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1. INTRODUCTION

It is assumed that an intermittent eddy struc-
ture is present in the flow. Liquid and vapour
is assumed to be present in a near equilib-
rium state in certain eddies, while gas and su-
perheated vapour is present in other eddies.
Thus the rate of evaporation is limited by the
rate of heat and mass transfer between these
eddies. [Magnussen and Hjertager (1979,
pp. 416)]

The evaporation rate of cloud droplets mixing with
entrained air at high turbulent Reynolds numbers is un-
resolved at the grid-scale of most models, but its ac-
curate prediction is of consequence to the much larger
scale issues of cloud radiative forcing (Stephens 2005)
and indirect aerosol effects (Lohmann and Feichter
2005). The numerical prediction of subgrid evapora-
tion is typical of a broad class of problems that involve
the representation of sub-centimeter-scale microphysi-
cal interactions and aerosol transformations at resolu-
tion scales of 10 m to 100 km. Rigorous mathematical
analysis based on scale-separation can provide new in-
sights (Majda and Souganidis 2000) but its general ap-
plicability to dynamic multiscale geophysical phenom-
ena has yet to be determined.

One approach to improve the representation of cloud
processes in numerical models involves the diagno-
sis or prognosis of subgrid moist convection and cloud
amount from resolved quantities. A variety of this class
of cloud scheme utilizes assumed distributions of sub-
grid quantities—specified by low-order moments—to
provide a self-consistent diagnosis of a variety of in-
cloud average and cell-average quantities (Sommeria
and Deardorff 1977; Mellor 1977; Jeffery and Austin
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2003). This approach falls under the general moniker
of Probability Density Function (PDF) methods.

To date, all implementations of PDF methods in sub-
grid cloud modeling have employed an “instantaneous”
condensation and evaporation (C&E) rate assumption
to diagnose liquid water mixing ratio (ql):

ql ∼ Γ(qt − qs){qt − qs} (1)

where Γ(y) = {0, 1} for {y < 0, y ≥ 0} is a step-
function, and total water mixing ratio (qt) and saturation
mixing ratio (qs) assume a distribution of values in each
grid cell. Hereafter, we refer to Eq. (1) as the Instanta-
neous C&E (InC&E) assumption.

This extended manuscript summarizes the results of
Jeffery and Reisner (2006) pertaining to the numeri-
cal prediction of evaporation rate. It begins with the
observation that the evaporation rate predicted by (i)
PDF schemes that utilize the InC&E assumption, and
(ii) schemes that resolve supersaturation, S, and ig-
nore subgrid correlations, disagree. We are faced with
a C&E time-scale dilemma: a choice between two
common subgrid cloud modeling strategies that are, in
some sense, archetypal, inherently inconsistent, and
thus, unsatisfactory. The central thesis of this work is
that a solution to this dilemma was discovered by Mag-
nussen and Hjertager (1976) and has been indepen-
dently developed in the combustion literature. Following
Magnussen and Hjertager, we refer to the modeling ap-
proach that unifies the treatment of cloud evaporation in
PDF-based and resolved-S microphysical schemes as
the Eddy Dissipation Concept (EDC).

This manuscript is concerned with the isobaric evap-
oration rate of cloudy air and its numerical prediction as
specified by the evolution of relative humidity (RH). We
therefore define evaporation rate as the rate of evolu-
tion of the mean relative humidity, RH, of a grid-cell with
internal mixing. The definition of the C&E time-scale,
τefold, follows as the e-folding time of RH evolution.

This manuscript is organized as follows. In Sec. 2
we consider the isobar mixing of clear and cloudy air
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in a single grid cell and we derive the evaporation rate
predicted by (i) PDF schemes that utilize the InC&E as-
sumption [Sec. 2a] and (ii) microphysics models that
resolve S and ignore subgrid correlations [Sec. 2b]. In
Sec. 2c we introduce the Damköhler number—the ra-
tio of mixing and reaction (evaporation) time-scales—
which facilitates a comparison of PDF and resolved
evaporation rates for a range of atmospheric conditions.
In Sec. 3 we study the evaporation rate predicted nu-
merically by a simple 1D eddy-diffusivity model for vari-
ous initial conditions and diagnosed mixing time-scales;
the results of this study are shown to be consistent with
Magnussen and Hjertager’s EDC model. In Sec. 4 we
test the efficacy of the EDC model in the Stevens et al.
(1996) scenario of cloud-front propagation and evapo-
ration; Sec. 5 contains a summary.

2. THE C&E TIME-SCALE DILEMMA

In this section we consider the isobar mixing of clear
and cloudy air in a single grid cell. The PDF scheme is
assumed to describe the grid cell evolution in terms of
subgrid fields θl(x, t) and qt(x, t), while the resolved
scheme that is often employed in LES/CRM models
uses θ(x, t) (or equivalently temperature) and qv(x, t).
It is often assumed that the LES/CRM subgrid model-
ing assumption is grid-cell homogeneity, i.e. θ = qv =
constant (Krueger 1993). However, this assumption
is overly restrictive; our approach here is to formally
add subgrid turbulent mixing and evolution to a single
LES/CRM grid cell which retains the symmetry between
the PDF and LES/CRM approaches.

