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ABSTRACT 

In this paper we concentrate on the space-time behaviour of atmospheric passive scalars.  We 
first recall that – although the full ( , , , )x y z t  turbulent processes respect an anisotropic scale invariance, 
that due to advection, the generator will generally not be a diagonal matrix.  This implies that the scaling 
of (1D) temporal series will generally involve three exponents in real space: 1/3, ½, 3/5; for spectra τβ  = 
5/3, 2, 11/5 with the first and last corresponding to domination by advection (horizontal and vertical 
respectively), and the middle to pure temporal development.  We survey the literature and find that almost 
all the empirical results indeed have τβ  in the range 5/3 or 2 (the 11/5 value requires apparently 
unrealistic vertical winds).  We then use state-of-the-art vertically pointing lidar data of backscatter ratios 
from both aerosols and cirrus clouds yielding several ( , )z t  vertical space - time cross-sections with 
resolution of 3.75 m in the vertical, 0.5 s -30 s in time and spanning 3-4 orders of magnitude in temporal 
scale. 

We first tested the predictions of the anisotropic, multifractal extension of the Corrsin-Obukhov 
law in the vertical and in time separately finding that the cirrus and aerosols both followed the theoretical 
(anisotropic) scalings accurately; most (but not all) of the cases showed a dominance by the horizontal 
wind.  In order to test the theory in arbitrary directions in this ( , )z t  space, and in order to get more 
complete information about the underlying physical scale, we developed and applied a new Anisotropic 
Scaling Analysis Technique (ASAT) which is based on a nonlinear space-time coordinate transformation.  
This transforms the original differential scaling into standard self-similar scaling; there remains only a 
“trivial” anisotropy.  This method was used in real space on 2D structure functions as well as in fourier 
space on spectral densities.  It was applied to both the ( , )z t  data as well as the ( , )x z  data discussed in 
[Lilley et al 2004] Using the ASAT technique we verified the theory to within about 10% over more than 3 
orders of magnitude of space-time scales in arbitrary directions in ( , )x z  and ( , )z t  spaces.  By 
considering the high (and low) order structure functions, we verify the theory for both weak and strong 
structures (as predicted, their average anisotropies are apparently the same). 

Putting together the results for ( , )x z  and ( , )z t  (and assuming that there is no overall 
stratification in the horizontal ( , )x y  plane), we find that the overall ( , , , )x y z t  space is found to have an 
“elliptical dimension” characterizing the overall space-time stratification equal to Dst=3.21±0.05 which is 
close to the theoretical value Dst =1+1+5/9+2/3=29/9=3.22… corresponding (in conditions with no mean 
wind) to 5/3

xk
− , 5/3

yk
− , 11/5

zk
−  scaling in space and 2−ω  scaling in time. 
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1. INTRODUCTION 

To date, the great majority of turbulence 
theories have postulated a priori that all the 
relevant regimes are isotropic.  They thus require 
at least two regimes to model the atmosphere: a 
(quasi) two dimensional isotropic large scale and 
(quasi) three dimensional isotropic small scale.  
Since the scale height Hs for the mean pressure is 
about 7.5 km, the “dimensional transition” from 
isotropic 2D to isotropic 3D turbulence must occur 
somewhere in the meso-scale; this is the origin of 
the elusive “meso-scale gap” in the energy 
spectrum which we discuss below.  The main 
exceptions to isotropic scaling (“self-similar”) 
theories are the weakly nonlinear gravity wave 
theories (see Dewan and Good (1986), Dewan 
(1997), Gardner (1994) and review in Lovejoy et 
al. (2006)) and the 23/9 D anisotropic “unified 
scaling” model proposed in (Schertzer and 
Lovejoy 1985).  Stochastic multifractal models 
following this scaling symmetry and obeying the 
multifractal extensions of the Kolmogorov and 
Corrsin-Obukhov statistics were proposed in 
(Schertzer and Lovejoy 1987); the Fractionally 
Integrated Flux (FIF) model.  These involve the 
notion of scaling stratification and are the main 
focus of this three part paper.  

To understand the meaning of scaling 
stratification, consider the dimension which 
characterizes the stratification.  In a 2D 
atmosphere, there is only variability in the 
horizontal direction.  In a 3D  atmosphere, if x and 
z are horizontal and vertical and ( ), 0,0x∆ ∆ρ  
designates density fluctuations in the horizontal 
and vertical directions over separation x∆ , z∆  
then if the variability is statistically isotropic - on 
average (“< >”) ( ) ( ), 0,0 0,0,x z∆ ∆ = ∆ ∆ρ ρ .  In 
an intermediate (2<D<3) stratified but still scaling 
case, we need only go a distance (∆z/ls)=(∆x/ls)Hz 
with 0<Hz<1 to find that 

( ) ( ),0,0 0,0,x z∆ ∆ = ∆ ∆ρ ρ .  We see that Hz=1 
corresponds to 3D isotropy and Hz=0 to 2D 
(isotropy in the horizontal plane; thickness 
independent of horizontal extend).  The 
dimensional parameter sl  – the “sphero-scale” is 
the scale at which going a distance ∆x = ∆z = sl  
yields the same fluctuations: 

( ) ( ),0,0 0,0,s sl l∆ = ∆ρ ρ .  In scaling 
stratification, the aspect ratio of structures in 
vertical cross-sections therefore varies as a power 
law of scale; in addition, (assuming horizontal 
isotropy, i.e. ∆yº∆x) the volume of typical 
structures varies as ∆x∆x∆xHz = ∆xDs with 
Ds=2+Hz.  The intermediate dimension Ds is called 

an “elliptical dimension” because of the typical 
elliptical shapes of the vertical sections of the 
average structures.  Note that the notion of 
dimension can also be used in a rather different 
sense to characterize the intermittency of this 
stratified turbulence.  The elliptical dimension is a 
trace of the generator of the group of scale change 
operators (see below).  As we shall see below, the 
proposal by (Schertzer & Lovejoy 1983b, 1985a, 
1985b) that horizontal structures are dominated by 
energy fluxes, while vertical structures are 
dominated by buoyancy variance fluxes implies 
Hz=5/9 and hence Ds=23/9 (the “s” indicates 
“space”; below we consider the extension to 
space-time). 

