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RESOLVING MIXING AND EVAPORATION
IN THE SMALLEST CLOUD FILAMENTS

Christopher A. Jeffery ∗

Space and Remote Sensing Sciences (ISR-2), LANL, Los Alamos, NM

Jon M. Reisner
Atmospheric, Climate and Environmental Dynamics (EES-2), LANL, Los Alamos, NM

1. INTRODUCTION

Early convective cloud parameterizations assumed that
cloud interiors were well mixed—the so-called “ho-
mogeneous mixing” approximation (Jonas and Mason
1982). This assumption was challenged by Baker et al.
(1980) who first pointed out that the actual mixing of
two fluid elements with different relative humidity, RH,
occurs via diffusion across narrow centimeter-scale fil-
aments with advection controlling the contact rate of un-
mixed fluid elements. The converse of this statement—
fluids remain unmixed in the absence of diffusion—is
a consequence of the well-known phase preservation
property of Louiville equations.

Based on this phenomenological picture, Baker et al.
proposed that turbulent mixing in clouds is either “in-
homogeneous” or “extreme inhomogeneous” in na-
ture as illustrated in Fig. 1. During inhomogeneous
mixing [Fig. 1b)] cloud droplets experience a range
of subsaturations in filaments with different ratios of
cloud/environmental air. The net result is a broaden-
ing of the size-spectrum to smaller sizes. In contrast,
during extreme inhomogeneous mixing [Fig. 1c)] some
fraction of droplets completely evaporate in subsatu-
rated filaments and thereby restore RH to unity—the
size of the remaining droplets are unchanged but the
number concentration decreases.

In this work, we consider the isobaric evolution of
clear and cloudy air during turbulent mixing in the ab-
sence of secondary nucleation and we study the broad-
ening of the droplet size spectrum to smaller sizes due
to evaporation. Baker et al. introduced three charac-
teristic time scales: an entrainment time, the time for
molecular diffusion across filaments and the evapora-
tion time for a single droplet. For the present scenario,
we demonstrate that the nature of mixing [e.g. homo-
geneous vs inhomogeneous] is primarily determined by
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Figure 1: Schematic of different mixing scenarios: (a)
Homogeneous, (b) Inhomogeneous and (c) Extreme In-
homogeneous.

the Damköhler number (Damköhler 1940):

Da ≡ teddy/treact,

the ratio of turbulent (teddy) and reactive (treact) time
scales, where—for cloud evaporation—treact is given
by the characteristic time for phase change (Squires
1952) such that

Da = 4πNDvteddy

〈
r2/(r + a)

〉
t=0

(1)

where N is the initial droplet number density in the
cloudy air, Dv is the diffusivity of water vapor, r is
droplet radius, a = 2 µm is an accommodation length,
and 〈·〉t=0 is an ensemble average at time zero. For the
present mixing scenario and typical model grid sizes
and atmospheric conditions, Da spans four orders of
magnitude in the range 10−2 to 102 as discussed in
Jeffery and Reisner (2006).

Evaluation of the impact of Da on the evolution of RH
is complicated by the non-linear nature of mixing and
evaporation. Moment formulations suffer from the well-
known closure problem that information about statisti-
cal moments of every order is needed to have closed
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non-linear terms. Probability density function (PDF)
methods offer a distinct advantage over moment ap-
proaches since non-linear reaction terms like evapo-
ration are more easily evaluated. The PDF equation
for advection-diffusion requires evaluation of the con-
ditional Laplacian. However, evaluation of this statistic
using a Gaussian mixing assumption leads to unphys-
ical behavior in the evolution of the scalar PDF unless
the PDF is strictly Gaussian itself.

In this study we use a technique called ”mapping
closure” (Chen et al. 1989) to evaluate the conditional
Laplacian, that does not suffer from the deficiencies of
a purely Gaussian closure. The PDF-equation for RH
is introduced in Sec. 2 and Chen et al.’s mapping clo-
sure is briefly summarized. In Sec. 3 we introduce a
droplet number mixing model for the conditional evalu-
ation of N , and Sec. 4 summarizes the impact of Da
on the evolution of RH and the droplet size distribution,
f(r). Sec. 5 discusses total droplet evaporation during
mixing and Sec. 6 contains a brief summary.

