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Abstract: 
Precipitation and clouds are fundamentally point-like but when averaged over larger enough 

scales are usually considered to be continuous and are mathematically modeled using fields (or densities 
of measures).  Until recently when it has been essential to have a particle description, the latter have been 
modeled using uniform Poisson processes in which the number density of particles is considered uniform 
in space and/or time.  Since empirical drop distributions (typically measured with disdrometers) are never 
spatially or temporally homogeneous, attempts have been made to model the heterogeneity using classical 
compound Poisson processes in which heterogeneity over narrow ranges of scales “control” the Poisson 
process.  

While the disdrometer based experiments have increasingly recognized the importance of drop 
heterogeneity, there has been a growing consensus – at least over the smaller scales – that atmospheric 
turbulence can be accurately modeled by cascade processes in which energy and other conservative fluxes 
are concentrated into a hierarchy sparse fractal sets, (more precisely, multifractal measures) in which the 
heterogeneity occurs over huge ranges of space-time scales in a power law manner.  Since the turbulent 
wind and the drops are strongly coupled, it is natural to suppose that the drop heterogeneity also occurs 
over wide ranges, and that the latter is largely “controlled” by the turbulence.  Recently [Lovejoy, et al., 
2003], [Lilley, et al., 2005] the connection between the drop statistics and (Corrsin-Obukov) turbulence 
has been directly made thanks to the use of stereophotography of rain drops in 10m3 volumes (the 
“HYDROP” experiment [Desaulniers-Soucy., et al., 2001]).  

In this paper, we show how the turbulence and particle processes can be combined in a 
nonclassical compound Poisson-cascade process and we verify the result on the HYDROP data.  The key 
is the liquid water density ρ variance flux (χ) which - following the HYDROP  observations and Corrsin-
Obukhov passive scalar theory – is conserved from scale to scale (it is the basic multifractal field).  The 
link to the particle description is via the particle number density (n); we show how this can be determined 
from χ and the turbulent energy flux ε; we theoretically predict a (classical) k-5/3 spectrum for ρ and a new 
k-2 spectrum for n which we confirm is close to observations. 

In order to perform simulations respecting these turbulence constraints we start with cascade 
models of χ and ε cut-off by viscosity at the dissipation scale (roughly 1cm).  From these fluxes we 
determine ρ and n by fractional integration.  At scales below 10cm or so, there is typically only one drop 
in the corresponding sphere; we interpret n as the number density of a (compound) Poisson process and 
randomly determine the positions of the ith particle: xi. The masses mi, are determined from a unit 
exponential (Marshall-Palmer) random variable ui: mi=ui ρ(xi)/n(xi).  The resulting measure (mi, xi) has the 
observed energy spectrum, the observed multifractal statistics (including the transition from particle 
scales to field scales) it also has realistic probability (fat tailed, power law) distributions for total mass in 
a large sphere M.  In this case, it predicts a power law with exponent qD=3 (this is an exact result coming 
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from theory and dimensional analysis).  We show both on numerical simulations and on the HYDROP 
data that this prediction is accurately obeyed.  In addition, it potentially explains several reports that qD≈3 
for the rain rate.  Since it incorporates (in a highly inhomogeneous framework) the Marshall-Palmer 
exponential drop distribution as well as a Poisson particle process, it bridges the gap between classical 
and turbulence approaches. 

Numerical simulations spanning the range 1cm to 1000km can be readily produced.  These 
simulations can be used for simulating radar reflectivity factors, effective radar reflectivity factors; 
extensions of the model can be used to simulate rain rates and rain gauges.  These models can thus 
potentially solve various precipitation observer problems. 

 

1. Introduction 

Rain is a highly turbulent process yet there 
is widening gap between turbulence and 
precipitation research.  On the one hand 
turbulence is increasingly viewed as a highly 
intermittent, highly heterogeneous process 
with turbulent energy, passive scalar variance 
and other fluxes concentrated into a hierarchy 
of increasingly sparse fractal sets; over wide 
ranges, the fields are multifractal (see e.g. 
[Anselmet, 2001] for a recent review).  
Furthermore, advances in high powered lidars 
have produced turbulent atmospheric  data 
sets of unparalleled space-time resolution.  
Analysis of such data from aerosols have 
shown that if classical Corrsin-Obukhov 
theory of passive scalar turbulence is given 
anisotropic extensions to account for 
atmospheric stratification and multifractal 
extensions to account for intermittency, that 
these rejuvenated classical theories account 
remarkably well for passive pollutants 
([Lilley, et al., 2004]).  In contrast, 
applications of turbulence theory either to 
interpreting radar echoes, or to disdrometer 
experiments almost invariably assume that the 
turbulence is uniform resulting in 
homogeneous Poisson rain statistics (e.g. 
[Marshall and Hitschfeld, 1953], [Wallace, 
1953]), or that it is only weakly heterogeneous 
and can be modeled by ad hoc compound 
Poisson processes (e.g. [Uijlenhoet, et al., 
1999], [Jameson and Kostinski, 1999]). 

At a theoretical level, combining turbulence 
theory with rain drop physics poses two 
related difficulties.  One the one hand rain is 
particulate and is strongly coupled to the 
multifractal wind field so it is not continuous 
and its classical treatment as a mathematical 
space-time field (e.g. that R(x,t) is well 
defined without explicit reference to its 
scale/resolution) is not obvious ([Lovejoy, et 
al., 2003]).  One the other hand, it does not 
obviously fit into the classical turbulence 
framework of passive scalars: rain 
simultaneously modifies the wind field while 
moving with speeds from different than that of 
the ambient air.  So far, attempts to attack the 
full interaction at its most fundamental level 
by taking these two aspects into explicitly into 
account (e.g. [Falkovitch and Pumir, 2004], 
[Falkovitch, et al., 2006]), have made limited 
progress.  At a more phenomenological level, 
there has been more progress following the 
proposal ([Schertzer and Lovejoy, 1987]) that 
even if rain is not a passive scalar that it 
nevertheless has an associated scale-by-scale 
conserved turbulent flux leading to a coupled 
turbulence/rain cascade model and predicting 
multifractal rain statistics over wide ranges of 
scale.  The predictions that rain should have 
anisotropic (especially stratified) multifractal 
statistics although based essentially on the use 
of scaling symmetry arguments has been quite 
fruitful (see e.g. the early review [Lovejoy and 
Schertzer, 1995]).  However these empirical 
studies have been at scales larger than drop 
scales and outstanding problems include the 
characterization of low rain rate events and the 
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identification of the conserved (cascaded) flux 
itself.  In other words, the connection with 
turbulence has remained implicit rather than 
explicit. 