Since each of the above atmospheric models 
implies a specific elliptical dimension Ds (or 
equivalently, Hz) it ought to be straightforward to 
empirically test them simply by measuring Ds (or 
Hz) over the relevant ranges.  The difficulty has 
been that until recently, tests have primarily been 
made using either aircraft wind data in the 
horizontal or balloon wind data in the vertical (the 
exception is (Lilley et al. 2004); lidar vertical cross-
sections, see below and Lilley et al. (2006)).  The 
results from separate experiments often from 
different parts of the world and under different 
conditions, can only be compared in an indirect 
way (with the partial exception of (Chigirinskaya et 
al. 1994), Lazarev et al. 1994).  An additional 
problem is that aircraft do not fly in perfectly flat 
trajectories nor do balloons rise in perfect vertical 
paths so that in-situ wind velocity, temperature or 
density measurements made with such means can 
only be made over irregular trajectories.  Indeed, it 
has only recently (Lovejoy et al. 2004) been 
discovered that – precisely due to non 2D  
turbulence - aircraft can follow fractal trajectories 
(i.e. can be biased with respect to linear 
trajectories over large distances).  Therefore, such 
in-situ data can yield spurious statistical 
exponents, spurious scaling breaks and erroneous 
interpretations.  Finally, huge amounts of data are 
needed in order to average over the large 
fluctuations in order to obtain accurate results 
(Lilley et al. (2004, 2006)). 

In a recent paper Lilley (2004, 2006) it was 
argued that an anisotropic multifractal extension of 
the classical Corrsin-Obukhov law for passive 
scalars gives an accurate description of the 
horizontal stratification of the atmosphere 
including its intermittency.  In (Lovejoy et al. 2006) 
we also argued that by extending this further to 
anisotropic space-time, the overall result could be 
used as the basis for a turbulence/wave model in 
which spatially and temporally localized turbulent 
fluxes provide the sources for unlocalized velocity 
and density fluctuations. This model was based on 
an energy flux dominating the horizontal and a 
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buoyancy force variance flux dominating the 
vertical (both of which are quadratic invariants and 
hence should be conserved scale by scale).  In 
contrast to the main gravity wave models - which 
require a weakly nonlinear state in order to justify 
the use of linear dispersion relations - this model 
assumes that the atmosphere is highly 
heterogeneous and turbulent. 

In Lilley (2004) airborne lidar data were used to 
test a key quantitative difference between the 
gravity wave and turbulence wave models: the 
stratification of space ( , , )x y z  is characterized by 
Ds =1+1+1/3=7/3 in the former, whereas in the 
latter by Ds =1+1+5/9=23/9.  Since we found 
empirically from vertical cross-sections of lidar 
backscatter ratio that Ds =2.55±0.02, the evidence 
was firmly in favour of the turbulence/wave model.  
However, the model predicted the full space-time 
statistical scaling behaviour: it uses classical 
Kolmogorov type arguments to argue that for the 
full space-time domain ( , , , )x y z t , Dst 
=23/9+2/3=29/9.  For more full space-time 
validation of the model, we must turn to the time 
domain.  In this paper, we therefore seek to 
extend the vertical (x,z) analyses to space-time 
(z,t) analyses. 

2. TEMPORAL SCALING IN THE ATMOSPHERE 

2.1 Theoretical considerations 

Following the classical Kolmogorov approach, 
we may obtain the scaling law for horizontal and 
temporal velocity fluctuations using dimensional 
analysis based on the fact that the nonlinear terms 
of the Navier-Stokes equations conserve energy 
fluxes.  The idea is that there is a quasi-steady 
energy flux input from large scales balanced (on 
average only) by kinetic energy dissipation at 
small scales.  Since the kinetic energy flux (per 
unit of mass) across an eddy (structure) with shear 
v∆  is 2 /vε = ∆ τ , we need only estimate the 

characteristic time for the transfer, τ.  For 
fluctuations in the horizontal, the only time scale 
available is 1/ 3/ hHx v v xτ = ∆ ∆ ⇒ ∆ = ε ∆  with Hh=1/3 
which is the familiar Kolmogorov result (in fourier 
space, the corresponding isotropic energy 
spectrum - ignoring intermittency - is ( ) hE k k −β≈ ; 

1 2 5 / 3h hHβ = + = . 

In time, there are two classical 
approaches to estimating the fluctuations.  The 
first is to consider a Lagrangian framework 
(following the mean flow); dimensional analysis 
yields 1/ 2Hτ =  (Inoue 1951, Landau and Lifshitz 
1959); this gives spectral exponent 

1 2 2Hτ τβ = + = .  In cases where there is a very 
low mean velocity, the Eulerian (fixed frame) is 
equivalent so that in this case of “pure” temporal 
development, we expect 1/ 2Hτ = .  At the other 
extreme, if the turbulence is blown past with mean 
velocity U so quickly that it is practically “frozen” 
(i.e. it satisfies the conditions of Taylor’s 1938 
“frozen turbulence” hypothesis), then we can use 
the horizontal law but with x U t∆ = ∆  so that: 

1/ 3 1/ 3 tHv U t∆ = ε ∆  with 1/ 3Hτ =  (hence 
1 2 5 / 3t Hτβ = + = ).  Using scale functions, and 

appealing to the Galillean invariance of the 
governing fluid equations, (Schertzer et al. 1998) 
we show more generally how to take both arbitrary 
advection and pure temporal development into 
account in a single equation which is an 
anisotropic and multifractal generalization of the 
classical Kolmogorov law: 

( ) a b a b1/ 31/ 3v ∆∆ ∆ = ∆RR Rε                (1a) 

where ( , , , )x y z t∆ = ∆ ∆ ∆ ∆R  and _ f∆R  is a space-
time scale function respecting the scale equation: 
with 1G A GA−′ =  where G  is a diagonal matrix with 
diagonal elements 1, 1, zH , tH  ( zH =5/9, 

tH =2/3) and A is the Galillean transformation 
matrix: 

1 0 0
0 1 0
0 0 1
0 0 0 1

x

y

z

v
v

A
v

− 
 − =
 −
 
 

                    (1b) 

where ( , , )x y zv v v=v  is the advection velocity.  
Using the simplest “canonical scale function”: 

_____________________________________________ 

a b
22 2/ 2 /

( , )
z tH H

yx z
scan

s s s s

y v tx v t z v t tt l
l l l

 ∆ − ∆      ∆ − ∆ ∆ − ∆ ∆ ∆ ∆ = + + +        τ       
r

                      
(1c) 
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________________________________________ 

Where ( , , )x y z∆ = ∆ ∆ ∆r and the sphero-scale 
3/ 4 5 / 4

sl
−= φ ε  and sphero-time 1/ 2 1/ 2

s
−τ = φ ε  is the 

eddy turn over time (lifetime) at the sphero-scale 
(in a heterogeneous turbulent atmosphere it is the 
analogue of the inverse Brunt-Vaïsaïla frequency). 
For temporal fluctuations at a point (i.e. 