2a. The InC&E assumption and its implications

Consider, first, the C&E time-scale implied by subgrid
PDF schemes that use the InC&E assumption with
prognostic equations for the subgrid variance of qt and
liquid water potential temperature, θl, in a closed cell.
Assume, furthermore, that these prognostic equations
predict the evolution of variance without error, i.e. the
prediction of the PDF scheme is consistent with the
exact evolution of the subgrid fields {θl(x, t), qt(x, t)}.
Then beginning with advection-diffusion equations for
{θ, qv}, assuming molecular diffusion of ql, linearizing
fluctuations of q−1

s and qs(T ) about the mean and in-
troducing a molecular diffusivity, κ ≥ 0 (assumed equal
for qv and θ) leads to an equation for the variance of
RHt, var(RHt):

∂var(RHt)

∂t
= −2χ

χ ≡ κ|∇RHt|2,
(2)

where RHt = qt/qs, overbar denotes a spatial aver-
age and χ is the scalar dissipation rate∗ Equation (2)
illustrates the key dynamical features of subgrid PDF
schemes that utilize the InC&E assumption, namely,
var(RHt) decays to zero with a turbulent mixing time-
scale

τeddy ≡ var(RHt)/χ,

that is unresolved and must be modeled. Thus the
evaporation rate is largely determined by τeddy and is
independent of the microscopic phase-change (reac-
tion) time-scale, τreact, which is assumed zero in the
InC&E limit.

We are thus led to the following conclusion:

The evaporation rate of unmixed clear and
cloudy air predicted by a PDF scheme and
the InC&E assumption in a grid cell with in-
ternal unresolved divergenceless advective-
diffusive mixing depends on τeddy and is in-
dependent of τreact.

2b. Resolved evaporation rates and the C&E dilemma

High resolution cloud models, e.g. Large Eddy Simula-
tion (LES) of clouds, and somewhat coarser resolution
Cloud Resolving Models (CRMs), often explicitly re-
solve τreact. While it is typically assumed that LES/CRM
assume subgrid homogeneity, we relax this assumption
here and consider an isobaric model grid cell, mixed by
internal velocity u and molecular diffusivity κ, that has
an externally specified intra-cell flux, Φflux, and is oth-
erwise closed, i.e. ∇RH = u = 0 on cell faces.

∂RH

∂t
+ u · ∇RH = −∇ · Φflux + κ∇2RH +

1 − RH

τreact

τreact(x, t) ≡ 1

4πDvN

r + a

r2
,

(3)
where Dv is the (assumed constant) diffusivity of wa-
ter vapor, a is an accommodation length introduced for
analytic convenience and the small temperature depen-
dence of τreact has been ignored.

The time-scale τreact was first introduced by Squires
(1952) and termed the phase relaxation time. It plays a
central role in the results of Wang et al. (2003).† Wang
et al. argue that the effective time-scale over which tur-
bulence mixing can affect the cloud liquid water flux
is (1/τreact + 1/τR)−1 (Wang et al. 2003, pp. 270)
where τR is the cloud-scale large-eddy turnover time
and should not be confused with the subgrid mixing
time τeddy.

∗For analytic convenience we define χ as the dissipation rate of
half variance. Note that Eqs. (2) and (3) both assume temperature

fluctuations T ′ � RvT
2

/Lv .
†Note that ρl is non-dimensional (water density divided by air den-

sity) in Eq. (18) of Wang et al. (2003)
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The behavior described by Wang et al. is consistent
with all current models that resolve RH and ignore sub-
grid correlations as the following proof demonstrates.
We first note that these cloud parameterizations re-
place the subgrid spatio-temporal field τreact(x, t) with
its grid cell average τreact(t)—an assumption that is
less restrictive than assuming subgrid homogeneity.
Averaging Eq. (3) with this assumption and solving the
resulting ODE gives the longtime behavior

RH(t) =

∫ t

dξ exp

[

−
∫ t

ξ

dξ′ τreact
−1(ξ′)

]

{

1

τreact(ξ)
− 1

V

∫

dλ x̂ · Φflux(λ, ξ)

}

,(4)

where V is the grid cell volume,
∫

dλ is a surface inte-
gral over cell faces and x̂ is a unit-vector normal to the
cell face at λ.

Eq. (4) is a function of two distinct time-scales: τreact
(t) and the grid-scale time, τR, associated with Φflux.
Inspection of Eq. (4) reveals that the RH “evolution rate”
predicted by the subgrid assumption τreact(x, t) →
τreact(t) is consistent with Wang et al.’s response time
(1/τreact + 1/τR)−1. Of central importance, the evapo-
ration rate predicted by Eq. (4) is given solely by τreact;
the subgrid mixing time associated with advective-
diffusive mixing, i.e. u and κ, does not appear in (4).
Also, since (4) is independent of the variability in the
subgrid RH field it follows that the assumption of sub-
grid homogeneity is a special case of this more general
result. It must be emphasized that the independence
of evaporation (reaction) rate and κ implied by Eq. (4)
is specific to advective-diffusive reaction that is linear
combined with τreact(x, t) → τreact(t); reaction rates
for explicitly non-linear reactions will always depend on
κ, regardless of the subgrid modeling assumptions em-
ployed.

