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1. INTRODUCTION

One of the most important theoretical constructs in at-
mospheric science is the gradient transport model for
the flux u′ζ ′,

u′ζ ′ = −K∇ζ

which enables the derivation of logarithmic profiles of
velocity (ζ ′ = w′) and temperature (ζ ′ = T ′) in the at-
mospheric surface layer and provides a subgrid closure
(eddy viscosity and diffusivity) for atmospheric models.
In modern atmospheric texts and treatments, the gra-
dient model is usually postulated a priori. But under-
lying this model is a rich stochastic framework that, in
the earlier years of atmospheric science, was given due
consideration. The interested reader is referred to Sut-
ton (1953) for the historical flavor of this discussion.

In fact, the stochastic Langevin equation (Risken
1989) underlying the gradient model is simply

dX

dt
= u

′

where X is Lagrangian position and u
′ is indepen-

dently distributed with the following constraint: either (i)
u
′ is assumed Gaussian with a renewal time, τ , that is

smaller—but not vanishingly smaller—than the macro-
scopic evolution time, or (ii) u

′ is arbitrarily distributed
with assumed renewal time τ → 0, the former being the
better assumption for turbulent transport. Seen in this
light, the gradient model is, of course, a Fokker-Planck
operator (Risken 1989).

It is natural, then, to inquire whether this stochas-
tic formulation may have applicability to other subgrid
problems, and in the 1960s a group of Russian scien-
tists (Belyaev 1961; Sedunov 1965; Mazin 1965; Levin
and Sedunov 1966a,b) postulated

dr

dt
∼ S′

r
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where r is droplet radius and S ′ is a random supersat-
uration fluctuation with the correlation S ′f ′ analogous
to the flux u′ζ ′ where f(r) is the droplet-size density.
Appropriately, this theoretical approach has inherited
the name “stochastic condensation”. Despite the ob-
vious analogy to the ubiquitous eddy-diffusivity param-
eterization, the investigation of the correlation S ′f ′ and
its corresponding gradient model, has largely been ig-
nored outside of the Russian community with few ex-
ceptions (e.g. Manton (1979); Khvorostyanov and Curry
(1999a,b)).

This extended manuscript summarizes the results of
Jeffery et al. (2006). In Jeffery et al. and here we take
another look at the Langevin equation for droplet growth
and its corresponding Fokker-Planck equation, with the
overarching goal of clarifying and elucidating stochas-
tic condensation and its applicability to subgrid atmo-
spheric modeling. To this end we begin with a stochas-
tic model, described in Sec. 2, that assumes S ′ is in-
dependently and normally distributed with given time-
dependent variance, σ2(t) and fixed renewal time. We
do not construct a model for σ2(t), nor do we relate S ′

to vertical velocity; rather, we treat σ2(t) as externally
provided. A discussion of the validity of these model-
ing assumptions is postponed until their consequences
have been deduced. The exact analytic solution to the
present model is derived in Sec. 3, and the correspond-
ing Fokker-Planck equation presented in Sec. 4. In
Sec. 5, the impact of S ′-fluctuations on the mean su-
persaturation S is derived and the coupled evolution
of {S, f} in a closed, adiabatic volume is assessed.
We search for evidence of the stochastic condensation
mechanism in cloud droplet spectra from cumulus cloud
fields in Sec. 7; Sec. 8 contains a summary.

2. THE MODEL

Following the proceeding discussion, we introduce the
following exactly solvable model of stochastic conden-
sation and evaporation. The local supersaturation
field experienced by the i-th droplet is decomposed
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into mean, S(t), and fluctuating, S ′(i, t), components
where S′ is a centered, independent random variable
that obeys a Gaussian law and is renewed after a
time, τ , associated with the system (grid-cell) large-
eddy turn-over time. This renewal process imparts a
discrete nature on the droplet statistics. Let us decom-
pose continuous time, t, into segments of length τ :

t = {(n − 1) + ϕ}τ (1)

where the restriction ϕ ∈ [0, 1) uniquely defines the
integer n for a given t. The label n thereby denotes the
time interval (n − 1)τ ≤ t < nτ and the corresponding
supersaturation S ′

n drawn at time t = (n − 1)τ from a
Gaussian of variance σ2

n. With this notation, the two-
time statistics of S ′ are given by

〈S′
m(i, t1)S

′
n(j, t2)〉 = σ2

nδmnδij (2)

where 〈·〉 represents an ensemble average over S ′. To
complete the model we specify the following Langevin
equation:

ṙ =
α(S + S′)

r + a
(3)

where a is an accommodation length and α is defined
in Appendix A.

3. EXACT ANALYTIC SOLUTION

We proceed to calculate the exact transition probability
distribution function for a single droplet, G(r, t|r0). This
derivation exploits the seminal property that the sum of
two independent Gaussian random variables is, itself, a
Gaussian random variable. Integrating Eq. (3) gives

(r + a)2 = (r0 + a)2 + 2α

∫ t

0

dξ S(ξ) + 2αλ(t)τ (4)

where

λ ≡ 1

τ

∫ t

0

dξ S′(ξ)

and r(t = 0) = r0. It is important to emphasize that
Eq. (4) does not incorporate a boundary condition at
r = 0 that prevents the prediction of negative radii.
Thus this equation is only valid for those S ′ fluctuations
that give r ≥ 0. In terms of G, this restriction demands
G = 0 for r < 0.

The discrete nature of S ′ appears in the evaluation
of λ for the present model:

λ(t) =

n−1
∑

i=1

S′
i + ϕS′

n. (5)

We can now evaluate the probability distribution P (λ)
using Eq. (2) and the Gaussian definition.

The first term on the rhs of Eq. (5), denoted λ0,
is normally distributed with zero mean and variance
∑n−1

i=1 σ2
i . The probability of a given λ is therefore the

sum of the probabilities of all combinations {λ0, ϕS′}
that add to λ:

P (λ) = 〈P (λ0)P (S′)〉λ0+ϕS′=λ

Computing this expected value we find

P (λ) =

∫ ∞

−∞

dS′ 1
√

2π
∑n−1

i=1 σ2
i

exp

[

− (λ − ϕS′)2

2
∑n−1

i=1 σ2
i

]

1√
2πσn

exp

(

− S′2

2σ2
n

)

(6)

=

exp

[

− λ2

2(
∑

n−1

i=1
σ2

i
+ϕ2σ2

n
)

]

√

2π(
∑n−1

i=1 σ2
i + ϕ2σ2

n)

Thus λ is normally distributed with variance
∑n−1

i=1 σ2
i +

ϕ2σ2
n.