( )0,0,0∆ =r ) we obtain the statistics of the pure 
temporal fluctuations: 

1/ 2 1/ 2

1/ 62 2 2 2 /

(0,0,0, )

5 / 9, 2 / 3

z t

s

H H
yx z

s s s s

z t

v t

v tv t v t t
l l l

H H

/

∆ ∆ = ε τ ×

 ∆       ∆ ∆ ∆ + + +       τ         
= =

   (2) 

See section 3 for the extension to passive scalar 
advection, to general ∆R  and more general scale 
functions.  This reduces to the classical 
Lagrangian frame result when (0,0,0)=v .  When 
the horizontal velocity term is dominant this 
reduces to the “Frozen turbulence” result 
(although the turbulence is only statistically 
“frozen”).  The precise condition for this is when 
( ) ( )2 3/ /s sv t l t∆ > ∆ τ  (where the speed 

( ), ,0x yv v v= ); this is equivalent to: ( )2/s st v v∆ < τ .  

Using the dimensional analysis values for the 
sphero scale sl  and sphero-time sτ  above, we 
find that the condition the velocity term dominates 
for short times is 2 /t v∆ < ε , so that the cut-off is 
shorter for low advection velocities or for high 
levels of turbulence.  Due to the huge fluctuations 
in energy flux, this limit will be extremely variable, - 
in fact if the analyses of (Lilley et al. 2006) are 
correct, then 1−ε  diverges (since α<2) - a 

consequence of the fact that for Log Levy 
distributions, ε often takes values near zero.  An 
analogous analysis can be made of the vertical 
term: taking zH =5/9 and putting 0x yv v= = , we 
find that the vertical velocity can only dominate for 
the very long times satisfying: 2 5 6

zt v− −∆ > φ ε .  

However since zv  is typically small, this time for 
dominance may be quite long (perhaps so long 
that it is never observed).  In summary, we have: 

2 1

2 1 2 5 6

2 5 6

1/ 3; 5 / 3;
1/ 2; 2;
3/ 5; 11/ 5;

z

z

H t v
H v t v
H v t

−
τ τ

− − −
τ τ

− −
τ τ

= β = ∆ < ε
= β = ε < ∆ < φ ε
= β = φ ε < ∆

    (3) 

(where we have omitted the relatively small 
intermittency corrections in  the β estimates).  We 
conclude that there will be many cases when the 
Hτ =1/2 pure temporal development exponent will 
not be visible due to advection in either horizontal 
or vertical directions. 

2.2 Review of the empirical evidence 

The prediction that the time exponent would 
typically be either 5/3 or 2 – and possibly 11/5 – is 
in accord with many of the observations surveyed 
in (Lilley et al. 2004), the main gravity wave 
theories assume 2τβ =  (the saturated cascade 
theory) or  tβ  in the range 5/3 to 2 (the exact 
value is not so important) in the Diffusive Filtering 
Theory.  The experimental literature confirms two 
possible temporal exponents  5 / 3tβ =  and 2τβ =  
(see table 1 for review of experimental literature). 
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Table 1. Review of empirical evidence of temporal power laws -5/3 and -2 for wind, passive scalars. 
Author 
and Year 

Experimental 
Technique 

Quantity 
measured 

Observations 
made by author 

Frequency range, 
Hz 

Spectral 
Exponent β  
measured 

Hwanga) 
(1971) 

Anemometers 
of the three-cup 
generator and 
counter types 

Wind speed Atmospheric turbulence 
followed -5/3 power law 

3.×10-7 - 1.×10-4 
1.×10-5 - 6.×10-2 

Reference slope 
of –5/3 is shown 

Balsley and 
Carterb) 
(1982) 

MST radar Horizontal wind 
speed at the 
altitudes 8 km 
and 86 km 

The resulting curve 
corresponds very well to 
an 5/3−ω  slope out to 
the high frequency limit 

3.×10-3 - 1.×10-7 
6.×10-3 - 4.×10-7 

Reference slope 
of –5/3 is shown 

Larsen et 
al.c) (1982) 

MST radar Horizontal wind 
speed at 
several 
altitudes from 6 
to 15 km 

Spectra follow -5/3 
power law in the range of 
periods from 2 to 50 h. 
Refer to Taylor’s 
transformation and -5/3 
power law for horizontal 
wave number 

3.×10-7 - 3.×10-4 Exponents from -
1.24 to -2 are 
obtained 
depending on 
wind component 
and altitude 

Scheffler 
and Liud) 
(1985) 

MST radar Horizontal 
wind speed 

Acoustic Gravity wave 
theory proposed that 
“quantitatively relates the 
MST radar observed 
wind fluctuation 
spectrum 

2.×10-5 - 2.×10-2 Slope of -2 fits 
data very well 

Balsley and 
Garelloe) 
(1985) 

MST radar Horizontal wind 
speed 

No theoretical 
explanation offered 

3.×10-7 - 1.×10-3 Slope of -2 fits 
stratospheric (alt. 
13.4 km) data in 
the range of 
frequencies 10-6 
to 10-4 Hz and 
tropospheric (alt. 
9.1 km) data in 
the range 10-6 to 
~ 8×10-4 Hz 

Meek et al.f) 
1985) 

MST radar Horizontal wind 
speed 

The slope of the best fit 
line is ~1.5 

4.×10-7 - 3.×10-4, 
5.×10-5 - 3.×10-3 

Reference slope 
of –1.5 is shown 
Slope of -5/3 fits 
data. 

Gardner and 
Voelzg) 
(1987) 

Lidar Na density -5/3 power law is 
predicted 

2.×10-5 - 7.×10-4 The observed 
exponents are: 
2.18 in summer, 
1.73 in winter. 