2. PDF-EQUATION FOR RH

In analogy with the well-known equation for f(r), the
equation for the RH-PDF is given by:

∂P(RH)

∂t
= −

∂

∂RH

[〈
∂R̃H

∂t

∣∣∣∣∣ R̃H=RH

〉
P(RH)

]

(2)
where P(RH)dRH is the probability that RH is in the
range [RH, RH + dRH], R̃H(x, t) is the RH field and
〈∂R̃H/∂t|R̃H = RH〉 is the conditional derivate of R̃H
evaluated on level sets of RH.

For temperature differences between the
cloud/environmental air that are small compared
to the Clausius-Clapeyron temperature∗ RvT

2/Lv and
assuming equality of the diffusivities of water vapor and
temperature, R̃H obeys the usual advection–diffusion
equation with an evaporative source term. Substitution
of the diffusive contribution to the conditional derivative
of R̃H gives the conditional Laplacian describing the
impact of diffusion on P(RH):

D∗

〈
∇2R̃H

∣∣∣ R̃H = RH
〉

(3)

where D∗ is the vapor/temperature diffusivity.

2a. Evaluation of conditional advection-diffusion

Evaluation of Eq. (3) is the fundamental closure prob-
lem in the evaluation of PDFs describing advection-

∗T is temperature, Rv is the water vapor gas constant and Lv is
the latent heat of vaporization.
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Figure 2: Schematic of mapping closure.

diffusion systems. Gaussian closure results in an ad-
vection equation for the PDF that does not give the
expected relaxation toward Gaussian statistics unless
the PDF is strictly Gaussian itself. Chen et al. (1989)
proposed a technique called mapping closure to evalu-
ate Eq. (3) that exhibits realistic relaxation for strongly
non-Gaussian PDFs and will be used in the present
study. In this new approach, illustrated in Fig. 2, a time-
dependent non-Gaussian PDF is mapped to a time-
independent Gaussian random field. Once the map-
ping is established, the map can be evolved in time
without approximation since the statistics of the Gaus-
sian random field are known.

Once the time-dependent mapping RH = X(RH0, t)
is established, P is given by

P(R̃H = RH, t) = P0(R̃H0 = RH0) (∂X/∂RH0)
−1 ,

(4)
where P0 denotes the single-point PDF of the centered
Gaussian random field. Closure is achieved by assum-
ing that the (unknown) spatial statistics of R̃H are the
same as the surrogate field R̃H0. In particular, this im-
plies

〈∇2R̃H|RH〉 = 〈∇2R̃H0|X(RH0)〉.

Using this approach, the evolution equation for X is an
explicit function of the spatial statistics of the surrogate
field. Chen et al. derive

∂X

∂t
= χ0

(
−

RH0

〈R̃H
2

0〉

∂X

∂RH0

+
∂2X

∂RH2
0

)
+ Q(X), (5)

where χ0 ≡ κ〈|∇R̃H0|
2〉 and Q(R̃H) is the microphys-

ical source term in the advection-diffusion equation for
RH. The final step in the derivation relates χ and χ0,
using either Gaussian relations (Chen et al. 1989) or
direct evaluation of 〈X2〉 in (5):

χ = χ0

〈
(∂X/∂RH0)

2
〉

.
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Note that a complete closure requires independent
specification of χ which we discuss in Sec. 2b.

Eq. (5) reveals the essential physics of X evolution.
The first term on the rhs of (5) advects X away from
RH0 = 0 toward both +∞ and −∞. In addition,
diffusion smooths the features of X leading to near-
Gaussian statistics via Eq. (5). This is the essential fea-
ture of mapping closure that assures physically reason-
able behavior: anti-diffusional behavior in RH-space is
translated into diffusional evolution in RH0-space that
is stable and mathematically well-defined. As shown
by Gao (1991a,b), this RH0-space evolution leads to a
well-mixed state that is near-Gaussian but retains some
memory of its initial non-Gaussian form, in good agree-
ment with numerical experiment.†

2b. Specification of χ

PDF methods, including mapping closure, require inde-
pendent specification of the scalar dissipation rate χ(t).
Here we use a simple Newtonian damping term

χ(t) = var(RH)/teddy, (6)

where a time-independent teddy is specified a priori.
Specification of a linear dependence of χ on var(RH)
is frequently employed in cloud modeling studies and
dates back to the early work of Mellor and Yamada
(1974) and Wyngaard and Coté (1974), among others.