The above results lead us to the following conclusion:

The evaporation rate of unmixed clear and
cloudy air predicted by current S-resolving mi-
crophysical schemes in a grid cell with in-
ternal unresolved divergenceless advective-
diffusive mixing depends on τreact and is in-
dependent of τeddy.

This statement contradicts the conclusion of Sec. 2a.
Moreover, it reveals the following dilemma. Both
the InC&E assumption—as its name implies—and the
resolved-S model of evaporation in the limit τreact → 0
are considered to converge to the “fast reaction” limit
of divergenceless advective-diffusive evaporation. Yet
these two models predict different evaporation rates in
this limit. We are faced with a C&E time-scale dilemma:
a choice between two common subgrid cloud modeling

strategies that are, in some sense, archetypal, inher-
ently inconsistent, and thus, unsatisfactory.

2c. Damköhler number

Of central importance in this work is the Damköhler
number (Damköhler 1940)

Da =
mixing time-scale

reaction time-scale
,

which provides insight into the fundamental nature of
mixing and evaporation in clouds. In what follows we
choose to define Da in terms of the in-cloud number
concentration

Da = 4πDvNc
r2

r + a
τeddy, (5)

where Nc is the cloud-averaged (as opposed to grid-
averaged) number concentration. This definition of re-
action time-scale differs from τreact which involves the
grid-averaged concentration, N , but is advantageous
because Nc is often measured experimentally and is
more easily estimated. An estimation of the range of
Da as defined in Eq. (5) provides insight into relative
differences in evaporation rate predicted by PDF and
resolved-S models.

Two contour plots of Da are shown in Fig. 1 where
standard Kolmogorov scaling provides the estimate,
τeddy = 0.1ε−1/3L2/3 with L the grid cell length and
ε the kinetic energy dissipation rate. The plots indi-
cate that Da spans four orders of magnitude in the
range 10−2 to 102 for a broad range of {L,Nc, r} val-
ues and ε = 0.01 m2 s−3. In particular, an indirect
aerosol effect is observed with Da increasing linearly
with N at fixed r (N2/3 at fixed ql) as indicated by
Eq. (5). The contour Da = 1—where we expect the
PDF and resolved models to predict similar evapora-
tion rates for small φsub—tends to run through a rela-
tively narrow range of droplet sizes between 2 and 10
µm. For small drops r � 2 µm the InC&E assump-
tion predicts greater evaporation rates than resolved-S
schemes while for large drops r � 10 um the resolved
model predicts faster evaporation than the InC&E ap-
proach. Taken as a whole, Fig. 1 reiterates the serious-
ness of the C&E time-scale dilemma: evaporation rates
predicted by subgrid PDF schemes that use the InC&E
assumption and LES/CRM models that resolve S and
ignore subgrid correlations may vary more than two or-
ders of magnitude for realistic atmospheric conditions.
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Figure 1: Contour plots of Da as a function of {r, L} for Nc = 50 cm−3 [Fig. 1(a)] and Nc = 500 cm−3 [1(b)],
typical of clean marine and polluted marine/continental environments, respectively (Heymsfield and McFarquhar
2001). Da is computed with Eq. (5), the Kolmogorov estimate τeddy = 0.1ε−1/3L2/3 and ε = 0.01 m2 s−3. The
figures reveal that a range of Da values between 10−2 and 102 exist for typical atmospheric conditions and model
grid sizes.

3. CLOUD FRONT EVAPORATION: EDDY-
DIFFUSIVITY MODEL

In this section we investigate cloud front propagation
and evaporation in a closed cell using a simple one-
dimensional eddy-diffusivity model. A distinguishing
feature of our cloud model is the assumption that
droplet radius is time-independent. Although this as-
sumption does not strictly conserve liquid water, it is
appropriate for RHt > 1, large drops and small sub-
saturations. The advantage of the constant radius as-
sumption is that it leads to cloud front dynamics that are
independent of the specifics of the droplet size distribu-
tion.

3a. Cloud model

The cloud model of interest is given by the following
coupled PDEs:

∂RH

∂t
= κe∇2RH + εN(1− RH)

∂N

∂t
= κe∇2N,

(6)

with ∇RH = ∇N = 0 on the system boundaries,
κe ≥ 0 an eddy-diffusivity and ε ≥ 0 a constant.
The C&E source term in the RH equation follows from

Eq. (3) using the time-independent droplet radius ap-
proximation r(x, t) = constant. Following Grabowski
(1993) and Majda and Souganidis (2000) we assume
that the cloud (RH = 1, N > 0) and environmental
air (RH < 1, N = 0) initially occupy disjoint regions of
space. Of course, the constant droplet radius assump-
tion implies the asymptotic RH(x, t) → 1 as t→ ∞.