Kwon et al.h) 
(1990) 

Radar, ground-
based and 
airborn lidar 

Wind speed, 
Na density 

No theoretical 
explanation offered 

3.×10-5 - 1×10-2 Whole Na layer 
1.52, top side of 
the layer 1.12 
Bottom side -1.77 

Fritts et al.i) 
(1990) 

MU Radar Wind speed No theoretical 
explanation offered 

1.×10-5 - 2.×10-3 Reference slopes 
of -5/3 and -2 are 
shown 

Beatty et 
al.j) (1992) 

Rayleigh/Na 
lidar 

Passive scalar 
concentration 

No theoretical 
explanation offered 

9.×10-5 - 3.×10-3 
(range for linear 
regression) 

Single day 1.7 
Average exponent 
over 21 nights 
1.85≤0.23 

Sica and 
Russellk) 
(1999) 

Rayleigh/Na 
lidar 

Passive scalar 
concentration 

Claim average slope of  
-2 

5.×10-5 - 2.×10-2 Exponents from 
1.2 to -2.7  

a) The data used to construct the wide frequency-range power density spectrum were taken by MRI anemometer 
from 1500 LST on March 14 through 1200 LST on May 1, 1967 and by the AN/GMQ-12 anemometer from 1105 
LST on April 10 to 1600 LST on April 18, 1967. 

b) Time ranges for wind fluctuations are: at 8 km from 6 minutes to 83 days: at 86 km from 3minutes to ~30 days. 
c) Zonal and meridional wind measurements made with the Poker Flat MST radar over a 40-day period are used to 

calculate the frequency power spectra at heights between 5.99 km and 14.69 km. The finest temporal resolution is 
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1 hour. Regression is made for frequencies in the range from 0.015 h-1 to 0.45 h-1. In some cases this range 
includes an obviously noisy range. 

d) The time range is from 1 minute to ~750 minutes. No linear regression is made by the authors. 
e) Horizontal wind values are formed into 4096-point data sets comprising 34 day sequences of 12-min averaged 

data points. No linear regression is made by the authors. 
f) 1 h to 720 h time series and 33 5 min to 6 h were used. 
g) Observed periods from 25 min to 800 min. 
h) Time series from 100 s to ~8 h are used. Temporal regressions are made over temporal scales from 30 to 360 min. 

Top side layer spectrum looks noisy, bottom side one fits -5/3 power law quit well. 
i) Spectra at higher altitudes look noisy, but fit -5/3 power law. Lower altitude spectra fit -2 power law well. 
j) Temporal resolution is 2 min for Na data and 5 min for Rayleigh data. Linear regression fit was performed over the 

frequency range from ~ (3 h)-1 to (5 min)-1. The authors did not separate cases close to -5/3 and -2 slopes. That is 
why confidence interval is rather wide (1.62 - 2.06). 

k) Strong deviation from -5/3 and -2 slopes are observed in the cases when regression includes obvious high and/or 
low frequency artefacts range. 

3. ANALYSIS IN ORTHOGONAL DIRECTIONS: 
VERTICAL, TIME 

3.1 Vertically pointing lidar data 

In this paper, in addition to a reanalysis of 
the airborne data discussed in (Lilley et al. 2006), 
we also use ground-based, upward pointing lidar 
data from PACIFIC 2001 experimental campaign, 
as well as data from the MSC CARE facility.  The 
ground based laser was operated at the 
fundamental wavelength of 1064 nm, suited for the 
detection of particles with diameter of the order of 
1 µm and had a pulse repetition rate of 10 Hz 
(Strawbridge and Snyder 2004).  The measured 
backscatter ratio B was averaged over various 
time intervals (see table 2); the result was a 2D 

vertical-time planar section.  All the detectors used 
log amplifiers – important due to the wide 
dynamical range of the backscatter. 

Table 2 presents main characteristics of 
the experimental data sets.  Langley0807 and 
Langley0808 were acquired with ground based 
lidar during PACIFIC 2001 in Langley, British 
Columbia on August 7, 8. Egbert0530 Egbert0602 
Egbert0616 and Egbert0626 are from a CARE 
2003 ground based lidar experiment, acquired in 
Egbert, Ontario on 30 May, 02, 16 and 26 June 
respectively.  Pacific0815t8 Pacific0815t6 
Pacific0815t22 Pacific0814t5 Pacific0814t7 and 
Pacific0814t9 are PACIFIC 2001 airborne lidar 
platform experiments acquired in the Lower Fraser 
Valley, BC on 14 and 15 August (see Lilley et al. 
2006). 

Table 2. Main parameters of experimental data sets 
Name Type of data Object type Resolution* Dimensions† 
Langley0807 Vertical-time aerosol 2.997m×1.0s 300×4990 
Langley0808 Vertical-time aerosol 2.997m×1.0s 300×5036 
Egbert0530 Vertical-time cirrus cloud 3.746m×0.5s 904×11468 
Egbert0602 Vertical-time cirrus cloud 3.746m×30.0s 1536×828 
Egbert0603 Vertical-time aerosol 3.746m×30.0s 486×648 
Egbert0616 Vertical-time cirrus cloud 3.746m×30.0s 800×752 
Pacific0815t6 Vertical-horizontal aerosol 2.997m×100.0m 372×952 
Pacific0815t8 Vertical-horizontal aerosol 2.997m×100.0m 844×776 
Pacific0815t22 Vertical-horizontal aerosol 2.997m×100.0m 956×932 
Pacific0814t5 Vertical-horizontal aerosol 2.997m×100.0m 384×750 
Pacific0814t7 Vertical-horizontal aerosol 2.997m×100.0m 386×846 
Pacific0814t9 Vertical-horizontal aerosol 2.997m×100.0m 372×846 

* First number is vertical resolution in m, second is time or horizontal resolution, horizontal resolution of 
vertical-horizontal section data sets is estimated with airplane speed of 100 m s-1. 
† Vertical dimension × time or × horizontal. 
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Figure 1. This is the Pacific0815t6 data taken on 15 
August 2001. The scale (bottom) is logarithmic: darker 
is for smaller backscatter (aerosol density surrogate), 
lighter is for larger backscatter. In this panel, the vertical 
is 4.0 km and the horizontal is 120 km (log scale). The 
horizontal resolution is 100 m and the vertical resolution 
is 2.997 m. The black shapes along the bottom are 
mountains in the British Columbia region. There are no 
bad pixels in the image. There is no saturated signal 
and there is high sensitivity to low signal return. 