In order to bridge the gap between the drop 
physics and turbulence, data spanning the drop 
and turbulence scales were needed.  Starting 
in the 1980’s, various attempts have been 
made including experiments with chemically 
coated blotting paper ([Lovejoy and Schertzer, 
1990]) and lasers, ([Lovejoy and Schertzer, 
1991]).  The most satisfactory of these was the 
HYDROP experiment ([Desaulniers-Soucy., 
et al., 2001]) which involved 
stereophotography of rain drops in ≈10m3 
volumes typically capturing the position and 
size of 5,000 -20,000 drops (nominal rain 
rates were between 2 and 10mm/hr; see fig. 1 
for an example, and table 1 for information 
about HYDROP).  Analyzes to date ([Lovejoy, 
et al., 2003], [Lilley, et al., 2005]) have shown 
that at scales larger than a characteristic scale 
determined by both the turbulence intensity 
and the drop size distribution (but typically 
around 20-30 cm see e.g. fig. 1a, b) that the 
liquid water content (LWC) and other 
statistics cluster in a scaling manner as 
predicted by cascade theories.  While these 
results suggested that rain is strongly coupled 
to the turbulent wind field at scales larger than 
20-30cm (potentially explaining the 
multifractal properties of rain observed at 
much larger scales), the analyses did not find 
an explicit connection with standard 
turbulence theory.   

In this paper, we perform the first spectral 
analyses on the HYDROP data demonstrating 
quantitatively the connection with passive 
scalar advection.  We then go on to propose a 
phenomenological turbulence - drop 
coalescence equation which we use as the 
basis for a compound multifractal process 
model of rain.  The resulting model is based in 
turbulence theory yet generates realistic drop 
size distributions (including nonclassical 
extreme tails) and can be readily extended to 

account for spatial anisotropy (in particular, 
vertical stratification) and is very close to the 
HYDROP and other scaling analyses.  It can 
be used for modeling radar measurements of 
rain from drop scales on up.  Quite realistic 
(visually, statistically) radiative transfer and 
other simulations can be made, including for 
the low-zero rain rate regions. 

 

2. The connection between drops and 
turbulence 

2.1 Recap of the classical turbulence laws 

In order to make a connection between the 
drop processes and turbulence, we recall the 
equations and phenomenology of passive 
scalar advection: 
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Eqs. 1, 2 are the standard fluid equations for 

the wind (v, eq. 1), with incompressible 
continuity for the fluid density (ρf,  eq. 2) and 
for passive scalar concentration (ρ, eq. 3).  ν, 
κ are respectively the molecular viscosity and 
molecular diffusivity of the passive scalar, p is 
the pressure.  In eq. 1 we have neglected the 
effect of gravity (this leads to a nontrivial 
scaling stratification discussed see e.g. [Lilley, 
et al., 2004]; for simplicity here we assume 
isotropy in three dimensional space). 

The standard Kolmogorov and Corrsin-
Obukhov laws are obtained by noting that the 
nonlinear terms in the above conserve the 
fluxes: 
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This follows by multiplying the equations 
by v, ρ respectively and using the 
incompressible continuity equation for v 
followed by standard manipulations. 

One can also show that in fourier space the 
passive scalar variance flux χ and energy flux 
ε are indeed fluxes from large scales to small: 
according to the equations these fluxes are 
only dissipated at molecular scales.  In 
addition, between an outer injection scale and 
the dissipation scale, there is no characteristic 
scale, hence at any intermediate scale l one 
expects: 
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where vl is the typical shear across an l sized 
eddy, and ρl is the corresponding typical 
gradient of passive scalar; the τl’s are the 
corresponding transfer times (the “eddy 
turnover time” in turbulence jargon).  In both 
cases the time scale is determined by the only 
relevant velocity and the length scale:   
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This leads to: 
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These equations lead directly to the 
classical Kolmogorov and Corrsin Obukhov 
laws: 
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laws.  Finally, we might add that by invoking 
a third property of the equations – that they 
are “local” in fourier space, i.e. interactions 
are strongest between neighbouring scales, we 
obtain the standard cacade phenomenology, 
the basis of cascade models.  In the 1980’s it 
was discovered that such cascades generically 
yielded multifractal fluxes, hence accounting 
for turbulent intermittency. 

 

2.2 The turbulence drop coalescence 
equation 

Our aim is to find an equation analogous to 
eq. 3 but for rain liquid water concentration 
and which can account for both coalescence of 
drops and their decoupling from the ambient 
wind field due to drop inertia and gravity.   

We first note that (ignoring condensation) 
the usual coalescence (Smolukowski) equation 
used for example in cloud and rain modeling 
[Srivastava and Passarelli, 1980] can be 
written: 

  

!N

!t
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where 
   
N = N M,x,t( )  is the drop mass 

distribution function i.e. the number of drops 
with mass between M and M+dM  per unit 
volume of space at location x, time t. The right 
hand side term is (in compact notation, see 
[Lovejoy, et al., 2004]), the drop coalescence 
term where ϕ(x,t) is the coalescence rate and 
N H N  is the coalescence operator:  
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The full coalescence kernel  H  has been 

factorized 
     
H !M ,M,x,t( ) = ! x,t( )H !M ,M( )  so 

that the drop-drop collision mechanism is 
time-space independent: 

   
H !M ,M( ) , space-time 

variations are accounted for by ϕ. 
Motivated by the preceeding, we propose 

the following turbulent-drop coalescence 
equation: 
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d
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where we have used the advective derivative 
(D / Dt , eq. 3) instead of ! / !t  and added a 
new phenomenological drop diffusivity term 
with a dissipation function 

   
!

d
N( )  which is 

only important at the small scales.  We shall 
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see below that there is a natural averaging 
scale where the wind/drop decoupling occurs 
(in the data analyzed, at around 30cm), this 
dissipation term accounts for the deviation of 
drop velocities from the wind velocity v due to 
the fall speeds.  This could be regarded as our 
“parametrization” assumption since in a single 
term we include all the non wind-advected 
drop motions.  At this stage, this term is 
unimportant, we do not specify it explicitly; 
recall that for passive scalars, the dissipation 
is via molecular diffusion so that 
!
d
N( ) =!"2

N .  In the form given it assures 
that the drop scale processes dominate at small 
scales where gradients in N are important, it 
also assures that the usual passive scalar 
advection equation is obtained at larger scales. 
With the exception of the dissipation term, eq. 
12 is the same as that invoked in [Falkovitch, 
et al., 2006] (although only the non turbulent 
v=0 case was considered). 