We consider two different sets of initial conditions:
1 Front simulations in which the system is divided into
two adjacent regions of clear and cloudy air and 2 Front
simulations with two equal-sized regions of cloudy air
surrounding a region of clear air. As the names imply,
1 Front simulations exhibit a single front of cloudy air
propagating across the system while two such fronts
exist for 2 Front initial conditions. The initial system
fraction of clear (cloudy) air is denoted by φsub (1-φsub).
Following the introduction and discussion of Damköhler
number in Sec. 2b we find Da = εNcτeddy for Eqs. (6)
with Nc = N(1 − φsub)−1 such that τreact/τeddy =
(1 − φsub)−1Da

−1.

3b. Model predictions using τeddy ∼ L2/κe

A comparison of the RH e-folding time, τefold, predicted
by Eqs. (6) is shown in Fig. 2 for φsub ∈ [0.05, 0.95].
In this comparison the mixing time-scale is taken as
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τeddy ∼ L2/κe where L is the size of the system do-
main. This definition of τeddy is consistent with the sub-
grid large-eddy turn-over time.
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Figure 2: Plot of τefold/τeddy as a function of (1 −
φsub)−1Da

−1 = τreact/τeddy predicted by Eqs. (6) with
τeddy = 0.1L2/κe. Each “finger” in the lower left
corner represent 21 different φsub values at fixed Da

with φsub ∈ [0.05, 0.95]. The fingers are not visible
in the upper right corner where rapid mixing implies
τefold = τreact independent of φsub.

Figure 2 depicts two distinct regimes of evaporative
behavior. For small (1 − φsub)Da [upper right cor-
ner], mixing occurs much faster than evaporation and
τefold = τreact independent of τeddy. This is the high-
resolution limit where the approximation τreact(x, t) =
τreact(t) is valid since the system is well-mixed for
t � τeddy. In contrast, for large (1 − φsub)Da [lower
left corner] evaporation occurs faster than mixing and
τefold appears to cluster in the range {0.01, 1} τeddy in-
dependent of τreact. This is consistent with the behavior
of subgrid PDF methods that use the InC&E assump-
tion. We also find that τefold for the 2 Front simulations
is persistently smaller at large Da than the 1 Front τefold
for a given {Da, φsub}. This behavior is expected since
the 2 Front simulations have—as their name implies—
approximately twice the interfacial area between clear
and cloudy air for evaporation to occur.

To help clarify the relationship between predictions
of the resolved-S and InC&E models and the behav-

ior of Eqs. (6), the predictions of these models are
also shown in Fig. 2. The τefold predicted by resolved
schemes is simply the 1-to-1 line (dashed) in the figure.
It is more difficult to determine τefold predicted by the
InC&E assumption since Eqs. (6) do not strictly con-
serve qt. However, assuming that the constant radius
approximation is consistent with a net change in ql be-
tween 1 and 30% (∆ ln r ∈ [0.003, 0.112]) and integrat-
ing over φsub gives the two shaded regions in Fig. 2
as described in Appendix A. These additional compar-
isons reiterate that τefold predicted by Eqs. (6) is consis-
tent with typical LES/CRM models for (1−φsub)Da < 1
and the InC&E assumption for (1 − φsub)Da > 1, and
inconsistent otherwise.

3c. Model predictions using τeddy ∼ var(RH)/χ

Inspection of Fig. 2 reveals an unsatisfactory aspect of
the simulation results. Namely, τefold appears to exhibit
a strong dependency on initial conditions, i.e. 1 Front
vs 2 Front, for a given φsub. These subgrid initial con-
ditions are, in general, unknown.

Motivated by the discussion of the InC&E assumption
in Sec. 2a we introduce the mixing time-scale

τeddy =
1

τefold

∫ τefold

0

dt
var(RH)

χ
, (7)

with scalar dissipation rate χ = κe|∇RH|2; Eq. (7) de-
scribes a time-averaged measure of the rate of RH vari-
ance erosion during advective-diffusive mixing. C&E
time-scales for φsub ∈ [0.05, 0.95] are shown in Fig. 3
with τeddy given by Eq. (7).

Comparison of Figs. 2 and 3 reveals that var(RH)/χ
is a much more genuine measure of scalar mixing time
than L2/κe. Indeed, this should come as no sur-
prise since χ is an essential quantity in the Oboukhov–
Corrsin theory of turbulent advective-diffusive mixing
(Tennekes and Lumley 1972, Chap. 8). However, it
should be emphasized that Fig. 3 does not imply that
τefold is independent of initial conditions. Rather, given
a modeled or observed cloud-clear air interface that is
complex and potentially self-similar (fractal), Fig. 3 re-
veals that just two well-defined statistical quantities—χ
and var(RH)—form the foundation of the relationship
between τeddy and the resolved (or observed) features
of the interface.

3d. The Eddy Dissipation Concept (EDC) model

The results of Fig. 3 can be quantified, to first approxi-
mation, by the simple expression

τefold = max{0.35τeddy, τreact}, (8)

with τeddy given by Eq. (7). Equation (8) is also valid—
but less accurate—for τeddy ∼ L2/κe.
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Figure 3: Plot of τefold/τeddy as a function of (1 −
φsub)−1Da

−1 predicted by Eqs. (6) with τeddy given by
Eq. (7). Comparison of Fig. 2 and 3 reveals that the
diagnosis of τeddy from χ provides a superior estimate
than τeddy ∼ L2/κe.