 

Figure 2. This is the Langley0808 data taken on 8 
August 2001. The scale (bottom) is linear: darker is for 
smaller backscatter (aerosol density surrogate), lighter 
is for larger backscatter. In this panel, the vertical is 1.0 
km and the time is 5000 s (due to the signal weakness, 
the scale is linear). The time resolution is 1.0 s and the 
vertical resolution is 2.997 m. There are no bad pixels in 
the image. There is no saturated signal and there is high 
sensitivity to low signal return. 

 

Figure 3. This is the Egbert0530 data taken on 30 May 
2003. The scale (bottom) is logarithmic: darker is for 
smaller backscatter (cirrus density surrogate), lighter is 
for larger backscatter. In this panel, the vertical is 4.3 
km and the time is 5900 s (log scale). The time 
resolution is 0.5 s and the vertical resolution is 3.746 m. 
There is no saturated signal and there is high sensitivity 
to low signal return. 

 

Figure 4. This is the Egbert0602 data taken on 2 June 
2003. The scale (bottom) is logarithmic: darker is for 
smaller backscatter (cirrus density surrogate), lighter is 
for larger backscatter. In this panel, the vertical is 4.3 
km and the time is 5900 s (log scale). The time 
resolution is 30.0 s and the vertical resolution is 3.746 
m. There is no saturated signal and there is high 
sensitivity to low signal return. 

 

Figure 5. This is the Egbert0603 data taken on 3 June 
2003. The scale (bottom) is logarithmic: darker is for 
smaller backscatter (aerosol density surrogate), lighter 
is for larger backscatter. In this panel, the vertical is 1.82 
km and the horizontal is 19440 s (log scale). The time 
resolution is 30.0 s and the vertical resolution is 3.746 
m. There is no saturated signal and there is high 
sensitivity to low signal return. 

3.2 The space-time scaling for passive scalars 

We have seen in part I, II and in the introduction 
how the classical Kolmogorov law can be 
extended to anisotropic space-time taking into 
account the buoyancy forces in the vertical.  The 
key part of the model is the replacement of the 
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usual Euclidean distance by a scale function.  
Lilley et al. (2004) showed how this could be used 
to obtain an anisotropic extension of the classical 
Corrsin-Obukhov law for passive scalar diffusion.  
Extending this to space-time, we have 

a b ( )( , ) ( ) ,
can

t t′∆ ∆ = Θ Ω ∆ ∆r rc fe h                (4) 

where ′Ω  defines direction in the nonlinarly 
transformed space ( , )t′ ′∆ ∆r  (see below) so that 

( )′Θ Ω  represents the shape of unit ball, a b,
can

t∆ ∆r  
is the canonical scale function; see (1c).  An 
anisotropic scaling generalization of the Corrsin-
Obukhov law for fluctuations in passive scalar 
concentration is obtained by replacing the usual 
distance function by a scale function: 

a b 1/ 31/ 2 1/ 6( , ) ,t t−∆ρ ∆ ∆ = χ ε ∆ ∆r r            (5) 

where χ is the passive scalar variance flux.  In 
orthogonal directions, the above implies the same 
scaling as for the horizontal velocity discussed 
earlier, including the same limiting cases in time 
according to the magnitude of the advection 
velocity. 

3.3 Analysis in the vertical 

Before turning to a more complete analysis of 
the data we can already check equations (4), (5) 
above by considering the 1D spectra only in time 
or only in the vertical.  The results are given with 
Fig. 6.  We can clearly see the Bolgiano-Obukhov 
(BO) scaling in the vertical. Some deviations from 
the theoretically predicted slope are due to 
problems with lidar attenuation corrections (see 
especially the second spectrum from the top in 
Fig. 6).  This means that values the backscatter 
ratio are too smooth over the highest factor of 8 or 
so in scale.  This problem arises due to the 
inadequate dynamical range of the digitizer so that 
– to within one digital count – successive raw 
values are nominally the same, i.e. spuriously 
smoothed (see Gagnon et al. (2006) for a 
quantitative analysis of this effect).  In this case 
(Egbert0602) we avoided the problem by 
degrading the vertical resolution by a factor of 8 
before proceeding to the refined analyses 
discussed below. As far as we can tell, the cirrus 
and aerosol scalings are the same and both are 
compatible with the anisotropic extension of the 
Corrsin-Obukhov law.  We can see that BO 
vβ =11/5 works well in wide (up to 2 orders) range 

of scale. 

�3.5 �3 �2.5 �2 �1.5 �1
log10�kz�

�4

�2

0
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4

6
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Figure 6. 1D space (vertical) energy spectra as function 
of vertical wave number k (in m-1) for vertical-time data 
sets: yellow – Egbert0530 (cirrus cloud), green - 
Egbert0602 (cirrus), blue - Egbert0603 (aerosol), dark 
blue - Egbert0616 (aerosol), pink – Langley0807 
(aerosol), red - Langley0808 (aerosol). Dashed lines are 
reference theoretical slopes of -11/5 

3.4 Analysis in time 

Ignoring the y coordinate (equivalently, orienting 
our system so that the x axis is parallel to the 
horizontal component of the wind), applying (5) 
with the (advected) scale function 1b, we obtain: 

( ) 1/ 2 1/ 6 1/ 3

1/ 62 2 2 /

, ,

z t

s

H H

x z

s s s

x z t l

x v t z v t t
l l

−

/

∆ρ ∆ ∆ ∆ = χ ε ×

      ∆ − ∆ ∆ − ∆ ∆ + +     τ       

   (7) 

Putting ∆x=∆y=0, we can now see that the pure 
time behaviour has three terms which dominate 
depending on the parameters as analyzed in 
section 2(a), i.e. the same three regimes as for the 
velocity field: βτ= 5/3, 11/5, 2 (domination by the 
horizontal and vertical wind terms and the pure 
time development term, the vertical wind term 
respectively).  

To determine the temporal behaviour for 
vertical-time data sets we made standard 1D 
Fourier power spectrum analysis in time.  The 
results are represented by Fig. 7; we see that 
there are three cases with βτ=2 are Egbert0602 
(green line) and Egbert0603 (blue line), and three 
other cases show βτ=5/3. 
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Figure 7. 1D temporal energy spectra as a 
functions of frequency ω (in s-1) for vertical-time data 
sets: yellow – Egbert0530 (cirrus cloud), green - 
Egbert0602 (cirrus), blue - Egbert0603 (aerosol), dark 
blue - Egbert0616 (aerosol), pink – Langley0807 
(aerosol), red - Langley0808 (aerosol).  Dashed lines 
are reference theoretical slopes of -2 (green and blue) 
and -5/3 (all other). 