We now consider the first two moments of 
the turbulence-drop coalescence equation; the 
number density (n) and drop mass density (ρ): 

 

n x,t( ) = N M , x,t( )dM
0

!

" ; # x,t( ) = N M , x,t( )MdM
0

!

"
(13) 

We now multiply eq. 12 by dM and MdM 
respectively and integrate with respect to M. 
The results are: 
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and where we have used the fact that the 
coalescence operator conserves drop mass:  

N H NM = N H NMdM

0

!
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but not number so that for the ρ equation (15), 
coalescence is not directly relevant whereas it 
is relevant for the n equation (14). 

By comparing equations 14, 15, we can see 
that the right hand side (dissipation terms) are 
quite different, so that it is quite possible that 
there in addition to χ (eq. 4), there is a new 
conserved flux ψ: 
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As in the above, we argue that in the scaling 
regime;  
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The key point here is that due to the 
importance of coalescence for n (but not ρ), 
that the time scale for the transfer is 
determined by rain drop scale processes, 
denoted τl,R which is not the same as the 
turbulent time scale (“eddy turn over time”) 
τl=l/vl. relevant for ρ and hence χ.  The time 
scale for the number variance flux ψ is 
determined by the coalescence processes and 
can be estimated from the particle fall speeds 
vl,R as: 
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where vl,R is a typical drop fall speed with 
respect to the local wind.  Combining eq. 20, 
18 we obtain: 
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However, the fluxes χ, ψ are closely linked 
since they are both determined by different 
moments of N, indeed, since χ is quadratic in 
N, we expect at least for large enough 
averaging volumes: 
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where l is a spatial scale and: 
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where Bl is a “ball” (e.g. sphere) of scale l of 
volume vol(Bl) and 

   
P M,x,t( )  is the 

probability density of particles with mass 
between M and M+dM: 

   

P M,x,t( ) =
N M,x,t( )

n x,t( )
 (24) 

the mean mass is averaged over the drop 
probability distribution.   Here and below, 
drop averaging is denoted by an overbar, and 
ensemble averaging over turbulent statistics 
(see below), by “<.>”.  

From eq. 21 and 22, we obtain the 
fundamental prediction of the turbulence-drop 
coalescence equation: 
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where: 
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vR(M) is the characteristic (nonturbulent) fall 
speed of a drop of mass M.  Physically this is 
plausible since vR is the result of the 
decoupling of drops from the turbulence; this 
will be a kind of random walk with an overall 
drift imposed by gravity. 

Eq. 26 is the key result of this section, in 
fourier space (ignoring multifractal 
intermittency corrections), this implies En(k)≈ 
k-2 whereas for ρ, we have the classical 
Corrsin-Obukhov result: Eρ(k)≈ k-5/3.  We shall 
see that the number density, combined with 
the mass density and assuming the scaling 
laws for v, ρ, n, all with assumptions about the 
statistics of the fluxes χ, ε, implicitly 
determine the drop size distributions. 

3.  Empirical test of the number size 
distribution: 

3.1  Discussion: 

The key predictions of the turbulence –drop 
coalescence equation is that at least at large 
enough scales, the liquid water density 
follows the Corrsin-Obukhov (l1/3) law, while 
the corresponding number density follows the 
new l1/2 law (eq. 25).  We thus seek to test 
both predictions using the HYDROP data. 

 

Table 1: Reproduced from [Lilley, et al., 2005], 
characteristics of the HYDROP triplets.  
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3.2  Empirical test of the mass and number 
density laws on HYDROP data: 

Fig 1a shows the 3D isotropic (angle 
averaged) spectrum of the 19 
stereophotographic drop reconstructions 
averaged over each of the five storms.  Each 
storm had 2 - 7 “scenes” (from matched 
stereographic triplets) with 5,000 – 20,000 
drops each taken over a 15-45 minute period 
(see table 1). The angle averaging was done so 
that a white noise appears flat.  The low 
wavenumber reference line indicates the 
theoretical Corrsin-Obukhov k-(5/3+2) angle 
averaged spectrum (the usual spectrum is 
angle integrated; the angle averaging -dividing 
by 4πk2 - contributes the 2 in the exponent).  It 
can be seen that the transition between passive 
scalar behaviour - where the drops are 
effectively prisoners of the turbulence and the 
high wavenumber regime, where the drops are 
totally chaotic (white noise) occurs at scales of 
roughly 20-30cm.  Many more details on these 
data sets are available in [Lilley, et al., 2005], 
note however that the mean interdrop distance 
is about 10cm, so that at the transition scale 
there will be typically 10-50 drops.   

 
Fig. 1a:  This shows the 3D isotropic (angle 

integrated) spectrum of the 19 stereophotographic 
drop reconstructions, for ρ, the particle mass 
density.  Each of the five storms had 3- 7 “scenes” 
(from matched stereographic triplets) with 5,000 – 
40,000 drops each taken over a 15-30 minute 

period (orange = f207, yellow = f295, green = f229, 
blue green = f142, cyan = f145).  The extreme low 
wavenumber corresponds to ≈2m (log10k=0.3, the 
minima correspond to about 20-40cm). The reference 
lines have slopes -5/3, +2, the theoretical values 
for the Corrsin-Obukhov (l1/3) law and white noise 
respectively. 

 
In order to test the l1/2 law for the number 

density, we replaced each drop mass by the 
indicator function and produced the spectra shown 
in fig. 1b. 