Equation (8) resolves the C&E time-scale dilemma
described in Sec. 2b. Neither τeddy predicted by
resolved-S schemes nor the InC&E assumption are
uniformly valid. Rather, the resolved model is valid
for (1 − φsub)Da < 1 and the InC&E assumption for
(1 − φsub)Da > 1.

Equation (8), albeit unexplored by the cloud physics
community, is not new. In the combustion commu-
nity, Eq. (8) is typically referred to as the Eddy Dissi-
pation Concept (EDC) model. It is due to Magnussen
and Hjertager (1976) who originally used τeddy ∼ K/ε
where K is kinetic energy. A variant of Eq. (8) was sug-
gested earlier by Spalding (1971). The important role
of χ in the evaluation of τeddy was first emphasized by
Bilger (1976) in the fast chemistry limit, Da → ∞.

A quotation from Magnussen and Hjertager (1979),
reproduced at the start of this manuscript, provides a
physical interpretation of EDC for the turbulent evolu-
tion of a two-phase (liquid-vapor) mixture injected into a
hot gas stream at large Da. Magnussen and Hjertager
recognize that when the liquid-vapor mixture comes
into contact with the hot gas, the liquid will rapidly evap-
orate (τreact → 0). They conclude that the net evapo-
ration rate for the system (τefold) is therefore controlled

by the rate at which the liquid-vapor mixes into the hot
stream (τeddy). This is the fundamental nature of reac-
tive advective-diffusive mixing at large Da for the class
of non-linear reaction types that includes C&E.

3e. EDC, Broadwell–Breidenthal and reaction type

The phenomenological model of Broadwell and Brei-

denthal (1982) is based on the reaction typeA+B
k→ C

with reaction rate k, where the scalar mixing statics,
e.g. the surface area per unit volume of interface be-
tween the two reactants, are assumed k-independent.
In contrast, mixing of cloudy and clear air with RHt > 1

is consistent with the reaction type A + B
k→ B where

A (B) represents subsaturated (saturated) air, respec-
tively. In this case, the scalar mixing statics are strongly
k-dependent at large Da because a faster evaporation
rate enhances the RH gradients across the cloud front
which, in turn, affects the statistics of the (centimeter-
scale) filaments where evaporation is occurring. This
cloud-front sharpening is revealed in the cumulative
probability density function (CDF) that RHenv + ε <
RH < 1−ε with 0 < ε� 1−RHenv which is a measure
of the volume fraction of RH-filaments when ∇κe = 0.

A plot of the CDF averaged over τefold is shown
in Fig. 4 for the simulations of Sec. 3c and ε =
0.01(1 − RHenv). As in Fig. 3, two distinct regimes
are evident in the small and large Da limits. For
small (1 − φsub)Da, the average system state is well-
mixed and hence the “filament” where evaporation is
occuring is the entire system volume. In contrast, at
large (1 − φsub)Da the front sharpening process de-
creases the volume fraction of filaments with increas-
ing Da. This behavior—valid for RHt > 1—contradicts
the Broadwell–Breidenthal model where the filament
statistics are assumed to be independent of τreact, and
hence Da.

3f. EDC and Reynolds decompositions

To conclude this section, it is of interest to recast the
subgrid approximation τreact(x, t) = τreact(t) of Sec. 2b
in terms of a Reynolds decomposition of subgrid quanti-
ties (Cooper 1989; Stevens et al. 1998). Denoting cen-
tered fluctuating variables with a prime, this approxima-
tion is rewritten S ′τreact′ = 0, in general, or N ′S′ = 0
for the constant radius approximation considered here.

There are two normalizing coefficients of interest,
c ∈ {c1, c2}, such that cN ′S′ is non-dimensional. The
first, c1 = (σNσS)−1 gives the standard correlation
coefficient ρ1 ∈ [−1, 1] where σX is the standard de-
viation of quantity X . Not surprisingly, N and S are
highly correlated with ρ1 ≈ 1 independent of Da (not
shown). The second coefficient, c2 = (N |S|)−1 pro-



P2.36 7

0.
05

0.
10

0.
20

0.
50

1.
00

(1 − φsub)−1Da
−1

Fi
la

m
en

t V
ol

um
e 

Fr
ac

tio
n

10−3 10−1 101 103

1_Front Simulations
2_Front Simulations
CDF = 1

Figure 4: Plot of the cumulative probability that RHenv+
ε < RH < 1 − ε, averaged over τefold and predicted
by the 1 Front and 2 Front simulations of Sec. 3c with
ε = 0.01(1−RHenv). The figure shows increasing RH-
front sharpening with increasing Da.

vides a correlation coefficient ρ2 that is a measure of
the relative importance of the covariance N ′S′. In par-
ticular, ρ2(t = 0) = 1 for the “cloud-front” initial condi-
tions used in this section and ρ2(t → ∞) = 0 for the
well-mixed final state.

A plot of ρ2 averaged over τefold is shown in Fig. 5
for the simulations of Sec. 3c. The results of this fig-
ure are consistent with and compliment the results of
Fig. 3. For (1 − φsub)Da > 1, N ′S′ is of relative impor-
tance (Fig. 5) and neglect of this covariance leads to
a dramatic underestimation of τefold (Fig. 3). This be-
havior reiterates that LES/CRM models which resolve
S and assume N ′S′ = 0 overestimate evaporation at
large Da.