Using Eq. (4) and the relation, P (r) = (∂λ/∂r)P (λ),
gives

G(r, t|r0) =
r + a√
πDint

exp

(

− ∆2

4Dint

)

(7)

with time-integrated diffusivity

Dint(t) ≡ 2τ2α2

(

n−1
∑

i=1

σ2
i + ϕ2σ2

n

)

(8)

and where

∆ ≡ (r + a)2 − (r0 + a)2 − 2α

∫ t

0

dξS(ξ)

is the difference between (r + a)2 and the value ob-
tained from evolving (r0 + a)2 in time using the mean
supersaturation S.

Equation (7) is the exact analytic solution to the
model of Sec. 2. We reiterate that this solution is strictly
valid when G(r < 0) = 0. However, as long as the so-
lution for r > 0 retains its full skewed-Gaussian form,
i.e. limr→0 G � a(πDint)

−1/2, neglect of the r = 0
boundary condition in the derivation of the analytic so-
lution is justified. In practice, this limits the applicability
of the present model to those {r0, S(t),Dint(t)} which
keep the support of G away from r = 0. The discrete
nature of the renewal process is evident in the defini-
tion of Dint. While the variance of S ′ may vary con-
tinuously in time, the renewal process samples S ′ at
discrete times t ∈ {0, τ, 2τ, . . . , (n − 1)τ}.



11.6 3

3a. Time-independent σ2

The connection between Eq. (7) and a diffusive process
with diffusivity D is revealed when the statistics of S ′

are time-independent. In this case, Eq. (7) becomes

G(r, t|r0) =
r + a√
πDγ

exp

(

− ∆2

4Dγ

)

(9)

where D ≡ 2τα2σ2 and the time

γ(t) = {(n − 1) + ϕ2}τ (10)

where {ϕ, n} are defined implicitly by Eq. (1). Equa-
tion (9) has the familiar form of a Green’s function so-
lution describing the diffusion of (r + a)2. As expected,
D exhibits a linear dependence on the renewal time, τ ,
and the S′ variance, σ2.

Inspection of Eqs. (1) and (10) reveals that γ differs
from t; this comparison is shown in Fig. 1. The two
times agree periodically at every ϕ = 0, while at ϕ =
1/2, t exceeds γ by τ/4. While γ is continuous in time it
is not smooth, and all the statistics of spectral evolution
inherit this lack of smoothness.

0 1 2 3 4 5
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t (τ)

γ 
(τ

)

Figure 1: The function γ(t), defined by Eq. (10), is con-
tinuous but not smooth, and is periodically equal to t
when S′ is renewed (ϕ = 0).

3b. Droplet population

For a population of droplets where the S ′ renewal times
are synchronized, the droplet-size distribution function,

f(r, t), is given by the convolution of G with the initial
distribution of sizes, f0(r):

f(r, t) =

∫ ∞

0

dr0 f0(r0)G(r, t|r0)

The present model is of sufficient generality to incor-
porate distributions of renewal times that are not syn-
chronized. A pertinent example is the case where the
renewal time, τ , is the same for each drop but the first
renewal event differs and occurs at a time ϕ0τ with
ϕ0 ∈ [0, 1]. Evaluation of f now includes a convolu-
tion over the initial distribution, ϕ(ϕ0), of ϕ0 values:

f(r, t) =

∫ ∞

−∞

dr0

∫ 1

0

dϕ0 f0(r0)ϕ(ϕ0)G(r, t|r0, ϕ0)

4. FOKKER-PLANCK APPROXIMATION

The only difference between the behavior of the exact
Green’s function solution, Eq. (7), for the present model
and diffusion of (r +a)2 with a time-dependent diffusiv-
ity is the discrete nature of Dint which is exemplified
in the behavior of γ shown in Fig. 1. Replacing the
discrete, ϕ2-weighted sampling of σ2 by its continuous
surrogate gives the Fokker-Planck approximation to the
exact solution.

The Fokker-Planck equation describing the evolution
of the PDF of β = (r + a)2 with drift 2αS and diffusivity
DFP is

∂fFP(β, t)

∂t
= −2αS

∂fFP

∂β
+ DFP

∂2fFP

∂β2

where DFP(t) ≡ 2τα2σ2(t) is the continuous surrogate
to Eq. (8). Straightforward manipulation yields

∂fFP(r, t)

∂t
= −αS

∂

∂r

(

fFP

r + a

)

+
DFP

4

∂

∂r

1

(r + a)

∂

∂r

fFP

(r + a)
(11)

with Green’s function solution

GFP(r, t|r0) =
r + a

√

π
∫ t

0 dξDFP(ξ)
exp

(

− ∆2

4
∫ t

0 dξDFP(ξ)

)

(12)
Equations (11) and (12), unlike the exact solution, are
smooth. We observe that GFP is equal to G at the re-
newal times t = iτ . Formally we can derive GFP from
G by taking the limit τ → 0 while holding Dint con-
stant. This renormalization is an approximation that
holds when τ � t for all t of interest. The small
τ limit does not generally hold for turbulent systems
where τ corresponds to the system (grid cell) large-
eddy turnover time.
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Equations (11) and (12) were first derived by Belyaev
(1961), Sedunov (1965), Mazin (1965) and Levin and
Sedunov (1966a,b) for a = 0. These authors do not de-
rive an exact solution and then infer the Fokker-Planck
equivalent as we have done here. Rather they use stan-
dard methods from Fokker-Planck theory that are avail-
able in many texts, e.g. Risken (1989), and are not pur-
sued here. Of further interest, Manton (1979) uses a
first order smoothing approximation to derive Eq. (11)
from correlated S ′ fluctuations and the τ → 0 renor-
malization.

4a. 〈S′|r〉FP

The PDF equation for the present model is conveniently
written in terms of the conditional quantity 〈S ′|r〉 (Jef-
fery and Reisner 2006):

∂f(r, t)

∂t
= −αS

∂

∂r

(

f

r + a

)

−α
∂

∂r

( 〈S′|r〉 f

r + a

)

(13)

Comparison of Eqs. (13) and (11) gives the expression
for 〈S′|r〉 in the Fokker-Planck approximation:

〈S′|r〉FP = −DFP

4α

1

fFP

∂

∂r

{

fFP

(r + a)

}

(14)

For the special case fFP = GFP and constant σ2,
Eq. (14) gives

〈S′|r〉FP,G =
∆

4αt
(15)

4b. Moments

Using the definition 〈·〉r ≡
∫∞

0 dr ·, Eq. (11) and as-
suming all moments exist, integration by parts gives the
following equations for the evolution of the r-moments:

d 〈r〉r
dt

= αS

〈

1

r+a

〉

r

−DFP

4

{

fFP(0, t)

a2
+
〈

(r+a)−3
〉

r

}

d〈r2〉r
dt

= 2αS

〈

r

r + a

〉

r

+
DFP

2

〈

a

(r + a)3

〉

r

d〈r3〉r
dt

= 3αS

〈

r2

r + a

〉

r

+
3DFP

4

〈

r(r + 2a)

(r + a)3

〉

r

(16)

valid for a > 0. These equations reveal that the im-
pact of S′-fluctuations on the evolution of the first three
moments depends strongly on f in the “small r” region
r ≤ a. In particular, for narrow spectral support, S > 0
and fixed {S,DFP}, the S-term increasingly dominates
the diffusion term as the spectrum grows to larger sizes.