 
Fig. 1b:  Same as previous but for n, the 

particle number density (calculated using an 
indicator function on a 1283 grid.  The reference 
lines have slopes -2, +2, the theoretical values for 
the l1/2 law and white noise respectively.  

 
In fig. 1b, we see that the convergence to the 

low wavenumber theoretical k-2 behaviour (straight 
line) occurs at slightly smaller scales than for the 
k-5/3 behaviour of ρ since n is less variable 
(smoother) than ρ. 

Finally, we display fig. 1c which show the ratio 
of the ensemble spectra (all 19 triplets) for Eρ(k), 
En(k); this is a sensitive indication that the number 
density field really is smoother (by about k1/3) than 
the corresponding spectrum for the mass density.  
Because we have taken the ratio of the spectra, the 
y axis is “blown up” with respect to the previous; 
this is quite a sensitive indicator that the basic 
theory is roughly correct. 
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Fig. 1c: This shows the ratio of the ensemble 

spectra Eρ(k)/En(k); for each of the 5 storms, and 
the overall ensemble (purple), with theoretical 
reference line slope -1/3.  This is a sensitive test of 
the prediction of eqs. 9, 25. 

4.  The compound Poisson-rain-turbulence 
model 

4.1  Discussion 

The general approach to numerical 
modelling of rain and clouds is to explicitly 
model the fluid dynamics and to parametrize 
the “cloud physics” i.e. the complicated 
coalesence, condensation and other particle 
scale processes are dealt with in a relatively ad 
hoc way.  On the contrary, most attempts to 
explicitly deal with drop physics processes 
have made great simplifications in the fluid 
dynamics, usually ignoring the advection and 
turbulence (e.g. [Srivastava and Passarelli, 
1980]), or occasionally by the converse: by 
including turbulence as a kind of 
parametrization of the coalescence kernel H; 
[Khain and Pinsky, 1995].  Other approaches 
which attempt both detailed microphysics and 
fluid dynamics (e.g. LES models, 
[Khairoutdinav and Kogan, 1999], actually 
end up parametrizing both the particle 
distributions (e.g. lognormal) and the small 
scale advection  (see however [Feingold, et 
al., 1998] for an LES with a “bin approach” to 

the particle distribution).  In all cases, the 
turbulent structures in the wind field are 
parameterized at scales much larger than the 
particle scales so that the kind of turbulent- 
drop interactions predicted by the number 
drop scaling law (eq. 25) coupled with the 
Corrsin-Obukhov law (eq. 9) are absent.  
Surprisingly, in the literature, we have found 
no reference to the Corrsin-Obukhov law in 
the context of rain drop-turbulence modeling. 

In this section, we exploit the fact that the 
above derived turbulent scaling laws:  

v
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to make a full explicit drop model valid from 
drop scales on up to the outer turbulent scales. 

In terms of modelling particle behaviour, 
the modelling of n is critical since it can be 
used to control a Poisson process to determine 
particle positions.  We can see from eq. 28 
that it is jointly determined by the turbulent 
mass variance χl as well as by the drop 

processes via A
l

!2
= M

2
v
R( )

l

 which we expect 

to vary only slowly as a function of scale l.  
We shall see that due to the scaling, eqs. 27 
are actually very demanding on the way that 
water is distributed. 

Before continuing, it is worth interpreting 
the key equation for nl.  We first note that 
since 1/nl is the volume required so that there 
is typically a single particle, the local value of 
of nl defines the (local) mean interparticle 
distance.  Considering the number density at 
smallest scale of the turbulent cascade nl* and 
averaging over the turbulence, we see that the 
typical interparticle distance is: 

L
int
! n

l*

"1/3

=
A

"1/3

#
l*

1/2
1/3

l
*

1/6

 (28) 

This equation shows how the mean 
interparticle distance is controlled by the large 
to small scale turbulent fluxes (χ), the inner 
scale of the cascade (l*), and the drop 
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statistics/physics M
2
v
R( ) .  In particular, for a 

given turbulent cascade process, M
2
v
R( )  

controls the typical interparticle distances. 

4.2 Bare and dressed turbulent fields 

Our aim is to produce a stochastic model 
which combines the turbulent cascade 
processes (to produce vl*, ρl*, nl*), with a small 
scale Poisson model of the drop processes.  
There are therefore two independent stochastic 
processes; the first determines the turbulent 
fields down to the smallest scale l*, while the 
second, takes the first as given and distributes 
the drops and masses in such a way that at 
large enough scales, the degraded, averaged, 
“dressed” statistics follow at least roughly the 
observed Corrsin-Obukhov and corresponding 
number density laws.  

The model starts by using a turbulent 
cascade to obtain stochastic realizations for 
the fluxes with the prescribed scalings (i.e. 
which obey eq. 27 for all scales l ≥ l*), and 
multifractal intermittencies i.e. the fluxes at 
scale l have the following multiscaling 
properties: !l

q
= l

"K! q( )
; #l

q
= l

"K# q( )  
where the K’s are convex functions of the 
order of statistical moment q.  In order to 
understand the model, we start with the 
distinction between bare and dressed cascade 
quantities (c.f. [Schertzer and Lovejoy, 1987]).  
The bare quantities are purely the result of 
turbulent cascade processes starting from a 
large external scale down to the smaller scale 
l, and stopped at that scale.  In contrast, the 
“dressed” quantities (denoted with a subscript 
“d” below) are the result of continuing the 
cascade down to its smallest inner scale, 
denoted l* (in principle the limit l*->0 could be 
taken) and then spatially averaging over the 
corresponding scale l: 

 

n
d ,l

=
1

volB
l

n
l*
dx

Bl

!