4. A TEST OF EDC: SPURIOUS CLOUD-
EDGE SUPERSATURATIONS

We showed in Sec. 3 that LES/CRM models using the
approximation τreact(x, t) = τreact(t) underestimate
τefold and therefore overestimate cloud front evapora-
tion at large Damköhler numbers. Enhanced numer-
ical prediction of C&E at cloud edges—and resulting
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Figure 5: Plot of the correlation coefficient, ρ2 =
N ′S′/(N |S|), averaged over τefold and predicted by the
1 Front and 2 Front simulations of Sec. 3c. The corre-
lation N ′S′ appears in the evolution equation for RH
and acts to increase τefold at large Da.

instabilities—was first studied by Klaassen and Clark
(1985). Subsequent work focused on the application of
monotonic advection schemes to mitigate these insta-
bilities (Grabowski 1989; Grabowski and Smolarkiewicz
1990; Grabowski and Clark 1991). But not until the
study of Stevens et al. (1996), was a purely non-
advective mechanism for spurious cloud-edge super-
saturation exposed.

Stevens et al. consider the non-diffusive propagation
of a cloud front across a 1D grid cell at constant veloc-
ity (U ) as described by the triplet {θl, qt, r}. Following
past studies they investigate the evolution of the corre-
sponding grid-cell averaged quantities {Θl, Qt, R} with
one novel difference—Stevens et al. diagnose the
grid-scale advective tendency without approximation,
i.e. U∇Ψ = U∇ψ where the pair {Ψ, ψ} is one of the
three thermodynamic parameters. By assuming that
advection can be performed perfectly at the grid-scale,
the effect of subgrid modeling assumptions is, thereby,
isolated. The Stevens et al. scenario, generalized to in-
clude turbulent eddy-diffusive mixing, provides an addi-
tional framework to study the effectiveness of the EDC
model.
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4a. Modified Stevens et al. model

Stevens et al. observe large fluctuations in RH when
C&E at the grid-scale is evaluated using {Θl, Qt, R}.
As shown in their Fig. 3(b), supersaturations reach 4%
and, quite counter-intuitively, supersaturation oscilla-
tions increase with decreasing τ where τ is the time
required for the cloud front to propagate across the
grid cell. Stevens et al. attribute these large fluctua-
tions in S to the logical consequence of driving micro-
physical forcings with grid-averaged supersaturations.
However, there is an additional forcing in their study
that is causing S to exceed 1%, namely, the approx-
imation Ql ∼ R3 [their Eq. (4)] used in the calcula-
tion of T from Θl(Ql). The exact advective tendencies
of {Ql, R} are linear in time while the approximation
Ql ∼ R3 gives Ql ∼ t3, an underestimation as seen
in their Fig. 3(d). By underestimating the advective ten-
dency of Ql, Stevens et al. underestimate T [Fig. 3(a)]
and overestimate RH [Fig. 3(b)], independent of C&E.

We consider evolution of the triplet {Θl, Qt, Ql} with
advective tendencies evaluated exactly from {θ, qt, ql}
such that the diagnosed advective tendency of T is lin-
ear in time.† In addition, we extend Stevens et al.’s
laminar problem by adding eddy-diffusive mixing:

∂Ψ

∂t
= −U∇ψ + κe∇2ψ,

for Ψ ∈ {Θl, Qt} where

ψ(x, t) = Ψe +
(Ψc − Ψe)

2
erfc

(

x− Ut√
4κet

)

is the analytic solution for the evolution of a cloud-edge
initialized at (x = 0, t = 0), and Ψc (Ψe) represents
unmixed cloud (clear) values.

In contrast, Ql is evaluated numerically according to

∂Q
(n)
l

∂t
= −U∇ql + κe∇2ql + F (n)

, (9)

where F (n)
, n ∈ {1, 2, 3} represents three different

grid-scale microphysical forcings:

F (1)
=

dQl

dt

{

R ∼ Q
1/3
l

}

F (2)
= LdQl

dt

{

R ∼ Q
1/3
l

}

F (3)
= LdQl

dt

{

R ∼ Q
1/3
l (1 − φsub)2/3

}

,

and L = τreact/max(τeddy, τreact) when dQl/dt < 0

and 1 otherwise. Specifically, F (1)
denotes the usual

†Note that exp{−LvQl/(cp,aT )} = 1−LvQl/(cp,aT ) to good
approximation for the thermodynamic parameters used in Stevens
et al. and here.

grid-scale averaged C&E-forcing with diagnostic rela-

tion R ∼ Q
1/3
l overestimating droplet radius, F (2)

denotes the evaporation-limiting EDC model also with

R ∼ Q
1/3
l , and F (3)

denotes the EDC model with im-
proved diagnosis of R. Straightforward substitution ver-
ifies that the evaporation limiter, L, produces EDC be-
haviour in the RH-equation that agrees with Eq. (8).
We diagnose grid-cell cloud fraction crudely according
to φsub(t) = (Ψc−Ψ)/(Ψc−Ψe); this definition of φsub

is exact for κe = 0, questionable otherwise. Explicit
relations for dQl/dt and τreact are given in Appendix B.