5. ADIABATIC EVOLUTION OF S

The early studies of stochastic condensation and evap-
oration neglected the impact of S ′ on the adiabatic

evolution of S, e.g. (Levin and Sedunov 1967). The
first self-consistent derivation of evolution equations for
both S and f in terms of a single diffusivity, DFP,
was performed by Voloshchuk and Sedunov (1977).
Voloshchuk and Sedunov used approximate methods
to derive the S ′ contribution to the f -equation. But
an error in their derivation that was subsequently “can-
celed” by a first-order Taylor series approximation lead
Voloshchuk and Sedunov to the exact result.

5a. σ2 = 0

We first consider the evolution of S of a closed, well-
mixed, adiabatic parcel with a non-disperse popula-
tion of droplets of size r0 at t = 0; this analysis lays
the foundation for the σ2 6= 0 case considered subse-
quently. For this study, we ignore the dependence of
droplet activation on supersaturation and assume that
the parcel contains a given number of droplets at t = 0.
This is a classical problem in cloud physics that has
been studied since the 1950s.

The equation for S for the present scenario is

dS

dt
= c1w(t) − c2

dr3

dt
(17)

where c1 and c2 are defined in Appendix A. Using the
well-known quasi-stationary (QS) assumption, dS/dt =
0 corresponding to the low-frequency behavior of S,
and integrating Eq. (17) gives

r3 = r3
0 + a3Nz(t)

where

Nz(t) ≡
c1

c2a3
z(t)

and z(t) =
∫ t

0
dξ w(ξ). The non-dimensional number

Nz determines the linear relationship between liquid
water and height z(t).

Substitution of BQS = (r + a)2/a2 gives

(

B1/2
QS − 1

)3

=
r3
0

a3
+ Nz(t) (18)

The non-dimensional variable BQS is relevant because
SQS = a2/(2α)dBQS/dt from Eq. (4). Introducing a
second non-dimensional number

Nw(t) ≡ c1

c2aα
w(t)

and solving for SQS gives

SQS =
Nw

3

(

r3
0

a3
+ Nz

)−2/3
{

1 +

(

r3
0

a3
+ Nz

)1/3
}
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which illustrates how the two numbers {Nz, Nw} com-
bine to modulate S. For the special case of constant w
we have the asymptotic

lim
Nz→∞

SQS ∼ N−1/3
z ∼ t−1/3

which shows that SQS decays as the parcel rises. For
the regime r3

0/a3 � Nz � 1 we have

SQS ∼ N−2/3
z ∼ t−2/3

which exhibits a faster decay.

5b. σ2 6= 0

We now consider the evolution of
〈

S
〉

of a closed, well-
mixed, adiabatic parcel with S ′ fluctuations using the
model of Sec. 2. In this case the evolution equation for
〈

S
〉

includes a contribution from S ′ which we write in
two equivalent ways:

d
〈

S
〉

dt
= c1w(t) − c2

〈

d
〈

r3
〉

r

dt

〉

= c1w(t)−3αc2

{〈

r2

r+a

〉

r

〈

S
〉

+

〈〈

r2

r+a

∣

∣

∣

∣

S′

〉

r

S′

〉}

(19a)

= c1w(t)−3αc2

{〈

r2

r+a

〉

r

〈

S
〉

+

〈

r2

r+a
〈S′|r〉

〉

r

}

(19b)

It is important to emphasize that there are two distinct
averaging procedures that appear in Eq. (19): the 〈·〉
average over an ensemble of S ′ fluctuations and the
〈·〉r average over f(r). The only difference between
Eqs. (19a) and (19b) is the order in which the averag-
ing is performed. We have already discussed the con-
ditional average 〈S ′|r〉 in some detail and will proceed
to evaluate Eq. (19b) using the Fokker-Planck approxi-
mation.

Substitution of the Fokker-Planck expression,
〈S′|r〉FP, into Eq.(19b) and integration by parts gives

dSFP

dt
= c1w(t)−3αc2

{〈

r2

r+a

〉

r

SFP+
DFP

4α

〈

r(r+2a)

(r+a)3

〉

r

}

(20)
valid for a > 0. Eqs. (11) and (20) form two cou-
pled, self-consistent equations that describe the evo-
lution of {fFP, SFP} in a closed, adiabatic parcel. As
a consistency check we note that the new (3rd) term
on the rhs of Eq. (20) could have also been derived by
simply substituting Eq. (16) for d

〈

r3
〉

r
/dt directly into

dSFP/dt = c1w − c2d
〈

r3
〉

r
/dt. Clearly, Eqs. (11) and

(20) conserve total water. For a = 0 a similar result was
first derived by Voloshchuk and Sedunov (1977) using
an incorrect method.

5c. SFP,QS

The QS evaluation of SFP from Eq. (20) is

SFP,QS =
c1w(t)

3αc2

〈

r2

r + a

〉−1

r

{

1 − DFP

4

3c2

c1w(t)
〈J〉r

}

(21)
valid for a > 0 where J = r(r + 2a)/(r + a)3. This
result shows that the presence of S ′-fluctuations in a
closed cell—as prescribed by the present model—acts
to decrease SFP. In the language of Cooper (1989,
pp. 1306), this occurs because high-〈r〉r regions tend
to have S′ > 0 and low-〈r〉r regions have S′ < 0.
However, in contrast to Cooper who associates smaller
SQS values with a trend toward evaporation and larger
SQS values with a trend toward enhanced growth, we
maintain that the net effect of S ′-fluctuations on droplet
evolution arises from the coupled impact of DFP on
{fFP, SFP} and not SFP alone. In particular, decreas-
ing SFP with increasing DFP does not necessarily imply
a trend toward cloud evaporation.

The impact of S ′-fluctuations on SFP,QS depends on
fFP via the spectral moment 〈J〉r. A plot of 〈J〉r vs
〈r〉r is shown in Fig. 2 for three different fFP. The figure
demonstrates that 〈J〉r peaks in the vicinity of 〈r〉r = a
where a is typically around 2 µm.