"
d ,l

=
1

volB
l

"
l*
dx

Bl

!
 (29) 

Note that here and below, we drop explicit 
reference to time, but all of the results extend 
readily from space to space – time, as long as 
an appropriate space-time stratification is used 
and the causality of the resulting process is 
respected (see e.g. [Marsan, et al., 1996]).   
The relation between the bare and dressed 
quantities are relatively well understood.  For 
example for the flux χ, we have 
!
d ,l

= !
h, l /l*( )

!
l
 where !

h, l /l*( )
 is a “hidden” 

factor (hidden by the spatial integration 
[Schertzer and Lovejoy, 1987]), which is a 
random factor which most of the time is of 
order unity, but occasionally takes large 
values such that the tail of its probability 
distribution is algebraic with exponent qD.  
This implies: 

!l

q
= l

"K! q( )
; q # 0

!l ,d

q $
l
"K! q( )

q < qD

% q # qD

 (30) 

(strictly speaking the above divergence occurs 
in the limit l

*
! 0 ). 

4.3 The Poisson drop field: 

At the finest resolution l*, the Poisson 
number density field np,l

!

x( )  and the Poisson 
mass density field !p,l"

x( )  (the “p” for 
“Poisson”) can be defined as the random 
“Dirac comb”: 

    

n
p,l

*
,!

x( ) = ! x " xi( )
i

#  (31) 

where the positions xi are subordinated to the 
bare number density at the highest resolution 
nl* and the sums are over all the particles 
indexed by I, and “δ” is the Dirac delta 
function.  The second index l* refers to the 
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resolution of the subordinating cascade 
process, the third index, to the scale of the 
Poisson drop process; in eq. 32 the symbol 
“! ” is used because the Dirac δ function has 
infinitely small resolution.  This means that 
with the help of n

l
!

x( )  we introduce the 
random Poisson measure dµ with the property 
that for any function n

l
!

x( )  any set Bl:  

   

Num B
l

( ) = n
l!

x( )dµ

B
l

"
 (32) 

 
where “Num(Bl)” means number of events in 
the set Bl.  This is a Poisson random variable 
with the probability density: 

    
Pr Num B

l
( ) = !( ) =

vol B
l

( )n
d,l( )
!

! !
e
! vol B

l( )nd ,l( )

 
 (33) 

and the property: 

   

n
p,l! ,"

x( )dx

B
l

# = vol B
l( )nd,l

vol B
l( )nd,l

= n
l!

x( )dx

B
l

#
 (34) 

The overbar (here and throughout) indicates 
averaging with respect to the Poisson (drop) 
but not turbulent statistics. 

Now that we have used the bare turbulent 
number density field nl* to define a compound 
Poisson process for the drop locations, we 
must attribute a mass to each drop in such a 
way that the dressed Poisson density statistics 
will follow the Corrsin-Obukov law at large 
scales.  To do this, we first define the 
corresponding Dirac comb for the masss 
density: 

    

!
p,l

*
x( ) = M

i
" x ! xi( )

i

"  (35) 

Where the particle masses Mi must now be 
determined.  To do this, we note that at the 
smallest turbulent scale l*, we have a single 
drop so that the drop mass averaged over the 
Poisson process M

i
 is: 

M
i
=
!
l
*

x
i( )

n
l
*

x
i( )

 (36) 

The masses of each drop Mi may thus be 
chosen as: 

M
i
= u

i

!
l *
x
i( )

n
l *
x
i( )
; u = 1 (37) 

where the random variable ui is taken from the 
unit dimensionless bare drop mass probability 
density D(u).   

The resulting Poisson process defines the 
(dressed) Poisson number and water densities 
as: 

   

n
p,l

*
,l

=
1

vol B
l( )

n
p,l! ,"

x( )dx

B
l

#
 (38)

 

    

!
p,l

*
,l

=
1

vol B
l( )
!

p,l! ,"
x( )dx

B
l

#

=
1

vol B
l( )

M
i

xi $Bl

%  

We show in the next subsection that with this 
choice, for large enough l, the Poisson density 
field 

   
!

p,l
*
,l

 does indeed satisify the Corrsin-
Obukhov law. 

4.4 The dressed drop averaged statistics 

Comparing eq. 34 with 38 we see that: 

   
n

p,l
*
,l

= n
d,l

; l > l
*

 (39) 
Since for larger and larger l, the Poisson 
averaging is over more and more particles, 
this actually implies: 

   
n

p,l
*
,l
! n

d,l
! n

l
; l >> l

*
; q < q

D
 (40) 

so that the Poisson number density field will 
follow the observed l1/2 scaling law. 

We now seek to determine some of the 
statistical properties of !p,l* ,l

, in particular to 
determine the conditions under which the 
mean for large enough l satisfies the Corrsin-
Obukhov scaling law. 

 For the moment, we consider that the 
turbulent fields are fixed and seek the dressed 
statistics that result purely from the Poisson 
variability.  To do this, we introduce the 
(Laplace) characteristic function 

   
!

l,n
q( ) : 
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!
l,n

q( ) = eq! =

vol B
l( )nd,l( )

!

! !
e
" vol B

l( )nd ,l( )
eq!

= e
vol B

l( )nd ,l( ) eq "1( )!=0

#

$

 (41) 
Hence, the second characteristic function 

   
K

l,n
q( )  is:  

   
K

l,n
q( ) = log!

l,n
q( ) = vol B

l( )nd,l( ) eq
" 1( )

 (42) 
these are standard results for compound 
Poisson processes, see e.g. [Feller, 1971].  We 
can use this to calculate various statistics 

of  np,l
*
,l , for example, we can confirm eq. 40: 

   

n
p,l

*
,l

=
!e

K
n,l

q( )

!q
q=0

= "K
n,l

0( )

=
1

vol B
l( )

n
l#

x( )dx

B
l

$ = n
d,l

 (43) 

We can now calculate the liquid water (ρ) 
statistics.  First, define Ψu as the characteristic 
function of the random variable u with respect 
to D, we have: 

    

!
M

q( ) = eqM = e
qu

i
!
l *

x( )/n
l *

x( )
= !

u
q

i

!
l *

x( )
n

l *
x( )

"

#

$$$$$

%

&

''''''
 (44) 

where ΨM is the characteristic function with 
respect to the random variable M.  We now 
use the additivity of K to integrate and obtain 
the second characteristic function of the total 
water in the set Bl (=vol(Bl)ρd,l): 

    

K
!,l

q( ) = n
l!

x( ) "u

q

vol B
l( )

!
l

*
x( )

n
l

*
x( )

#

$

%%%%%

&

'

((((((
) 1

#

$

%%%%%

&

'

((((((
dx

B
l

*

 (45) 
Applying this to calculate the Poisson 

averaged dressed density 
   
!

p,l
*
,l

: 

    

!
p,l

*
,l

=
!eK

!,l
q( )

!q
q=0

= "K
!,l

0( )

=
1

vol B
l( )

"#
u

0( )nl
*

x( )
!

l
*

x( )
n

l
*

x( )

$

%

&&&&&

'

(

))))))
dx

B
l

*

=
1

vol B
l( )

!
l
*

x( )dx

B
l

* = !
d,l

 (46) 

where we have used the result for the 
exponential characteristic function: 
!

u
q( ) = 1 / 1" q( ) ; hence !’

u
(0)=u=1.  Note 

that the averaging is over the Poisson 
randomness, not the turbulence; and the above 
result establishes that the Poisson process 
when spatially averaged over large enough 
scales will follow the dressed turbulent 
(Corrsin-Obukhov) law. 