3. DROPLET MIXING MODEL

Equating the conditional derivative in Eq. (2) to the sum
of diffusive and evaporative contributions and introduc-
ing the non-dimensional time scale τ = t/teddy gives

∂P/∂τ = −(∂/∂RH)
[
D∗teddy

〈
∇2R̃H

〉
τ

P

]

+ Da
∂

∂RH

[
〈N |RH〉τ

N
(RH − 1)P

]
(7)

where we have assumed that mean droplet radius
changes little during a mixing event. The advantage
of the constant radius limit is that it leads to mixing and
evolution that are independent of the specifics of the
droplet size distribution. Note that 〈∇2R̃H〉τ is evalu-
ated using mapping closure in what follows.

The terms in square brackets in Eq. (7) are of or-
der unity. Thus the Damköhler number, Da, determines
the relative strengths of the evaporative and advective-
diffusive contributions to the RH-PDF evolution as ex-
pected.

†Additional information on mapping closure including simulations
and comparisons with other Gaussian closures can be found at
LANL, cited (2006).

In order to model 〈N |RH〉τ we must first specify the
present mixing scenario. We consider the mixing of
equal volumes of clear and cloudy air with RH = RHenv

in the clear volume and RH = 1 in the cloudy volume.
Formally, Pτ=0 = 0.5δ(RH − RHenv) + 0.5δ(RH − 1).
The final state is Pτ→∞ = δ(RH − 1). We introduce
a droplet number mixing model for 〈N |RH〉τ based on
the following considerations. In the limit that droplet and
RH trajectories coincide and in the absence of evapo-
ration, 〈N |RH〉τ is proportional to the relative volume
fractions of clear and cloudy air:

〈N |RH〉τ/N = (RH(τ) − RHenv)/(1 − RHenv).

Evaporation must necessarily modify this relation; as
droplets evaporate and local RH increases, the relative
fraction of drops becomes less than this volume fraction
relation indicates. We consider an analytic parameteri-
zation of 〈N |RH〉τ of the form

〈N |RH〉τ = F (t)N

(
RH − RHenv

1 − RHenv

)β

, (8)

for RHenv ≤ RH ≤ 1 where F (t) satisfies the normal-
ization

∫
P(RH)RH. 〈N |RH〉 = 〈N〉. Eq. (8) states

that on average the expected droplet concentration in-
creases with increasing RH.

The exponent β in Eq. (8) controls the relative rate
at which droplets “mix” into subsaturated regions of
largely unmixed environmental air. In particular the
limit β → ∞ implies infinitely slow droplet mixing while
β → 0 implies infinitely quick mixing. The value β = 1
is an exact result for the given initial conditions in the
absence of condensation-evaporation, sedimentation
and diffusive effects. In Jeffery and Reisner (2006) we
derive the expression

β = 1 + 0.015Da1/2, (9)

which produces evaporation times that are consistent
with eddy-diffusive mixing.

4. PDF EVOLUTION

The evolution of the PDF of RH is shown in Fig. 3 for
Da = 100 and RHenv = 0.6. At large Damköhler num-
ber, the predictions of the present approach are consis-
tent with the phenomenological model of Baker et al..
The relatively low probability of finding RH in the range
0.62 < RH < 0.98 illustrates that mixing of fluid el-
ements is confined to narrow filaments with small vol-
ume fraction. Restoration of RH to unity in filaments
due to evaporation occurs at a faster rate than the dif-
fusive growth of the filament—this is the fundamental
nature of hydrodynamic reaction at high Da.
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Figure 3: Evolution of P(RH) calculated from Eq. (7)
with Da = 100 and RHenv = 0.6.

A comparison of the cumulative distribution function
(CDF) that RH ≤ 0.99 for Da ∈ [10, 1000] is shown in
Fig. 4. The top figure shows CDF(RH ≤ 0.99) while
the bottom figure depicts the CDF weighted by droplet
number as modeled by Eq. (8). The results illustrated
in Fig. 4 re-emphasize the fundamental connection be-
tween Damköhler number and Baker et al.’s concept
of inhomogeneous mixing. Specifically, Fig. 4 demon-
strates that the relative fraction of droplets that expe-
rience a subsaturated environment decreases with in-
creasing Da.
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Figure 4: Cumulative probability RH ≤ 0.99 (top) and
CDF weighted by N(RH)/N (bottom).