5d. Exact solution for SFP,G

Using the QS approximation, the coupled behavior of
{SFP, fFP} can be solved exactly for fFP = GFP ig-
noring boundary effects. SFP,G is defined implicitly by
the relation

〈

r3
〉

r
= r3

0 + a3Nz(t) (22)

To reveal the other non-dimensional numbers that
determine the impact of S ′-fluctuations on SFP, it is
helpful to consider the limit

∫ t

0
dξ DFP(ξ)/β2 � 1

where β = (r0 +a)2 +2α
∫ t

0
dξ SFP,G(ξ) and β > 0. In

this case, a first-order Taylor series expansion in small
parameter

∫ t

0
dξ DFP(ξ)/β2 gives

〈

r3
〉

r
= β3/2

{

1 +
3
∫ t

0
dξ DFP(ξ)

4β2

}

− 3aβ

+3a2β1/2

{

1 −
∫ t

0
dξ DFP(ξ)

4β2

}

− a3

Substituting above and rearranging gives

(

B1/2
QS − 1

)3

=
r3
0

a3
+ Nz

{

1 − 3

4

ND

B1/2
QS

+
3

4

ND

B3/2
QS

}

(23)
where

ND(t) ≡ c2

c1

∫ t

0
dξ DFP(ξ)

az(t)
(24)
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Figure 2: Comparison of 〈J〉r as a function of 〈r〉r
computed from three distributions: the gamma function
fFP ∼ rne−(n+1)r/〈r〉

r with n = 1 (· · ·) and n = 2 (-
-), and a non-disperse spectrum fFP = δ(r−〈r〉r) cor-
responding to the limit n → ∞ (—). 〈J〉r peaks in the
vicinity of 〈r〉r = a for all three fFP.

and BQS = β/a2. The number ND is thus the ra-
tio of two time-integrated forcing terms in the SFP

evolution equation—diffusion (c2DFP/a) and velocity
(c1w)—and, as Eq. (23) reveals, ND determines the rel-
ative impact of S ′-fluctuations on BQS. Note that when
both {w,DFP} are constant, ND = c2DFP/(c1aw) is
also constant. If either w or DFP is time-dependent
then the number

ND,S ≡ c2a

c1α

DFP(t)

z(t)
,

along with Nw, determines the relationship between S
and {BQS, Nz, ND}.

A contour plot of BQS as a function of {Nz, ND} cal-
culated from Eq. (22) is shown in Fig. 3(a) for r0 = 0
and fFP = GFP. Since Nz ∼ z(t) it is useful to note
that the time-scale c2a

3/(c1w) is of order 1 second for
typical atmospheric temperatures, droplet concentra-
tions and updraft velocities. Thus the abscissa of Fig. 3
maps closely to time in seconds for constant w.

For ND = 0, BQS increases monotonically with in-
creasing Nz as shown in the bottom of Fig. 3(a) and
as indicated by Eq. (18). The figure also shows that

BQS decreases with increasing ND at fixed Nz; this
result is consistent with Eq. (23). In addition, the fig-
ure indicates a shaded region where dBQS/dNz < 0
and, consequently, SFP,G < 0. The “triple-point” that
marks the beginning of this negative SFP,G region is
{ND ≈ 6.5, Nz ≈ 0.15,BQS ≈ 1.5}. Thus the pos-
sibility of negative SFP,G in a closed, adiabatic up-
draft with internal S ′ fluctuations which was suggested
by Eq. (21) is verified for fFP = GFP in Fig. 3(a).
Also shown in the figure are three dashed lines that
represent predicted distributions where the fraction of
droplets with r ≥ 0 is in the set {0.7, 0.8, 0.9}. These
lines divide the figure into two qualitative regimes: the
upper-right region where the boundary condition im-
posed at r = 0 may impact BQS and the remaining
region where this boundary-condition has little impact.
The lines suggest that the prediction of negative SFP,G

is insensitive to this bc for Nz < 0.15.

Corresponding values of 〈r〉r /a are reproduced in
Fig. 3(b) where the shaded SFP,G < 0 region and
dashed lines are again shown. In contrast to BQS,
〈r〉r /a exhibits a monotonic dependence on {Nz, ND}:
〈r〉r /a increases with increasing Nz and decreases
with increasing ND. In the region where SFP,G < 0,
〈r〉r falls between 0.1a and 1.25a; these values are
consistent with the behavior of 〈J〉r shown in Fig. 2
and the discussion of Sec. 5c. Moreover, no noticeable
changes in the trend of 〈r〉r are seen in the SFP,G < 0
region. This re-emphasizes that the transition from
SFP,G > 0 to SFP,G < 0 should not be associated
with a qualitative transition from growth to evaporative
behavior.

5e. Summary

Following the pioneering work of Voloshchuk and
Sedunov (1977), we consider the impact of S ′-
fluctuations, as prescribed by the model of Sec. 2,
on the evolution of a closed, adiabatic parcel. This
problem lends itself to non-dimensional analysis and to
the identification of a finite set of time-dependent non-
dimensional numbers that specify the coupled evolution
of {fFP, SFP}. Since it is the time integral of SFP, and
not SFP itself, that controls the evolution of fFP, we
identify the set of numbers that determine the evolu-
tion of {fFP,BQS ∼

∫ t

0 dξ SFP(ξ)} and those that di-
agnose SFP, separately. This is shown in Table 1 for
fFP = GFP and the QS limit. Of particular importance
is the number ND, Eq. (24), which controls the impact
of S′-fluctuations on the evolution of {GFP,BQS}. This
number increases with increasing DFP as expected, but
it also decreases with increasing w, in agreement with
concerns raised by Manton (1979, pp. 902) that large
updraft velocities decrease the relative importance of
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Figure 3: Contour plots of BQS [3(a)] and 〈r〉r /a [3(b)] as a function of {Nz, ND} calculated from Eqs. (22) with
r0 = 0, and indicated by the solid lines. The region where dBQS/dNz < 0 and, consequently, SFP,G < 0 is
shaded and bounded with a dashed line. Also shown is the cloudy fraction

〈

r0
〉

r
∈ {0.7, 0.8, 0.9} indicated by

the dotted contours. No noticeable trend toward evaporation is found in the behavior of 〈r〉r in the SFP,G < 0
region.

S′-fluctuations. Formally, ND ∼ z−1(t); a similar al-
gebraic dependence is found in the results of Cooper
(1989, Eq. (10)) in his evaluation of a turbulent cor-
rection to BQS. However, the additional dependence
ND ∼ a−1 is, perhaps, surprising and indicates the im-
portance of regularizing the growth law dr/dt ∼ r−1 in
the limit r → 0.