Although this establishes that the mean ρ 
field will satisfy the Corrsin-Obukov scaling, 
this gives little information about the 
statistical fluctuations which we anticipate 
will be large; indeed, we expect the variability 
of the compound turbulent- Poisson process 
should be larger than for the original turbulent 
cascade process due to the “extra” Poisson 
variability.  To study the variability, it is 
convenient to consider the moments higher 
than order 1 (the mean).  For example, we can 
calculate the variance: 

    

!2 "
p,l

*
,l( ) = "

p,l
*
,l
2 ! "

p,l
*
,l

2

=
"2e

K
",l

q( )

"q2

q=0

!
"eK

",l
q( )

"q
q=0

#

$

%%%%%%

&

'

(((((((

2

= ))K
",l

0( )

=
1

vol B
l( )

2
))*
u

0( )nl
*

x( )
"

l
*

2 x( )

n
l
*

x( )

#

$

%%%%%%

&

'

(((((((

2

dx

B
l

+

=
u2

vol B
l( )

2

"
l
*

2 x( )

n
l
*

x( )
dx

B
l

+

(47) 

where we have used 
   
!!"
u

0( ) = u
2 .  Using the 

Schwartz inequality, we obtain: 

    

!
l

2

n
l

dx

B
l

! n
l
dx

B
l

! " !
l
dx

B
l

!
#

$

%%%%%%

&

'

(((((((

2

 (48) 

or: 

    

1

vol B
l

( )
2

!
l
*

2

n
l
*

dx

B
l

! "
!

d,l
2

n
l
*
dx

B
l

!
 (49) 
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This, combined with 
    
!

p,l
*
,l

= !
d,l

 (eq. 46) 
implies: 

    

!
p,l

*
,l
2 ! !

d,l
2 1 +

u2

n
l
*

x( )dx

B
l

"

#

$

%%%%%%%%%%%

&

'

(((((((((((((

 (50) 

Note that for bare exponential unit drop size 
distributions D(u) we have 

   
!!"
u

0( ) = u
2 = 2 .  

The corresponding formula for the number 
density is: 

   

n
p,l

*
,l
2 = n

d,l
2 1 +

1

n
l
*

x( )dx

B
l

!

"

#

$$$$$$$$$$$

%

&

'''''''''''''

 (51) 

This shows that the effect of the Poisson 
variability on the dressed variance is primarily 
in regions where the number density is low.  
Indeed, there are two different statistical 
ranges depending on whether 

   

n
l
*

x( )dx

B
l

! >>1 

or <<1 (assuming that the bare unit drop size 
variance u2 !O 1( ) ).  In the former, the effect 
of the Poisson randomness is negligible 
(hence we obtain the low wavenumber Corrsin 
– Obukhov statistics while in the latter, (high 
wavenumber regime), we obtain white noise 
statistics.  To see this, recall that at small 
scales, l<l*, nl*(x) is smooth (roughly constant) 
so that for a ball Bl(x) centred at point x, we 
have: 

   

n
l
*

!x( )d !x
B

l
x( )
" # l

3
n

l
*

x( )  (52) 

Also, noting that nd,l*≈nl* and using eq. 52, 
we obtain: 

   
n

p,l
2
! n

l
l"3  (53) 

For this small scale l-3 regime, we can find 
the corresponding spectrum using Parseval’s 
theorem: 

   

n
p,l

2 ! E k( )dk

1/l

"

#  (54) 

(E(k) is the standard isotropic spectrum) we 
thus obtain (at large k) the white noise 
spectrum: 
E k( ) ! k2  (55) 

4.5 The divergence of the third order 
moment of liquid water density 

The various derivatives of K give the 
cumulants of various orders, and their 
relations with the moments of ρ become more 
and more complex for higher and higher 
orders.  It is thus of interest to consider the 
“dressed η powers” defined by: 

    

!
p,l

"( )
=

1

vol B
l( )

M
j
"

j!B
l

"  (56) 

For example, for η=2, this corresponds to 
the radar reflectivity factor: 

    
!

p,l

2( )
= Z

l
; other 

values of η correspond to number density 
(η=0), the liquid water content (η=1) and the 
nominal rain rate (η =7/6; assuming the 
nominal fall speed is proportional to the drop 
radius). 

The corresponding second characteristic 
function is: 

    

K
!,",l

q( ) = n
l!

x( ) "u

q

vol B
l( )

!
l

*
x( )

n
l

*
x( )

#

$

%%%%%

&

'

((((((

"#

$

%%%%%%%

&

'

((((((((
) 1

#

$

%%%%%%%

&

'

((((((((
dx

B
l

*

 (57) 
Hence: 

    

!
p,l

"( )
= !K

!,",l 0( ) =
1

vol B
l( )

n
l*

!
l*

n
l*

"

#

$$$$$

%

&

''''''

"

dx

B
l

(

=
1

vol B
l( )

M 2v
R( )

l*

")1( )/2

#
l*

1/2
$
l*

)"/6
l*

3)"( )/6
dx

B
l

(

 (58) 
The key here is the exponent of the l* factor. 

