonal ice columns under a specified 
environmental condition. Two sets of solutions are 
shown. One is the simplified analytical solutions, 
and the other is numerical, which allows us to do 
more flexible tests. In both experiment sets, different 
degrees of hollowness are considered so as to 
understand its impacts on the growth. Some 
relevant variables, such as cross sectional area and 
equivalent depth, will also be discussed. 

 
2. METHODS  
 
2.1 Analytical Method 

 
The mass growth rate of a stationary ice crystal 

by diffusion process is described by (Pruppacher 
and Klett, 1997): 
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where m is the ice mass, Dv the diffusivity of water 
vapor in air, and ρ ∞  and ρa the water vapor 
densities in the environment and over the ice crystal 
surface respectively. C is the ice capacitance which 
is a function of ice size and habit. In this study, the 
ice capacitances for solid and hollow hexagonal 
columns developed by Chiruta and Wang (2005) 
were adopted. Based on the electrostatic analogy, 

they proposed that the ice capacitance of solid and 
hollow hexagonal columns could be represented by  

caaaC 21 += .                          (2) 
a1 and a2 are two constants, 0.751 and 0.491 
respectively. The capacitance depends on a and c 
and is independent of the degree of hollowness. 
The geometrical parameters describing a 
hexagonal-columnar crystal are illustrated in figure 
1. Recent laboratory experiments of Bailey and 
Hallett (2004) for ice crystal growth in -20 to -70C 
range suggested that the electrostatic analogy may 
overestimate the growth rates due to the 
none-evenly distributed water vapor pressure over 
the ice crystal surface. The details are not yet 
known. Since the present study focuses on the 
relative growth rates, the conclusions are most likely 
little affected by the absolute growth rates. 

The volumes of solid and hollow hexagonal 
columns can be expressed as  

caVs
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Bh cacaV 22 332 += .                  (3b) 
V is for volume and the subscripts s and h denote 
solid and hollow.  

If the ice density is assumed to be constant, 
then (1) can be rewritten as 
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where ρi is the density of ice. Taking the time 
derivatives of Eq. 3(a) and 3(b) and assuming that 1) 
growths are along c-axis only for both solid and 
hollow ice columns, and 2) cB is a constant, we also 
get the time derivative of volume as 
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For solid case, 33== sαα ; for hollow case, =α  

32=hα .  
By equating the Eq. (4) and (5), we obtain 
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Note that ρa can be obtained from the ideal gas law 
for water vapor: 
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where Ta is the surface temperature, Rv the gas 
constant for water vapor and esat (a,Ta) the saturation 
water vapor pressure over the surface. Because 
steady state is considered here, the surface 
temperature is a constant. If we further neglect the 
curvature and solute effects on the saturated vapor 
pressure term, then ρa is a constant too. Thus, Eq. 
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Figure 1. The scheme for parameters. L is the 
length, D the diameter, and c and a are half length 
and radius respectively. cB is the length from the 
center to the tip of the cavity. 
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(6) shows that for a fixed environmental condition, 
the length growth rate is proportional to the ice 
capacitance only with Λ’ the proportionality 
constant. 

Eq. (2) says that the ice capacitance depends 
on the length. To solve Eq. (6), the changing 
variable was used. Let the new variable c* = 
aoa1+a2c, which is also equal to the ice capacitance. 
Take the time derivative of c* and plug in Eq. (6), we 
get 
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The solution of Eq. (7) is  
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Change variable c* back to c, the final solution is 
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where the constant Λ is 
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Note that the constant Λ includes the parameter α, 
which could be 33  or 32 , depending on whether 
the column is solid or hollow. 

Although the solution is compact, the water 
vapor density is not directly measured usually. In 
the following, we replace the water vapor density by 
temperature and water vapor pressure using the 
ideal gas law. Under the steady state condition, the 
surface temperature is determined by the energy 
balance between latent heat released and heat 
conducted out. Follow the same procedure as in 
Pruppacher and Klett (1997), we could find the 
relationship between the surface temperature Ta 
and the environmental temperature T∞. 
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Again ignoring the curvature and solute effects and 
the small high-order terms, we get the final solution.  
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The solution is exactly like Eq. (9) except the 
argument in the exponential function. S∞ is the 
saturation ratio, Ls the latent heat of sublimation, 
and k the thermal conductivity for air. All other 
variables have been defined previously. Note again 
that the α could be for solid and hollow ice column. 