GFP(r, t,BQS|r0) SFP,QS

DFP = 0 Nz Nw

DFP 6= 0 Nz, ND Nw, ND,S

Table 1: Enumeration of the time-dependent non-
dimensional numbers that determine {GFP,BQS} in
the QS limit, and those that, subsequently, diagnose
SFP,QS. Note that ND,S is not relevant when both
{DFP, w} are constant.

The range of ND for typical atmospheric conditions
and model grid scales is difficult to ascertain because
the magnitude and parametric dependencies of the S ′-
variance, σ2, are not well understood, and ND, itself,
is time-dependent. Passive scalar theory suggests
σ2 ∼ L2/3 in the inertial-convective subrange where
L is the grid-cell length, but this estimate is question-

able since condensation damps large positive S ′ fluc-
tuations. Here we choose to estimate ND assuming
time-independent {w,DFP} and σ = 0.01, indepen-
dent of L, while we retain Kolmogorov scaling for the
renewal time, τ = 0.1ε−1/3L2/3, where ε is the kinetic
energy dissipation rate. Two contour plots of ND are
shown in Fig. 4 for w = 1 m/s and ε = 0.01 m2 s−3,
with 4(a) assuming an in-cloud droplet concentration of
Nc = 50 cm−3 while 4(b) assumes 500 cm−3. The
figures reveal that ND spans four orders of magnitude
in the range 10−2 to 102 for a broad range of con-
ditions, and increases with temperature and grid-cell
length when σ2 is assumed constant. In particular, an
indirect aerosol effect is observed with ND increasing
linearly with Nc at fixed σ2.

6. SPECTRAL BROADENING

Although Voloshchuk and Sedunov (1977) provide the
first self-consistent derivation of coupled equations for
{fFP, SFP} in terms of a single diffusivity, DFP, they
do not analyze the resulting spectra. Subsequent
studies, e.g. Manton (1979), Khvorostyanov (1988),
Khvorostyanov and Curry (1999a,b), that contain a
more detailed spectral analysis neglect the impact of
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Figure 4: Contour plots of ND as a function of {T, L} for Nc = 50 cm−3 [Fig. 4(a)] and Nc = 500 cm−3

[4(b)], typical of clean marine and polluted marine/continental environments, respectively (Heymsfield and Mc-
Farquhar 2001). ND is computed from Eq. (24), assuming σ = 0.01, w = 1 m/s, the Kolmogorov estimate
τ = 0.1ε−1/3L2/3 and ε = 0.01 m2 s−3. The figures reveal that a range of ND values between 10−2 and 102

exist for typical atmospheric conditions and model grid sizes.

S′-fluctuations on SFP, and therefore, do not conserve
liquid water mass. These studies systematically over-
estimate SFP and, thereby overestimate

〈

r3
〉

r
and all

higher order moments.
Consistent with earlier work (Manton 1979), our

closed, adiabatic treatment of {fFP, SFP} in the ab-
sence of droplet coalescence produces a relatively
small broadening to larger sizes. This is illustrated
in Table 2 which lists the relative impact of ND on
〈

r6
〉

r
; the moment

〈

r6
〉

r
is of microphysical relevance

because it is roughly proportional to precipitation ef-
ficiency. For the present comparison, ND = 0 is a
single-valued spectrum (zero dispersion) and therefore
the calculated increase in

〈

r6
〉

r
is an upper bound.

In the analysis of Manton (1979, pp. 902), the spec-
tral width of the transition probability GFP, Eq. (12), is
shown to follow

lim
t→∞

∆r ∼
{

∫ t

0 dξ DFP(ξ)

α
∫ t

0 dξ S(ξ)

}1/2

for S > 0. Manton further assumes constant {DFP, S}
which gives constant ∆r and dispersion ∆r/ 〈r〉r ∼
t−1/2. These estimates are inconsistent with the results
of Table 2 which indicate broadening that persists to
rvol = 50 µm. The difference between Manton (1979)’s

H
H

H
H

H
ND

rvol

10

〈

r2
〉

r
20 50 10

〈

r6
〉

r
20 50

1 0.93 0.96 0.98 1.6 1.3 1.2
3 0.84 0.89 0.94 2.4 1.9 1.5
10 0.71 0.77 0.85 4.5 3.2 2.2
30 0.61 0.65 0.74 8.7 5.8 3.7

Table 2: Table of
〈

r2
〉

r
(ND)/

〈

r2
〉

r
(0) (middle col-

umn) and
〈

r6
〉

r
(ND)/

〈

r6
〉

r
(0) (right column) calcu-

lated at rvol ∈ {10, 20, 50} µm and ND ∈ {1, 3, 10, 30}
with r0 = 0, τr = 0.025 s and Nw = 0.035. Impact of
S′-fluctuations persist to rvol = 50 µm; the asymptotic
decay SFP,G ∼ t−1/3 of a closed, adiabatic parcel en-
hances spectral dispersion as compared to earlier esti-
mates (Manton 1979).

assumed constant S and the asymptotic SFP ∼ t−1/3

of our closed, adiabatic parcel is the origin of this dis-
crepancy. For the simulations that produced the results
of Table 2, ∆r broadens slowly with time as t1/6 while
the dispersion decreases slowly as t−1/6.

We have observed a new effect of the stochastic
approach of Levin-Sedunov-Mazin which only appears
when the SFP equation is correctly averaged and liq-
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uid water mass is exactly conserved. Namely, in a
closed, adiabatic parcel,

〈

r2
〉

r
decreases with increas-

ing ND at fixed rvol as indicated in Table 2. The signif-
icance of this observation is that

〈

r2
〉

r
is proportional

to the shortwave scattering coefficient. Thus stochas-
tic condensation provides a mechanism for decreasing
grid-averaged cloud short-wave reflectivity while keep-
ing cloud amount unchanged. However, we reiterate
that the results of Table 2 are an upper bound and, fur-
thermore, droplet coalescence may act to mitigate this
effect.

Table 2 shows that normalized
〈

r2
〉

r
decreases

with decreasing rvol, but this trend does not continue
as rvol → 0. The minimum value of normalized
〈

r2
〉

r
(ND) is shown in Fig. 5 for four values of Nw cor-

responding to four different droplet concentrations. A
few representative values of rvol(ND) are also shown
along each of the four lines. Figure 5 reiterates that the
impact of S′-fluctuations on droplet spectral evolution
becomes significant for ND values greater than unity
and increases monotonically with increasing ND. Min-
imum values of normalized

〈

r2
〉

r
occur for rvol in the

range 4–14 µm which is of particular significance for
cloud shortwave radiative properties. In fact, a survey
of effective droplet radius for liquid water clouds using
ISCCP satellite observations finds a globally and annu-
ally average value of 11.4 ± 5.6 µm (Han et al. 1994),
which is precisely the size regime where S ′-fluctuations
have a maximal impact on

〈

r2
〉

r
.