4. ARBITRARY DIRECTIONS IN SPACE-TIME 

4.1 The ASAT technique 

In section 3(c), 3(d), we analysed the data in 
orthogonal directions (vertical, time); this is only a 
partial analysis it does not allow us to test the 
theory at intermediate angles, nor estimate the 
function characterizing the “trivial anisotropy” 
Θ(Ω).  We now describe a new “Anisotropic 
Scaling Analysis Technique” (ASAT) method for 
doing this.  First, taking advantage of the fact that 
the observed temporal behaviour was pure power 
law the (z,t) plane, fluctuations can be written: 

1/ 62 2 /
1/ 2 1/ 4 1/ 4 1/ 3

( , ) (0,0, , )

( )
z tH H

s s

z t z t

z t
l

′/

−

∆ρ ∆ ∆ = ∆ρ ∆ ∆ =

    ∆ ∆ χ φ ε Θ θ +   τ     

      (8a) 

with 1tH ′ =  for horizontal wind domination and 
2 / 3t tH H′ = =  for pure temporal development.  

The (x,z) plane fluctuations can be written in the 
analogous way: 

1/ 62 2
1/ 2 1/ 4 1/ 4 1/ 3

( , ) ( ,0, ,0)

( )
zH

s s

x z x z

x z
l l

/

−

∆ρ ∆ ∆ = ∆ρ ∆ ∆ =

    ∆ ∆′  χ φ ε Θ θ +   
     

       (8b) 

where Θ is function only of the polar angle ′θ  in 
the nonlinearly transformed space described in eq. 
(9) below. 

Assuming that the orthogonal (z and t) analyses 
have determined the exponents zH , tH , we can 
now remove the nonlinear (differential) space-time 
stratification so as to determine the remaining 
“trivial” anisotropy characterized by Θ( Ω).  To do 
this, it suffices to make the following nonlinear 
transformation of variables: 

1 1

sign( ), sign( )
z tH H

ref ref

z tz z t t
z t

/ /
∆ ∆′ ′= ∆ = ∆

∆ ∆
     (9a) 

or 

1

sign( ),
zH

ref ref

z xz z x
z x

/
∆ ∆′ ′= ∆ =

∆ ∆
             (9b) 

where refz∆ , reft∆  are convenient reference 
distances and times respectively (taken here so 
that distances and times can be given in 
dimensionless spatial and temporal “pixels”; the 
shape function ( )′Θ θ  will depend on this choice).  
In this nonlinear (“primed”) space, we have the 
following polar coordinates: 

1/ 22 2R z t′ ′ ′ = +  ,     [ ]arctan /z t′ ′ ′θ =   (9c) 

so: 

1/ 3 1/ 3( , ) ( )R R′ ′ ′ ′∆ρ θ Θ θ∼                     (9d) 

where ( )′Θ θ  represents the shape of all the balls 
in the ( , )z t′ ′  space. The virtue of this nonlinear 
transformation is that in ( , )z t′ ′  space, the scaling 
is symmetric under isotropic scale transformations, 
i.e. with G  = the identity so that more traditional 
isotropic analysis methods can be used.  ( )′Θ θ  
thus determines the remaining “trivial” anisotropy 
in the ( , )z t′ ′  space; it also determines the unit ball 
in ( , )z t  space.  Equations (9) are the basis of the 
ASAT.  It allows us to simultaneously verify the 
anisotropic scaling hypothesis (8) in arbitrary non-
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orthogonal directions while determining the 
function ( )′Θ θ  in the space ( , )z t′ ′∆ ∆ .  In the next 
sections we discuss how to use structure functions 
and spectra to estimate Θ, and in section 4.4 we 
discuss the interpretation of the result.  For further 
analysis it is convenient to introduce another form 
of scale function in 2D (z,t) domain: 

a b
1/ 22 2 /

* *( , ) ( ) ;

/

h

s
s s

z t

t zz t l
l

h H H

    ∆ ∆ ′∆ ∆ = Θ θ +   
τ     

′=

    (10a) 

which satisfies the basic scaling equation with 
generator * / zG G H= . This scale function is 
connected with the scale function used in (8a) with 
the following relationship: 

a b a b*

1/( , ) ( , ) zH

G G
z t z t∆ ∆ = ∆ ∆             (10b) 

This allows us to rewrite (8a) in the following form 

1/ 2 1/ 4 1/ 4 *1/ 3

1/(6 )2 2 /

( , ) ( )
tHh

s s

z t

t z
l

− ′∆ρ ∆ ∆ = χ φ ε Θ θ ×

    ∆ ∆ +   τ     

       (10c) 

Finally we can analyze (x,z) cross-sections playing 
with only one parameter zh H=  in the way unified 
with analysis of (x,z) cross-sections: 

a b
1/ 22 2 /

* *( , ) ( ) ;
h

s
s s

z

x zx z l
l l

h H

    ∆ ∆ ′∆ ∆ = Θ θ +   
     

=

   (10d) 

4.2 The ASAT technique in real space: anisotropic 
structure functions 

To verify (8) we consider the 2D Structure 
Function (SF) dependence on primed radial polar 
coordinate R′  for fixed value of angle ′Ω  in the 
space ( , )z t′ ′∆ ∆ .  We use the following definition 

( , ) ( , )

( , ) q
q

z z t t z t

S R

∆ρ = ρ + ∆ + ∆ − ρ

′ ′θ = ∆ρ
            (11a) 

From (5) taking qth powers and ensemble 
averaging, we see that: 

( ) ( )

( )( ) ( )

/ 3/ 2 / 6 / 3, qq q q
q R R

q

S R R

R

−
′ ′

ξ

′ ′ ′ ′θ = χ ε Θ θ =

′ ′Θ θ
         (11b) 