2.2 Numerical Method 
 

In the above analytical derivations, we have 
assumed growth is along c-axis only and cB is fixed. 
To get the growth rate with relaxed restrictions, we 
use numerical method by allowing growth along 
both c- and a-axes and a flexible cB.  

The steps are shown in the flowchart in figure 2. 
We decided to use empirical relations of length and 
diameter based on observations. For a given initial 
length, the corresponding diameter is determined by 
the specified length-diameter relationship (L-D). 
With the length, diameter and a desired degree of 
hollowness, the mass can be calculated by Eq. (3) 
multiplied by ice density. The ice capacitance is 
determined by Eq. (2). In order to compute the mass 
growth rate, we also need to determine the surface 
temperature. A simple iteration method is used to 
solve the implicit equation of the mass growth rate 
and surface temperature at the same time by 
keeping the energy balance between the released 
latent heat and heat conduction. We add the mass 
increase to the original mass and distribute the new 
mass into new length and diameter by the same L-D 
relationship, then proceed to the next time loop. 
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Figure 2: The flowchart of numerical computation of 
length growth. 

 
3. RESULTS 

 
In this section, the length growth and the 

changes of the corresponding variables will be 
shown. The environmental condition is kept fixed; 
that is,  p = 200 mb, T = -50oC and RHi = 110% 
(RHi is the relative humidity with respect to ice). The 
initial length of the ice crystal is 10 µm, and the 
corresponding diameter which follows the power law 
relationship ( see Pruppacher and Klett, 1997), 

 
927.0 26.0 LD =                           (12) 

 
is 4.305 µm. 
 



3.1 The Analytical Solutions 
 

The analytical solutions are shown in figure 3. 
Figure 3(a) is the length growth versus time for both 
solid and hollow ice columns. The length grows 
exponentially with time for both cases; however, the 
hollow one grows faster than the solid one. This is 
because that the argument γ in the exponential 
function is larger for hollow ice column due to the 
smaller α than the solid ice column, The initial 
condition of the two cases are both a 10 µm long 
solid ice column, so the initial mass increases are 
the same due to the same ice capacitance from the 

same length and diameter. After the increased 
masses are redistributed with diameters fixed, 
however, the length of the hollow ice column 
becomes longer than the solid one. Upon further 
growth, the capacitance of the hollow column 
becomes larger than the solid column due to the 
longer length, and hence its mass increases even 
faster. Redistributing the larger mass increase 
makes the hollow column even longer. Such a 
positive feedback makes the hollow ice column 
growing faster than the solid column. Figure 1(b) 
shows the ratio of length of hollow ice column to 
solid ice column. The ratio increases exponentially 
with time. In the first minute, the length of hollow ice 
column grows to 8 times longer than the solid one. 
For a larger initial length of 30µm (not shown), the 
ratio exceeds 8 in just 8 minutes. 

Figure 4 shows the variations of other 
geometrical variables corresponding to the length 
growth in figure 3. The mass of both solid and 
hollow ice columns increase exponentially (figure 
4(a)). The cross sectional area, calculated by length 
multiplying diameter, increases exponentially too 
(figure 4(b)). The equivalent depth in figure 4(c) is 
defined as the volume divided by the cross sectional 
area. For solid and hollow ice columns, the 
equivalent depths are 
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Because we assume that the diameter is fixed, from 
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Figure 4. The diagnosed (a) mass, (b) cross section area, and (c) equivalent depth corresponding to figure 3. 
The solid lines are for solid ice column, and the dashed lines are for hollow ice column. (d) The solid line is 
the ratio of mass of hollow ice column to that of solid ice column. (e) and (f) are similar as (d), but for cross 
section area and equivalent depth respectively. 
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Figure 3. (a) The length of solid (solid) and hollow
(dashed) ice columns as function of time. (b) The 
ratio of length of hollow ice to that of solid ice. 



Eq. (13a) the equivalent depth for solid ice column 
should be a constant. For the hollow ice column, 
while the length grows with cB fixed, the ratio of cB /c 
in the second term of Eq. (13b) is becoming smaller 
and smaller as c increases. The equivalent depth for 
hollow ice column then will be a constant too, while 
the radius a is fixed. The ratio of the two constants, 
Deq h to Deq s, is 2/3 as shown in figure 4(f). Contrast 
to the constant ratio of equivalent depth, the ratios 
of mass (figure 4(d)) and cross sectional area 
(figure 4(e)) increase exponentially with time. 
 