7. COMPARISON WITH RICO AND SCMS

Underpinning the stochastic approach of Levin-
Sedunov-Mazin is the assumption that the cloud droplet
spectrum experiences a complete ensemble of S ′-
fluctuations. This assumption does not hold for a sin-
gle cloud parcel with given cloud-base properties that
rises stochastically to a given height (Bartlett and Jonas
1972). Recent numerical simulations show that fluctua-
tions in microphysical properties occur below the scale
of the parcel, but are small and cause little spectral
broadening (Vaillancourt et al. 2001, 2002). Observa-
tional studies of droplet spectra and correlations, per-
formed on a cloud-by-cloud basis, reveal evidence of
stochastic broadening but are far from definitive. For
example, the correlation

〈

〈r〉′r w′
〉

from a single hor-
izontal transect through a cumulus cloud shows con-
siderable scatter (Austin et al. 1985), but the mean
value is uncertain and this statistic, itself, is disputable
because it does not include S ′-fluctuations associ-
ated with temperature/moisture variability and horizon-
tal mixing (Politovich 1993).

A seminal feature of the present analysis is the pre-
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Figure 5: Comparison of the minimum value of
〈

r2
〉

r
(ND)/

〈

r2
〉

r
(0) computed with r0 = 0, τr =

0.025 s and for four different Nw values: 0.07 (—),
0.035 (- -), 0.014 (· · ·) and 0.007 (· – ·), correspond-
ing to Nc ∈ {50, 100, 250, 500} cm−3, respectively, with
T = 285 K, and w = 1 m/s. Also shown are repre-
sentative values of rvol in µm superimposed on each
line.

diction that DFP, and hence ND, increases with scale,
L, as demonstrated in Fig. 4. This hypothesis un-
derpins our analysis of cloud droplet spectra from two
observational campaigns: Rain In Cumulus over the
Ocean (RICO) and Small Cumulus Microphysics Study
(SCMS). In particular, we consider droplet spectra av-
eraged over segments of length, L, which may contain
several clouds of varying size and liquid water den-
sity. We find evidence of spectral broadening that in-
creases with L, and we use the spectra themselves,
and not a correlation such as

〈

〈r〉′r w′
〉

, to infer the L-
dependence and size of ND.

7a. Observational datasets

i. RICO/SCMS Both the RICO and SCMS campaigns
targeted fields of cumulus clouds with RICO focus-
ing on shallow, maritime, trade wind cumulus while
SCMS targeted shallow cumulus clouds in Florida.
Both projects included the statistical sampling of cu-
mulus cloud fields using a series of constant altitude
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flight legs that attempt to gather a complete ensem-
ble of cloud properties. Thus these data sets are
well suited to the study of stochastic condensation.
Our RICO analysis utilizes observations from 11 flights
of the NCAR C-130 that targeted the statistical sam-
pling of non-precipitating trade wind cumulus: RF-
{1,3,4,6,7,9,10,12,13,14,18} (JOSS 2005). For SCMS
we use the same four NCAR C-130 flights analyzed
and validated by Rodts et al. (2003) as a baseline: RF-
{12,13,16,17}.

ii. Statistics The distribution of cloud sizes from RICO
and SCMS is compared in Fig. 6(a) for cloud lengths
between 100 and 7500 meters. Previous studies have
shown that cumulus cloud sizes obey a power law dis-
tribution for sizes smaller than an outer length. This is
verified in Fig. 6(a) which shows an increase in the de-
cay of the size distribution beginning near ≈ 1000 m,
consistent with previous results (Rodts et al. 2003).

We proceed to calculate cloud and droplet statis-
tics averaged over segments of length L1 ≤ L ≤
L2 and over liquid water densities in the range,
ρ1 ≤ 〈ρl〉 ≤ ρ2. Statistics are calculated for six
length bands: L1 ∈ 100, 200, 500, 1000, 2000, 5000
and L2 ∈ 150, 300, 750, 1500, 3000, 7500, respectively.
For the RICO dataset four density bands (in g/m3)
are selected: ρ1 ∈ {0.01, 0.02, 0.05, 0.1} and ρ2 ∈
{0.02, 0.05, 0.1, 0.5}, respectively, while two density
bands are chosen for SCMS: ρ1 ∈ {0.02, 0.05} and
ρ2 ∈ {0.05, 0.2}, respectively.

A plot of segment cloud fraction as a function of L is
shown in Fig. 6(b). Segment cloud fraction decreases
monotonically with increasing L as expected. It also
increases monotonically with increasing 〈ρl〉 which re-
flects the fact that increasing cloud area, and not just in-
creasing in-cloud liquid water density (see Nc above),
is contributing to increase segment 〈ρl〉. As segment
cloud fraction decreases with increasing L, we expect
the number of clouds per segment to increase, and this
is verified in Fig. 6(c). Unlike segment cloud fraction,
no clear trend in cloud number with increasing 〈ρl〉 is
evident. Figures 6(b) and (c) demonstrate good cor-
respondence in the cumulus cloud statistics generated
from the RICO and SCMS datasets. Overall, the SCMS
segments contain somewhat fewer clouds and a signif-
icantly smaller cloud fraction than the RICO segments
at a given 〈ρl〉.

The present model of stochastic condensation pre-
dicts increasing droplet spectral dispersion with in-
creasing L. However, great care must be taken in the
selection of an approximate statistic to measure this
broadening in observational data. For our purposes, an
appropriate measure of stochastic broadening must be
insensitive to both the largest drops (which are affected

by collision-coalescence) and the smallest (which are
poorly measured by the FSSP-100). The width of the
droplet radius spectrum from mode to Right-Quarter-
Maximum (RQM) satisfies both of these criteria and
is shown in Fig. 6(d) as a function of segment length
L. Overall, Fig. 6(d) demonstrates increasing spectral
dispersion (as measured by the width-at-RQM) with in-
creasing L as expected from the theory of stochastic
condensation. Increasing width-at-RQM with increas-
ing 〈ρl〉 is also exhibited. Moreover, it is encouraging
that the overall trend in width-at-RQM vs L is consis-
tent across the RICO and SCMS datasets and density
bands.