Recall that the random fluxes R′χ , R′ε  are 
defined as averages at the scale R′  thus have a 
scale dependence responsible for the 
“intermittency corrections” (i.e. the nonlinear part 
of the structure function exponent ( )qξ , see 
section 4(e) below).  However, taking q=1 these 
corrections will be small, ξ(q)≈Hq=H=1/3.  Testing 
this on the data, we obtain Figs. 8(a), 9(a), 10(a) 
and 11(a).  As one can see by the parallel lines for 
various ′θ ’s, the theory works well over a wide 
range of scales for both cirrus clouds and 
aerosols’, for both advection free and advection 
dominant cases of temporal development. The 
difference between the 1D structure functions in 
different directions means that the unit ball is not a 
circle (sphere).  To clearly see  this “trivial” 
anisotropy we calculated the “compensated” 2D 
SF averaged over 10log ( )R′ : 

( )1/ 31/ 3
,1 1 log

( , )c R
S R S R−

′
′ ′ ′ ′= θ ≈ Θ θ  as function of 

polar angle ′θ  - it represents the shape of the unit 
ball.  ,1cS  is useful because - within rather small 
intermittency corrections – it is expected to be 
independent of R′ .  Figures 8(b), 9(b), 10(b), and 
11(b) were determined from tables of 1/ 3

1R S−′  
values as functions of 10log ( )R′  and ′θ  with 
increments of 10log ( )R′  = 0.2.  Along rays of fixed 
angle ′Ω , the relative error (the ratio of Sc,1  and 
standard deviation) does not exceed 10% over 
wide ranges of scale ( max min/R R′ ′ >103 in many 
instances); often this variation does not exceed 
5% (see Fig. 11(b)).  The ranges chosen for 
averaging are indicated in the captions for the 
figures.  Thus, new ASAT technique applied to first 
order (q=1) 2D structure function analysis allows 
us to verify the theory to within about 10% over 
more than 3 orders of magnitude of space-time or 
space-space scales.  On the other hand it 
provides more convincing verification of the theory 
since it permits analysis in non-orthogonal 
directions.  Note that from its definition, the 
structure functions are symmetric with respect to 
inversion about the origin; see appendix A. 
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Figure 8(a). 2D Structure function 1S  as function of R′  

for 4 directions ( ′θ = 0 (red, short dashes), π/4 (magenta 
long dashes), π/2 (blue, long, short dashes), 3π/4 (light 

blue long, short, short dashes) in nonlinearly 
transformed space for Egbert0603. Black line – 

theoretical slope of 1/3. 
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Figure 8(b). Compensated structure function 

1/ 3
1 10(log ( ), )R S R−′ ′ ′θ  averaged over 

100.2 log ( ) 3.4R′< <  for Egbert0603 (black line). Red 
and blue lines are compensated averaged 2D SF 
plus/minus standard deviation. 
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Figure 9(a). Same as 8(a) but for Egbert0530. 
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Figure 9(b). Same as 8(b) but for Egbert0530, averaging 

over 100.2 log ( ) 2.6R′< < . 
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Figure 10(a). Same as 8(a) but for Langley0807. 
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Figure 10(b). Same as 9(b) but for Langley0807, 

averaging over 100.2 log ( ) 2.4R′< < . 
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Figure 11(a). Same as 8(a) but for Pacific0815t6. 
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Figure 11(b). Same as 8(b) but for Pacific0815t6, 

averaging over 100.2 log ( ) 2.8R′< < . 

Figures 12(a), (b) and (c) show a comparison of 
contour plots of 1log( (log( / ), ))iS R R′ ′θ  with 
nonlinear transformation (9a) corresponding to 

different theories: isotropic turbulence, 29/9D 
model and gravity waves.  If the contours of 
log( ( , ))S R′ ′θ  are invariant under an isotropic scale 
change (they have the same shapes), then the 
corresponding contours of 1log( (log( / ), ))iS R R′ ′θ  
do not have the same shapes but are rather 
equally spaced in all directions ( iR  is a 
nondimensionalizing inner scale; below iR , the 
signal is dominated by instrumental noise).  The 
advantage of using a ( log( / ),iR R′ ′θ ) space 
representation is that we can visually represent a 
much wider range of scales on the same picture.  
The analysis is done using the alternative scale 
function (10a). For the left column corresponding 
to / 1z th H H ′= = , i.e. no transformation of 
coordinates, we can see that as we move from 
contour to contour,  the spacing between the 
contours is different in the horizontal and vertical 
directions.  For the middle case (using the 
theoretical transformation from the 29/9 model), 
we can see that the contours are spaced pretty 
much the same distance apart (i.e. equally spaced 
in all directions as expected).  Finally in the right 
hand column, the gravity wave value of /z th H H ′=  
is used in the transformation, again leading to 
contours which are not equally spaced – this time 
they are closer in the vertical than in the 
horizontal.  Note that all the contours are spaced 
at equal factors of 1S  of 1.12 (for the 29/9 model 
i.e. with H=1/3, this corresponds to a factor of 1.41 
in scale), the total range of scales is roughly 100. 
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(a) Egbert 0530, wind domination; the vertical axis is z, the horizontal axis is t 
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(b) Egbert 0603, pure temporal development; the vertical axis is z, the horizontal axis is t 
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(c) Pacific 2001 0815t6, vertical – horizontal cross-section; the vertical axis is z, the horizontal axis is x 

Figure 12. Contour plot of 1S  with different nonlinear transformation: left - Isotropic turbulence (no transformation, 

1h = ); center - 29/9 model: (a) / 5 / 9z th H H ′= = , (b) / 5 / 6z th H H ′= = , (c) 5 / 9zh H= =  (see (10c) for cases (a) 
and (b) and (10d)); right - gravity waves: (a) 1/ 3h = , (b) 1/ 2h = , (c) 1/ 3h = . 