In our implementation of the EDC model described
above and in Appendix B, no attempt is made to “tune”
the evaporation limitation via a constant of proportion-
ality that relates τefold and τeddy, e.g. as per Eq. (8).
Rather, our aim is to provide a first-order assessment of
the efficacy of the EDC model in a mixing scenario that
includes advection and cross-grid transport, and that is
distinct from Sec. 3. Consistent with the treatment of
advection-diffusion (above), the EDC model is applied
at each time step with τeddy(t) = var(RH)/χ calcu-
lated “exactly” from the fully-resolved subgrid field.

In Stevens et al. (1996)’s original scenario the sin-
gle time-scale τ = L/U describes the purely advec-
tive transport across the grid cell; the addition of diffu-
sion, here, introduces a second time-scale τκ = L2/κe.
Since, our analysis continues to use τ as the primary
time-scale we consider only Nκ ≤ 0.1 where Nκ ≡
τ/τκ is a non-dimensional measure of the relative im-
portance of diffusion.

4b. Results

Plots comparing {RH,RH
(1)
,RH

(3)} and

{ql, Q(1)
l , Q

(3)
l } as functions of t/τ for each

Nκ ∈ {0, 0.01, 0.1} are shown in Fig. 6. Before
considering the impact of EDC on grid-averaged quan-

tities, it is of interest to assess differences in RH
(1)

for
κe = 0 between the present approach and Stevens
et al., as seen in their Fig. 3(b). The grid-averaged

supersaturation, RH
(1) − 1, gently plateaus near 0.2%

in the current approach, while Fig. 3(b) in Stevens
et al. shows a pronounced supersaturation peak
that reaches 1.5%. As discussed in the previous
subsection, the cause of the enhanced supersatu-
ration oscillation in their work is the approximation
Ql ∼ R3 which causes grid-average temperatures to

be underestimated. Consequently, RH
(1)

converges
to RH in the limit τ → 0 in the present approach but
the opposite behavior is exhibited in Stevens et al.’s
Fig. 3(b).

Fig. 6 also demonstrates the effect of the EDC model
on grid-cell averaged quantities with R diagnosed from
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Figure 6: Comparison of RH [Fig. 6(a)] and Ql [Fig. 6(b)] diagnosed exactly from the resolved subgrid field (thick

lines) and computed using grid-cell averaged microphysical forcing with evaporation limitation (F (3)
in Eq. (9);

symbols) and without (F (1)
in Eq. (9); thin lines). Line and symbol types represent different Nκ values: {—–,2}

is Nκ = 0, {- - -,◦} is Nκ = 0.01, and {– –,4} is Nκ = 0.1. Evaporation limitation based on the EDC model
produces {RH, Ql} evolution that agrees closely with the resolved subgrid field. Calculations performed with
τ = 181 s and parameter value from Stevens et al. (1996, Table 1). Note that the thin solid line overlays the thin
dashed line for t < 0.8τ .

Q
1/3
l (1 − φsub)2/3. Qualitatively, the agreement be-

tween {RH
(3)
, Q

(3)
l } and {RH, ql} is very good. In par-

ticular, EDC limits the large evaporation rates that oth-
erwise cause oscillations in the supersaturation field. In
fact, for the original Stevens et al. scenario with κe = 0,
the predictions of the EDC model are exactly correct.
Essentially, this is a trivial limit of the EDC model in 1D
where τefold → ∞ as κe → 0. A quantitative assess-
ment of the accuracy of EDC is found in Jeffery and
Reisner (2006).

4c. Summary

Stevens et al. construct a novel scenario of purely ad-
vective cloud front propagation across a grid cell in 1D
where spurious oscillations are observed in the grid-
scale prognostic variables {Θl, Qt, R}. They do not
suggest a solution to this problem.

We have shown that the EDC model exactly
solves the non-turbulent problem articulated by Stevens
et al.—and appears to provide good results for the more
general turbulent case—with three important caveats:

• Stevens et al. use the approximation Ql ∼ R3 in

the determination of temperature which introduces
a second grid-scale forcing that is independent of
C&E. We avoid this forcing by using a different
prognostic triplet, {Θl, Qt, Ql}.

• The accuracy of EDC for κe > 0 depends, in turn,
on the accuracy of the subgrid parametrization for
τeddy. Good results using τeddy = 0.05L2/κe for
the present scenario suggest that reasonably ac-
curate diagnosis of τeddy, while difficult, is feasible.

• The surrogate problem for 3D turbulent transport
tested here—advection and eddy-diffusion in 1D—
is of limited complexity. In particular, incompress-
ible advection is confined to a constant and trivial
mean sweep in 1D. EDC has yet to be tested in 3D
where advection plays a dominant role in cascad-
ing variance from large to small scales.