This shows that for η>3, in the limit l
*
! 0 ,  

    
!

p,l

"( )
! "; " > 3  (59) 

This implies that: 
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Pr !

p,l

"( )
> s( )! s

"q
D ; q

D
= 3; s >> 1  (60) 

We have already mentionned that cascade 
processes generally display divergence of high 
order statistical moments (eq. 59, 60 assumes 
that this qD associated with the statistics of χ, 
ε, is >3; otherwise it will dominate that 
introduced by the Poisson process); eq. 58 
shows that compound Poisson process have 
greater variability than the subordinating 
cascade process provides a totally new 
mechanism for the divergence.  Fig. 2a shows 
that this prediction of divergence of moments 
q=3 and higher is well verified numerically on 
simulations (this simply checks that the above 
formulae are properly derived), and fig. 2b 
shows that the prediction is reasonably 
verified on the HYDROP data (see the next 
section), and figs. 2c, d show some rain rate 
probabilities that also display qD≈3.  An early 
review of the qD values for rain may be found 
in [Lovejoy and Schertzer, 1995]. 

 
Fig. 2a:  The probability distribution estimated 

from 20 independent realizations of the 
compound-multifractal Poisson process (with 
same parameters as in fig. 3 in next section).  The 
theoretical prediction of eq. 59 is extremely well 
verified by the numerics. 

 
Fig. 2b:  The 19 HYDROP triplets are analyzed 

by calculating the total liquid water mass in cubes 
of size l as indicated.  The graph shows the log 
probability of the liquid water exceeding a 
threshold s=Mp,l for various scales.  The thin lines 
are from the data analysis, the thick dashed lines 
are the results of the multifractal-compound 
Poisson model described in the text.  The straight 
lines have the theoretical slope -3.   

Fig. 2c:  Rain rate data at 3minute resolution from 
9 different French stations on a log log plot 
(lowest probability indicated in 10-5).  The 
reference line with slope qD=3 is shown indicating 
that the rain rate has extremes not far from that 
predicted for the liquid water content.  (From Y. 
Tchigirinskaya, personal communication). 
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Fig. 2d:  Daily rain rate probability distribution 

from one of the longest available series (Padova, 
Italy).  predicted qD=3 behaviour is shown for 
reference and fits the data very well.  Reproduced 
from  [Bendjoudi, 1997]. 

 

5.  Numerical implementation of the model 

5.1  The turbulent cascade: 

The first step in the numerical simulation is 
to simulate the bare multifractal cascade 
quantities n, ρ.  This requires the two fluxes ε, 
χ; as mentioned above, these fluxes are 
presumably correlated.  A convenient but by 
no means unique way to account for this is to 
take: 

! = " 2 /3#1/3  (61) 
where φ, ε are independent multifractal 
cascades; this equation implies correlations 
between χ and;  it yields: 

(15)
!
l
= "

l

1/3
l
1/3

n
l
= A

l
"
l

1/3#
l

1/6
l
1/2

 (62) 

where Al is a (dimensional) constant which 
determines the mean interdrop distance (c.f. 
eqs. 25).  The advantage of the choice 61 is 
that no (possibly divergent) negative moments 
of turbulent fluxes needed to determine n, ρ.  
In order to simulate cascades with the 
statistics eq. 27, we use the Fractionally 

Integrated Flux (FIF) model ([Schertzer and 
Lovejoy, 1987], [Schertzer, et al., 1997]) 
which essentially interprets the linear scaling 
factors l1/3, l1/2 as fractional integrals of order 
1/3, ½.  This is performed with convolutions 
between the multifractal fluxes φ, ε and 
singularities.  For simplicity, we choose φ, ε to 
be identical, independent multifractal process.  
In addition, we use the two-parameter 
universal multifractal processes (with Levy 
generators) with the following statistics: 

!l
q

= "l
q

= l
#K q( )

K q( ) =
C
1

$ #1
q
$ # q( )

 (63) 

Where 0≤C1<d, is the codimension of the 
mean and characterizes the sparseness of the 
mean process (d is the dimension of the 
embedding space, d=1 in fig. 3b, d=3 in fig. 
5a, b), and 0≤α≤2 is the Levy index 
characterizing the degree of mulitfractality (0 
is the monofractal minimum, α=2 is the “log-
normal” maximum).  More details may be 
found in the above cited references, see fig. 
3a, b for examples in 1-D.   

 
Fig. 3a:  This figure shows the three turbulent 
fluxes (ε, χ, φ), offset in the vertical for clarity.  
The φ, ε fluxes are statistically independent 
realizations of a universal multifractal processes 
characterized by C1=0.1, α=1.8 (close to those 
estimated for HYDROP, see [Lilley, et al., 2005]).  
This is already a low resolution (degraded by a 
fctor of 128) version of the full simulation which 
had resolution of 2cm over a total distance of 5km. 
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Fig. 3b: This shows the turbulent fields derived 

by fractional integration from the fluxes in fig. 3a.   
 

Once the ρ ,  !
l

1/3"
l

1/6
l
1/2   fields have been 

calculated down to scale l*, the value of the 
normalization constant A of n is chosen so that 
the desired mean interparticle distance is 
obtained.  To be meaningful, we must choose 
A such that Lint>l* i.e. so that there are 
generally fewer drops than grid points/boxes.  
This is necessary since with a gridded model 
there cannot meaningfully be more than one 
particle per grid box, hence we simulate in a 
regime where the probability of more than one 
particle being in a grid box is low.  We then 
attribute the particles to the grid boxes with a 
Poisson process controlled by n.  The masses 
are then attributed to each particle by using a 
unit exponential distribution for D(u) (c.f. eq. 
37) so that at the bare level, the drop size 
distribution is the Marshall-Palmer 
(exponential) with amplitude given by the 
ratio ρ/n. 

5.2  Results of the simulation 

Fig. 4 shows results of the numerical 
implementation of the process.  The constant 
A was chosen so that the spatial mean of the 
number density for the realization of n=0.1, 
with 1 grid box =2cm (so as to be close to the 
HYDROP results).  The turbulent cascades 
were produced using the universal multifractal 

model ([Schertzer and Lovejoy, 1987], 
[Schertzer, et al., 1997], [Schertzer and 
Lovejoy, 1997]) with using typical measured 
turbulent parameters. 