Determination of the droplet size spectrum, f(r), re-
quires Lagrangian information of the supersaturation
along droplet trajectories. Let

(Sint)A =
1

τ(1 − RHenv)

∫ ∞

0

dt RHA(t) − 1

be the normalized supersaturation integral of the
droplet labeled “A” such that RHA(t) is the local super-
saturation experienced by A at time t. The present ap-
proach provides N(RH) but not Sint without further as-
sumption. We introduce a Lagrangian droplet evolution
model in RH-space in which droplets randomly move
to a new RH-bin after at time tclock which is exponen-
tially distributed with mean teddy. Thus the Lagrangian
mixing process is modeled with a renewal process with
exponential distributed mixing times.
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Figure 5: PDF of Da|Sint| for Da ∈ [10, 1000].

The PDF of |Sint| calculated using Eq. (7) and a
renewal process for Lagrangian droplet trajectories in
RH-space is shown in Fig. 5. Note that 〈Da|Sint|(1 −
φsub)/φsub〉 = 1 where φsub is the volume fraction of
subsaturated (entrained) air. The figure reveals that
most droplets do not experience significant subsatura-
tion during mixing at large Da while for smaller Da most
droplets experience a subsaturation that is greater than
the minimum.

The asymptotic behavior P(|Sint|) ∼ |Sint|
−1 at large

Da is a seminal feature of the Gaussian mixing as-
sumptions inherent in mapping closure. This can be de-
rived from solutions of the map X but it is more readily
apparent from the Gaussian model with microphysical
source term

P(RH)

∂t
= −

∂

∂RH

[
RH − 〈RH〉

teddy

P

]
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which, upon transforming to |Sint| and using 〈|Sint|〉 ≈
0 gives the steady-state solution P(|Sint|) ∼ |Sint|

−1.
The effect of our new PDF model of mixing on the

droplet size spectrum is shown in Fig. 6 and calculated
such that 15% of droplets completely evaporate during
the mixing process. The figure reveals that decreasing
Da broadens the droplet spectrum to smaller sizes.
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Figure 6: Droplet spectra assuming a Gaussian initial
state with σ = 0.1r0.

5. DROPLET EVAPORATION

The dependence of total droplet evaporation on
Damköhler number is illustrated in Fig. 7. Here, Ni is
the initial grid-cell averaged droplet number concen-
tration, Nf is the final concentration after mixing, and
(ρl)i and (ρl)f are the initial and final liquid water den-
sities, respectively. The point (0.5, 0.5) refers to a 50%
change in cloud liquid water density during mixing with
no change in droplet size and complete evaporation of
half the drops. The figure reveals that increasing Da
and decreasing φsub increases the number of droplets
that evaporate completely.

The results of Fig. 7 are summarized in Fig. 8 for
(ρl)f/(ρl)i = 0.85. Here what is plotted is the statistic

β =
Nf/Ni − (ρl)f/(ρl)i

1 − (ρl)f /(ρl)i

such that β = 1 for completely homogeneous mixing
(Nf = Ni) and β = 0 for extreme inhomogeneous
mixing (Nf/Ni = (ρl)f/(ρl)i). The figure reveals that
the nature of mixing depends logarithmically on Da for
φsub > 0.2 but a strong dependence on Da is seen for
φsub < 0.2.
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Figure 7: Dependence of droplet evaporation on Da.

6. SUMMARY

In this work the PDF equation for RH has been de-
rived and closed using (i) mapping closure to evalu-
ate the conditional Laplacian and (ii) a droplet num-
ber mixing model to evaluate 〈N |R̃H = RH〉. The
central conclusions of this study are summarized in
Fig. 9. The concepts of “inhomogeneous mixing” and
“extreme inhomogeneous mixing” introduced by Baker
et al. are shown to be equivalent to hydrodynamic reac-
tion at Da = O(1) and large Da, respectively. For the
present mixing scenario and typical atmospheric con-
ditions “homogeneous mixing” does not occur. In addi-
tion, due to the dependence of Da on N indicated by
Eq. (1), we find that increasing N increases Da which
thereby decreases the dispersion of the droplet size
spectrum to smaller scales and increases total droplet
evaporation.

A seminal feature of the present approach is the
asymptotic behavior P(|Sint|) ∼ |Sint|

−1 at large Da
which is a result of the Gaussian assumption inherent
in mapping closure. This feature of our new PDF model
of mixing requires observational validation.
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