5. SUMMARY

Prediction of the turbulent evolution of a mixture of clear
and cloudy air is, fundamentally, a Lagrangian problem
that is of higher dimension than that of typical reactive
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scalar systems. The interaction of a droplet with the
surrounding temperature and vapor fields depends, in
particular, on the droplet radius which is expressed as a
Lagrangian path integral along droplet trajectories. This
reveals an essential difficulty in predicting droplet spec-
tral evolution—and hence evaporation—at unresolved
scales.

In this work we exploit a time-independent droplet ra-
dius approximation—appropriate for RHt > 1, large
drops and small subsaturations—that essentially re-
moves the Lagrangian character from the problem at
hand. In particular, this assumption implies that cloud
front propagation and evaporation is independent of the
specifics of the droplet size distribution and a function
of only two time-scales, τreact and τeddy. Two common
cloud schemes (i) PDF schemes that exploit the InC&E
assumption and (ii) LES/CRM schemes that resolve
τreact and ignore subgrid correlations make diametric
assumptions τefold ∼ τeddy and τefold ∼ τreact, respec-
tively. We are faced with a C&E time-scale dilemma:
a choice between two common subgrid cloud modeling
strategies that are, in some sense, archetypal, inher-
ently inconsistent, and thus, unsatisfactory.

The resolution to the C&E time-scale dilemma is
found in the pioneering work of Magnussen and
Hjertager (1976) who first hypothesized the relation
τefold ∼ max(τeddy, τreact) which encapsulates the be-
havior of traditional PDF and resolved C&E schemes at
different limits. We have verified using two very differ-
ent conceptual approaches—1D eddy-diffusivity mod-
eling and a new PDF approach with resolved C&E—
that Magnussen and Hjertager’s EDC model correctly
predicts the evaporation rate for cloud-front propagation
across a grid-cell in the constant radius limit and in the
absence of sedimentation and inertial effects. These
results imply that PDF schemes overestimate evapora-
tion at small Damköhler number while LES/CRM mod-
els that resolve C&E overestimate evaporation at large
Da.

Although the estimate Da ∼ L2/3 might suggest
that PDF and LES/CRM schemes are correct in typi-
cal small and large grid size limits, respectively, Fig. 1
demonstrates otherwise. For example, at 20 m res-
olution, the resolved-S approximation used by many
LES/CRM models τefold ∼ τreact becomes invalid at
r greater than about 50 µm and Nc = 50 cm−3; at
Nc = 500 cm−3 the resolved-S approximation breaks
down near 5 µm. In a similar fashion, PDF schemes
that utilize the InC&E assumption are not uniformly
valid at L = 1000 m and typical atmospheric condi-
tions. These results reiterate and substantiate con-
cerns that have been raised in the cloud physics lit-
erature that modeled evaporation rates are too high
(Krueger 1993; Stevens et al. 1996), or more gener-

ally, are of particular importance to overall model per-
formance (Stevens et al. 2005).

Implementation of the EDC model in high-
resolution schemes requires modifying the C&E
source term for dql/dt with the evaporation limiter
L = τreact/max(c1τeddy, τreact) when dql/dt < 0;
direct substitution verifies that L correctly reproduces
the EDC behavior τefold ∼ max(τeddy, τreact) in the
RH-equation and constant radius limit. Our numerical
simulations suggest c1 ≈ 0.35. This new scheme ad-
ditionally requires the diagnosis of (subgrid) τeddy from
the resolved field. We have tested this implementation
of EDC with diagnostic relation τeddy = c2L

2/κe in a
turbulent generalization of the Stevens et al. (1996)
scenario of 1D cloud front propagation and find very
good quantitative results for c2 = O(0.1). This result is
encouraging because L and κe are already standard
computed quantities in many LES/CRM models.
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Development Project entitled “Resolving the Aerosol-
Climate-Water Puzzle (20050014DR)”.

A. THE InC&E ASSUMPTION AND CLOUD
EVAPORATION

The analog of Eqs. (6) for subgrid PDF schemes that
use the InC&E assumption is

∂RHt

∂t
= κe∇2RHt

RH = min(1,RHt),
(10)

with ql ∼ Γ(RHt − 1)(RHt − 1) where Γ is a step func-
tion. To generate the shaded regions in Fig. 2, Eqs. (10)
are first solved using 1 Front and 2 Front initial condi-
tions for ∆ql ∈ [0.01, 0.30]ql and a distribution of φsub.
The range of τefold shown in Fig. 2 is then calculated by
averaging over φsub.

B. MICROPHYSICAL RELATIONS FOR
SEC. 4

Let
dQl

dt
= 4π

ρw

ρa
NcR2 dR

dt
,

with

dR
dt

= crQs
ρa

ρw
Dv

RH − 1

R + a

cr =

{

1 +
Dv

Da

(

Lv

RvT
− 1

)

Lv

cp,aT
Qs

}−1

,
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and parameter values Nc = 100 cm−3, a = 2 µm,
and thermodynamics parameters as in standard texts
(Pruppacher and Klett 1997).

Then the diagnosis of R in F (1−3)
obeys

F (1−2) → R = R

F (3) → R = R(1 − φsub)2/3,

with

R =

(

3

4π

ρa

ρw

Ql

Nc

)1/3

,

and

τreact =
1

4πDvNc

R + a

R2
.
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