 
Fig. 4a:  This figure shows the full (2cm) 

resolution of the 1-D simulation in fig. 3b with the 
dots indicating the positions and masses (on log 
scale) of the drops.  The green field is the bare 
turbulent mass density, the purple is the bare 
number density.  

 
Fig. 4b:  This figure shows the dressed 

(degraded by factor 128) 2.56m resolution 
comparison of number density fields: 
nd ,l , np,l with l=2.56m.  As expected the two are 
the same except for high frequency noise due to 
the Poisson process. 
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 Fig. 4c:  This figure shows the dressed (degraded 
by factor 128) 2.56m resolution comparison of 
mass density fields: !d ,l , !p,l with l=2.56m.  As 
expected the two are the same except for high 
frequency noise due to the Poisson process. 

 
In fig. 5a, we show a cross-section through 

a corresponding 3D model (also with 2cm 
resolution with 1283 pixels so that the result is 
quite close to the observed HYDROP domain 
size.  In fig. 5b, we show a perspective plot 
comparing the simulation and the one of the 
HYDROP reconstructed 3D distributions.  

 

 
Fig. 5a: 2D cross-sections through a 3D model 

(same parameters as the 1D model in fig. 4, also 
with 2cm resolution) with 1283 pixels so that the 
result is quite close to the observed HYDROP 
domain size.   

 
Fig. 5b:  The simulation is the full 3D 

simulation from fig. 5a.  The data is from 
HYDROP triplet (day 295, 2nd triplet).  The drop 
diameters are proportional to the true diameters, 
the colours also are size determined. 

 

 
Fig. 5c:  These show simulations at much 

larger scales using the threshold approximation 
(see text), with simulated radiative transfer (single 
scattering only, isotropic phase functions).  The 
basic fields here are 3D with stratification in the 
vertical according to lidar measured stratification 
exponents ([Lilley, et al., 2004]). 

5.3 Some statistical properties of the 
compound Poisson-Multifractal process: 

We have already theoretically derived some 
of the statistical properties of the model.  A 
fuller understanding of model the will be the 
subject of future work.  However, the low n 
behaviour is important in verifying the model 
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against the HYDROP data, especially the 
transition near the mean interdrop scales.  We 
therefore display fig. 6 which shows that both 
the liquid water density and number densities 
do indeed follow the theoretical turbulent field 
behaviours at low wavenumbers, but at high 
wavenumbers undergo a transition to white 
noise behaviour (quite close to the HYDROP 
behaviour, see fig. 6, see eq. 56).  

 
Fig. 6:  These show the 3D spectra of the 

HYDROP LWC data and simulation (left), and 
simulation number density (right), the model using 
the simulation shown in fig. 5.  The low and high 
frequency behaviour is as described by the theory 
lines, see text.  

 

 
Fig. 7:  This shows how the model can be used 

to study issues of radar calibration; here we show 
the effect of coherent scattering can bias the 
estimates of Z from the measured Zeff.  The red is 
the raw Zeff  the blue is the same but normalized by 
the corresponding Z (i.e. it is the bias).  This 1D 
simulates a rain field with 2cm resolution, with 

mean interdrop distance 20cm, and pulse length 
320m.  The bias (Zeff/Z) due to the coherency 
effects (blue) is negligible until wavelengths of 
50-60cm are reached, and can become very large 
for long wavelengths.   

6.  Conclusions: 

On the basis of both turbulence, drop 
coalesence theory and state-of-the-art drop 
size/position stereophotographic data, we have 
argued that the rain liquid water density at 
large enough scales follows Corrsin-Obukhov 
passive scalar statistics (k-5/3 spectrum) and 
that also at low wavenumbers, the particle 
number density they follows a new k-2 law 
which we derive by combining turbulence and 
drop coalesence theory.  At smaller scales, due 
to the decoupling of the wind and the drops, 
we observe white noise k+2 spectra (in 3D).  
The key point is that since coalescence 
processes conserve mass, but not number 
density, the ρ statistics are entirely due to the 
concentration of mass from large scale to 
small via turbulent cascade processes.  
However, for the number density, the situation 
is different because both the large and small 
(drop) scale processes determine the number 
density.  This allows for the different scaling 
laws (in real space l1/3 for ρ, l1/2 for n). 

We can use the turbulent number density 
(n) field, to subordinate a compound 
multifractal-Poisson process whose mean 
(over the Poisson but not turbulent statistics) 
is the turbulent number density.  In addition, if 
we use both ρ and n, then we can attribute 
masses to the Poisson distributed particles in 
such a way as to recover the large scale LWC 
statistics; we show how this may be done 
using a marginal exponential (Marshall-
Palmer) distribution for the drops.  Although 
the drop size distribution is thin-tailed (here 
we used an exponential “Marshall-Palmer” 
type) as concerns the distribution of liquid 
water within a region size l, the generic result 
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is a “fat-tailed” algebraic distribution.  We 
showed this theoretically, numerically and 
also empirically on the HYDROP data, 
indicating that this could be the explanation of 
several empirical observations of qD=3 
rainrate statistics.  We did not discuss the 
considerably more involved issue of drop size 
distributions.  However, it is clear that the 
latter will be a systematic function of 
resolution, and this in itself will already help 
explain the apparent lack of “universality” of 
empirical drop-size distributions. 

An important limitation of the model 
presented in this paper we do not calculate 
rain rate statistics.  While this is easy enough 
to do by attributing a nonturbulent velocity to 
each drop, there is no unique way to assign the 
velocities and the extension of the model will 
thus be the subject of future work. 

One of the main applications of the model 
will be to study issues of rainfall measurement 
from either rain gages, or radar.  In fig. 7 we 
give an example of how the model can be used 
to calculate both the radar reflectivity factor 
(Z) and the effective reflectivity factor Zeff 
(which is what the radar actually measures, it 
takes into account the wave coherency 
effects).  More applications of this sort will be 
discussed in future publications. 
Finally, we indicated briefly how the model 
can be used at very large scales for cloud and 
radiative transfer calculations.  The key is to 
make an approximation for the low n part of 
the process; here only the simplest (threshold) 
approximation was used.  More sophisticated 
treatment of the low n properties of the model 
may help answer basic questions about low 
rain rate, low radar reflectivity statistics, 
measurements. 
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