7b. Spectral broadening and ND

Atmospheric models are typically required to predict the
evolution of the grid-cell averaged droplet spectrum,
f(r), or at least several of its moments, given a set
of prognosed quantities at the grid-scale including 〈ρl〉.
As shown in Figs. 6(b) and (c), a model grid-cell of (hor-
izontal) size ≥ 100 meters containing cumulus will have
a cloud fraction less than unity and may contain several
clouds. Thus the grid-cell averaged spectrum will, in
general, be distinct from the spectrum observed in, or
averaged over, a single given cloud.

The six RICO spectra for density band 3, 0.05 ≤
〈ρl〉 ≤ 0.1 in g/m3, are shown in Fig. 7(a) with unit
normalization. The average single-measurement (L =
FSSP resolution) spectrum for the same 〈ρl〉 range is
also reproduced (dotted line). Note that the local spec-
tral maximum at 1.5 µm is in the small size regime
where the FSSP-100 data quality is poor and is, subse-
quently, ignored. These spectra indicate that, for cumu-
lus clouds, the shape of f(r) is strongly L-dependent.
This behavior is in contradistinction to the common
modeling assumption that f(r) obeys a log-normal or
gamma distribution that is independent of L. In addi-
tion to the increase in width-at-RQM with increasing L
documented in Fig. 6(d), Fig. 7(a) indicates a decrease
in skewness with increasing L.

The observational spectra shown in Fig. 7(a) can be
used to retrieve {Nz, ND} using the present model of
stochastic condensation in the QS limit, Eq. (22). We
perform this retrieval by matching two statistics of the
model to the data: (i) width-at-RQM and (ii) in-cloud
mean radius, r. The six retrieved spectra, correspond-
ing to the six observational spectra for density band 3,
are also shown in Fig. 7. Qualitatively, the two sets of
spectra are similar with pronounced broadening in the
“core” region between 3 and 15 µm that increases with
increasing L. However, important differences are also
evident. In particular, the observational spectra exhibit
a sharp spectral peak between 3.5 and 6 µm that is
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Figure 6: Cloud and droplet-spectrum statistics computed from the RICO and SCMS datasets described in the
text using a cloud threshold of 7 cm−3 (Rodts et al. 2003). Fig 6(a) shows the distribution of cloud sizes between
100 and 7500 meters; a scale-break near 1000 m is evident (Rodts et al. 2003). For Figs. 6(b) through (d) the
abscissa represents the length of an observational segment that may contain several clouds. Segment statistics
are binned according to segment-averaged liquid-water density 〈ρl〉 (in g/m3) for RICO (bold lines): 0.01–0.02
(—), 0.02–0.05 (- -), 0.05–0.01 (· · ·), 0.1–0.5 (·– ·), and for SCMS (lines+symbols): 0.02–0.05 (©), 0.05–0.2 (4).
Cloud fraction, which decreases with increasing L, is shown in Fig. 6(b), while Fig. 6(c) shows cloud number
which increases with increasing L. A comparison of spectral width at Right-Quarter-Maximum (RQM), computed
from the segment-averaged droplet spectrum recorded by the FSSP-100, is given in Fig. 6(d). Spectral dispersion
increases with increasing L, consistent with theoretical considerations of stochastic condensation from Sec. 5e.
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Figure 7: Comparison of observed droplet spectra [Fig. 7(a)] and cloud fraction [7(b)] vs model predictions.
The observed spectra in 7(a) are computed for density band 3, 0.05 ≤ 〈ρl〉 ≤ 0.1 g/m3: six spectra (—),
corresponding to six L values (see text), and the single-point spectrum (· · ·) are shown, with the spectral peak
decreasing monotonically with increasing L. Parameter values for the corresponding modeled spectra (- -),
computed from Eq. (22), are retrieved by matching width-at-RQM and r to the observed values. Fig. 7(b) shows
cloud fraction vs L for all observed (bold lines) and modeled (lines+symbols) density bands (in g/m3) for RICO:
0.01–0.02 (—), 0.02–0.05 (- -), 0.05–0.01 (· · ·), 0.1–0.5 (·–·), and for SCMS: 0.02–0.05 (– –), 0.05–0.2 (·—·). The
observed spectra and cloud fraction statistics show evidence of non-Gaussian S ′ statistics and inhomogeneous
mixing, in contradistinction to the Levin-Sedunov-Mazin model of stochastic condensation.

not produced by the present model. In related fash-
ion, the modeled spectra predict a significant fraction of
droplets in the 0–3 µm regime that is not supported by
the observations.

We attribute the cause of these differences to
a key underlying assumption of the Levin-Sedunov-
Mazin theory of stochastic condensation which can be
phrased in two equivalent ways: (i) S ′, itself, is as-
sumed normally distributed, as per Sec. 2, or (ii) the
assumed Fokker-Planck renormalization τ → 0 gives
a normal distribution of

∫ t

0
dξ S′(ξ), independent of the

S′-distribution. The equivalent result of either assump-
tion is that a sizable portion of droplets experience a
vanishingly small, but non-zero, negative supersatura-
tion that permits them to exist in the 0–3 µm regime for
extended periods before evaporating completely. This
phenomenological picture is distinct from Baker et al.
(1980)’s model of extreme inhomogeneous mixing in
which a fraction of droplets evaporate completely dur-
ing a mixing event while the remainder are unchanged.
Thus Baker et al.’s model corresponds to a distribution
of S′ values that is strongly peaked near zero and near

the negative supersaturation of unmixed environmental
air. Support for this highly non-Gaussian distribution of
S′ values is found in a new PDF model of cloud mixing
and evaporation (Jeffery and Reisner 2006).

Further support for non-Gaussian S ′ statistics and in-
homogeneous mixing is found in Fig. 7(b) which shows
a comparison of the observed cloud fractions, CF, (re-
produced from Fig. 6(b)) and modeled cloud fractions,
〈

r0
〉

r
. Strictly speaking,

〈

r0
〉

r
is not equivalent to ob-

servational CF; f(r) does not provide spatial informa-
tion and some volume fraction of the “labels” (e.g. CCN)
of completely evaporated droplets may reside within
cloudy air. Yet, overall, at large L the observational
spectra exhibit, simultaneously, small cloud fractions
(five out of six density bands with 0.1 < CF < 0.3) and
well-defined spectral peaks, while the modeled spectra
have larger cloud fractions (0.35 <