3.2 The Solutions for Power Law Type L-D 
Relation 

 
In this section, we allow the ice crystal to grow in 

both c- and a-axes, and the dimensions of length 
and diameter follow the L-D relationship given by Eq. 
(12). Three degrees of hollowness are considered. 

The first is solid, cB /c=1. The second is 
half-hollowed, cB /c=0.5. The last one is sheath 
(Nakaya, 1954), total-hollowed so that cB /c=0. The 
results are shown in figure 5.  

The lengths grow rapidly in the beginning and 
then slow down (figure 5(a)). After about 1 hour, the 
lengths grow to about 200-300 µm and increase 
approximately linearly with time. Contrast to the 
former exponential growth behavior where the 
diameter is held constant, the length growth in this 
case is more complicated. The mass increase is 
redistributed in both length and diameter. It needs 
more mass to increase 1 µm in diameter than 1 µm 
in length. So, the increase in dimensions is smaller 
in this situation. But, the ice capacitance, a linear 
combination of length and diameter, weights the 
diameter more, and it could cause more mass 
increase under certain aspect ratios. Combining 
these effects, we obtain the linear growth behavior 
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as shown. The slopes, which are the length growth 
rates, are different for the three kinds of ice columns. 
The slope of sheath is the steepest and the slopes 
of the half-hollowed and solid ice columns are 
similar and flatter. The ratios of the lengths of 
sheath and half-hollowed ice columns to the solid 
ice column are shown in figure 5(f). The length of 
half-hollowed ice column remains at about 1.1 times 
longer than the solid one. On the other hand, the 
ratio of sheath to solid ice column increases rapidly 
to 1.2 in first 100 seconds, then gradually increases 
to 1.3 in the next 1.5 hours. The diameters 
diagnosed from Eq. (12) are plotted in figure 5(b). 
The aspect ratio (defined as length divided by 
diameter) changes from 2.3 to 3 while length grows 
from 10 to 300 µm. Unlike the length growth, the 
mass growth rates increase with time (figure 5(c)), 
however, the ratios have the similar pattern as the 
ratios of lengths, that is, about constant ratio for 
half-hollowed to solid ice column and gradually 
increasing ratio for sheath to solid ice column (figure 
5(h)). As to cross sectional area, the ratio increases 
with time for sheath, but remains approximately 
constant for half-hollowed and solid ice columns. 
The ratios for cross sectional area have similar 
pattern as the length and mass.  

In this experiment set, the ice crystals start with 
the same dimension but different degrees of 
hollowness, so they start with the same cross 
sectional areas but different masses. It is interesting 
that the initially lightest sheath grows to become 
heavier than the solid in merely 30 seconds. The 
variations of the equivalent depth are shown in 
figure 5(e) and the ratios are shown in (j). The ratio 
of half-hollowed to solid is still about constant at 
~0.91, but that for sheath to solid column is 
gradually increasing from 2/3 to 0.85. 
 
4. CONCLUSIONS 

 
In this study, we compared the length growth of 

solid and hollow columnar ice crystals in two 
experiment sets. In the simplified analytical 
solutions, the diameter and cB are held fixed. The 
growth rate of length, mass and cross sectional area 

are exponential with time for both hollow and solid 
ice column. The hollow ice column grows faster than 
the solid one. The differences of length, mass, and 
cross sectional area between solid and hollow ice 
columns increase exponentially with time, too. As to 
the equivalent depth, after growing tens of seconds, 
the ratio of the equivalent depth of hollow to solid ice 
column remains constant such that the equivalent 
depth of hollow ice column is 2/3 of that of solid ice 
column. In the numerical experiments, the ice 
columns with three degrees of hollowness are 
allowed to grow in both a- and c-axes following a 
power-law type dimensional relationship. The 
results show that the length growth tends to be 
linear with time. The length growth rate of sheath is 
the largest, and the length growth rates of 
half-hallowed and solid ice columns are similar and 
smaller than the sheath. The ratios of the length, 
mass, and cross sectional area of half-hollowed to 
solid are becoming constant after growing tens of 
seconds, but that for sheath to solid increase 
gradually with time. The ratios of the equivalent 
depths have the similar tendency, but the sheath 
has the smallest equivalent depth and the solid ice 
column the largest. It is interesting to note that the 
ratios change extremely rapidly in just the first 
minute and then suddenly slow down. In the future, 
it would be interesting to investigate how sensitive 
the short wave and long wave radiations will 
respond to such growth behavior. 
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