〈

r0
〉

r
≤ 0.5) and

significant broadening to smaller sizes. Thus Fig. 7(b)
reiterates the importance of accounting for the inhomo-
geneous mixing processes—allowing for the complete
evaporation of droplets without significant broadening
to smaller sizes—in the formulation of stochastic mod-
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els of grid-averaged spectra.
Lastly, the values of ND retrieved from the obser-

vational RICO/SCMS spectra are shown in Fig. 8.
Also shown in the figure is the theoretical estimate,
ND ∼ L2/3, from Sec. 5e which assumes a con-
stant, L-independent S ′-variance. The pattern of re-
trieved ND values shares similarities with the retrieved
widths at RQM (Fig. 6(d)), although ND does not ex-
hibit a similar dependence on 〈ρl〉. For large scales,
L ≥ 1000 m, the retrieved ND values are very consis-
tent with the estimates of Fig. 4 for Nc around 50–150
cm−3 and T about 15–20 C◦. This extremely encour-
aging result is the first observational confirmation of the
stochastic condensation mechanism and the decades-
old, work of Levin-Sedunov-Mazin. For smaller scales,
L < 1000 m, the retrieved values of ND appear to be
overestimated. We attribute this overestimation to the
lack of aerosol physics (sub-cloud distributions, activa-
tion, recycling) and collision-coalescence in the present
approach which leads to a dispersion-less spectrum as
L → 0.
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Figure 8: Retrieved values of ND for all six segment
lengths and all RICO (4) and SCMS (2) density bands.
Line types for the six density bands as per Fig. 6(b)–
(d); see Fig. 6 caption for further details. Also shown
is the power-law relation ND ∼ L2/3 as a comparison.
The retrieve ND values agree well at large L with the
estimates of Fig. 4 for Nc ≈ 50–150 cm−3 and T ≈ 15–
20 C◦.

8. SUMMARY

In this manuscript—which closely follows Jeffery et al.
(2006)—we have taken “another look” at stochastic
condensation in the hope of clarifying the earlier deriva-
tions and fully exploring the implications of this theory.
In contrast to the derivations of Levin and Sedunov
(1966a,b) and Manton (1979), we begin with a sim-
ple model of stochastic condensation—independent,
Gaussian supersaturation fluctuations (S ′) renewed af-
ter a time τ—that is exactly solvable. This model is triv-
ial to simulate on a computer and can be used to com-
pare and contrast Lagrangian and Eulerian approaches
for modeling droplet spectra (Andrejczuk et al. 2006).
The Fokker-Planck approximation to this exact solution
follows by replacing the discrete sampling of S ′ with
its continuous surrogate. The Fokker-Planck diffusivity
and operator are thus seen to be the natural smooth-in-
time approximation to a discrete-in-time process.

We have also taken another look at the equation
for the mean supersaturation, SFP, in the presence
of S′ fluctuations modeled using the Levin-Sedunov-
Mazin Fokker-Planck operator. While this problem is
treated in an approximate fashion (and with little trans-
parency) in Voloshchuk and Sedunov (1977), we derive
the expression for 〈S ′|r〉FP without approximation and
show how this expression “closes” the SFP-equation
self-consistently, thereby ensuring that total water mass
is exactly conserved. Using the quasi-stationary (QS)
evaluation of SFP, we derive the exact correction term
to SFP,QS (i.e. the S′ contribution corresponding to the
Levin-Sedunov-Mazin model). The correction term is
negative definite, peaks in magnitude when 〈r〉r is near
the accommodation length (≈ 2 µm), and decays as
〈r−1〉r as the droplet spectrum grows to large sizes.
This exact result has a direct correspondence to the
analysis of Cooper (1989). Using our self-consistent
equation for SFP, we evaluate spectral broadening in
an adiabatic parcel and find some broadening to larger
sizes (consistent with earlier estimates, e.g. Manton
(1979)), but a more significant decrease in

〈

r2
〉

r
at

fixed liquid water content which may have implications
for modeled cloud reflectivity.

While the proceeding discussion is largely a clarifi-
cation and elucidation of previous work, most notably
Voloshchuk and Sedunov (1977), we have also ex-
tended the theory of stochastic condensation by deriv-
ing the non-dimensional number, ND, that determines
the relative impact of S ′-fluctuations on droplet spectral
evolution in an adiabatic volume and in the QS limit. For
constant updraft velocity and Fokker-Planck diffusivity,
ND is also a constant, ranging from 10−2 to 102 for typ-
ical atmospheric conditions and model grid sizes when
the assumed S′-standard deviation is 1%. We find sig-
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nificant spectral broadening, and in particular decreas-
ing
〈

r2
〉

r
, for ND > 1, and discover that SFP,QS can be

negative in a rising adiabatic parcel when ND > 6.5 for
droplets of zero initial size.

Using in-situ droplet spectra from cumulus cloud
fields observed during the RICO and SCMS field cam-
paigns, we have verified a seminal prediction of the the-
ory of stochastic condensation—increasing broaden-
ing with increasing spatial scale—by averaging the ob-
served spectra over segments containing one or more
clouds. In addition, scale-dependent values of ND re-
trieved from the segment-averaged spectra using our
adiabatic model show good consistency with the previ-
ously discussed theoretical estimates. We believe this
encouraging result to be the first observational confir-
mation of the stochastic condensation mechanism and
the decades-old, pioneering work of Levin-Sedunov-
Mazin. Moreover, these results suggest that the param-
eterization of unresolved S ′-fluctuations using Fokker-
Planck theory or other means will become increasingly
important as explicit (bin) microphysics schemes are
applied at larger scales (Lynn et al. 2005), where an
increasing fraction of individual clouds are, themselves,
unresolved.

However, important differences between the ob-
served and modeled droplet spectra are also ob-
served. In particular, the observed spectra suggest
non-Gaussian S ′ fluctuations and the inhomogeneous
mixing process of Baker et al. (1980). Further work
is needed to assess the impact of non-Gaussian S ′-
fluctuations and large renewal times on droplet spectral
broadening and to derive differential operators that can
model their ensemble effect in the equations of cloud
physics.
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A. THERMODYNAMICS CONSTANTS

The constant α defined in Eq. (3) is (Pruppacher and
Klett 1997, Eq. (13-28))

α = (ρs/ρw)DvG

where

G =

{

1 +
ρs

ρd

Lv

cpT

(

Lv

RvT
− 1

)}−1

,

ρs is saturation vapor density, ρd is air density, ρw is
water density, Dv is molecular diffusivity of vapor, Lv

is latent heat of vaporization, cp is heat capacity, Rv

is water vapor gas constant, T is temperature, and we
have assumed equality of the conductivities of vapor
and temperature.

The constant c1 of Eq. (17) is (Pruppacher and Klett
1997, Eq. (13-29))

c1 =
Lv

RvT 2

g

cp
− g

RdT

where g is gravitational acceleration and Rd is the gas
constant of air. To good approximation the constant c2

is
c2 = (4/3)πDvNc/α

where Nc is droplet concentration.
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