4.3 ASAT in fourier space: analysis of (z,t) and 
(x,z) cross-sections 

ASAT can also be applied in Fourier space to 
spectral densities of η powers of the original field.  
For η=1, we obtain essentially the fourier 
transform of 2S  (the Wiener-Khintchin theorem).  
Although there is no fundamental difference, in 
fourier space, the scales are better separated (so 
that if scale breaks are present they are sharper, 
better defined) and due to the FFT algorithm, it is 
more convenient to estimate than 1S .  In addition, 

1S  will only converge to nontrivial results for 
0<H<1 (the case here) whereas the spectra have 
no corresponding restriction.  Again, we consider 
2D z,t cross-sections.  The power spectral density 
has the following scaling 

� 2( , ) | ( , ) | ~|| || sz zP k k −ω = ρ ω k                   (12) 

where ( , )zkρ ω�  is the fourier transform of ( , )z tρ  
scale function || ||k  has the following form: 

i

( )1/ 22 /2 /1

|| || || || ;

|| || ( ) ( )tz

can

HH
can s z s sl k l−

= Θ

= + τ ω

k k

k
          (13) 

1D analysis in time and vertical directions based 
on the relation between the 1D and 2D spectra: 

( , ) ( )z zP k dk E τ

+∞
−β

−∞

ω = ω ∝ ω∫ , 

( , ) ( ) v
z z zP k d E k k

+∞
−β

−∞

ω ω = ∝∫  

This allows us to obtain the exponent s in terms of 
the 1D spectral exponents: 
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2 / / ( / 1)2 / / 2

0

2 / / ( / 1)2 / / 2

0

( ) ~ ; , 0

( ) ~ ; , 0

t t z tz
z z

t z t zz

H H H s HH s
z t

H H H s HH s
z z z

k d k s H k

k dk s H

∞
− +−

∞
− +−

+ ω ω > >

+ ω ω > ω >

∫

∫
 

(we are only interested in the scaling of the 
spectra; hence for example in the left hand 
integral, use the substitution z zk k ′= ω  etc.).  
Comparing with the definitions of the β’s, we 
obtain: / ( / 1)v t z tH H s Hβ = − , 

/ ( / 1)z t zH H s Hτβ = − .  Solving for s, we obtain: 

v z t t zs H H H Hτ= β + = β +                   (14) 

which leads to the useful relation: 
( 1) /( 1) /v t zH Hτβ − β − = .  Using the values; 2τβ = , 

2 / 3tH ′ =  in the case of pure temporal 
development, we obtain s=17/9  and using 

5 / 3τβ =  and 1tH ′ =  in the case of horizontal wind 
domination we obtain 20 / 9t zs H Hτ= β + = . 

Following the ASAT idea, we make the following 
nonlinear transformation of variables 

( cos ) tH
s Rk

′′ωτ = θ� ,  ( sin ) zH
z s Rk l k ′= θ� ,       (15) 

1/( ) tH
s

′′ω = ωτ , 1/( ) zH
z z sk k l′ =              (16) 

gives us in the space ( , )zk′ ′ω  ( ( , )Rk ′ ′θ�  are the 
polar coordinates in this space): 

i ( )( ) i ( )( , ) ~
s s s

R R RP k k k
− − −′ ′ ′ ′ ′ ′θ Θ Ω = Θ Ω� � �        (17) 

Similarly, we can use the same method to re-
analyze the ( , )x z  cross-sections discussed in 
(Lilley et al. 2006) by substitution x sk l  instead of 

1/( ) zH
z sk l  and 1/( ) zH

z sk l  instead of 1/( ) tH
s

′ωτ  in 
formulas (13), (15) and (16). 

Thus, the factorization property (17) implies that 
contour plots of ( , )zP k ′ ′ω  should give contours of 
the same shape at any scale (the shape only 
depends on the polar angle).  Convincing 
evidence of this fact is provided by Figs. 13(a), (b) 
and (c).  They represent 1D dependences of 2D 
spectrum ( , )RP k ′ ′Ω�  on Rk ′  along different rays ′Ω�  
in the space (16), they also show the 
corresponding spectra compensated by the 
theoretical behavior ( 17 / 9

Rk
−′ , i.e. ignoring the small 

intermittency corrections).  We can see clear that 
for all directions in the ( , )z t′ ′  space, the scaling 

obeys (17) quite well. In this section we presented 
qualitative evidence that (17) is valid. Quantitative 
estimation of the elliptical dimensions of space-
time atmospheric motions using the ASAT 
technique is considered in (Radkevich et al.  
2006). 
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Figure 13(a). 1D dependences of spectrum ( , )RP k ′ ′θ�  
for Egbert 0530 (horizontal wind domination, cirrus 
cloud) on Rk ′  along different rays arctan( / )zk′ ′ ′θ = ω�  

0.05 ,0.15 ,..., 0.95= π π π . Dependences for different 
directions are each shifted by 5 orders of magnitude.  
Bottom lines correspond to low values of ′θ� ; straight 
lines are reference slopes of 20/9). 
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Figure 13(b). Same as 13(a) but for Egbert 0603 (pure 
temporal development, aerosol layers; reference slope 
s=17/9. 
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Figure 13(c). Same as 13(a) but for Pacific 2001 
0815t22 (vertical-horizontal cross-section, aerosol 
layers, reference slope s=20/9). 

Figures 14 give another evidence of nonlinear 
transformation (16). This transformation implies 
that contour plots of ( , )zP k ′ ′ω  (or for vertical cross-
sections, ( , )x zP k k′ ′ ) should give contours of the 
same shape at any scale (it only depends on the 
polar angle). We can clearly see that the large and 
small contours after transformation (but not 
before) have the same shape (only depend on 
polar angle). 
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Figure 14(a). Contour plot of log( ( , ))zP k ω  (left picture, before nonlinear transformation) and log( ( , ))zP k ′ ′ω  (after 
transformation) for Egbert 0530 data set (the case of horizontal wind “domination”).  The spectra are smoothed with a 
radius 4 gaussian smoother in Fourier space. 

 Fig. 14(b). Same as 2a but for Pacific 2001 0815t22 data set ((x,z) cross section).  The spectra are smoothed with a 
radius 4 gaussian smoother in Fourier space. 
 

4.4 Multifractal analysis in space-time 

Up until now, we have used the ASAT technique 
to confirm the anisotropic space-time scaling 
extensions of the Corrsin-Obukhov law; we did not 
use it to empirically estimate the theoretical 
exponents; in (Radkevich et al. 2006), we show 
one way of doing this.  Here, we return to the 
method of (Lilley et al. 2004) (orthogonal 

directions) but consider the anisotropy of the 
moments of all orders (i.e. including the effects of 
intermittency; all results discussed above are 
obtained for first or second order statistics 1S , E 
respectively). 

The qth order structure function exponent ( )qξ  is 
defined in (11b).  Assuming the scale functions 10 
(c), 10(d), we see that for all q, the ratios of ξ(q) 
along different coordinate axes will yield h.  
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Estimating ξ(q) at intervals of 0.1 from q=0.1 to 3 
we find for the 3 cases with horizontal wind 
domination with average / 0.54 0.02 vτξ ξ = ±  
(theory predicts 5/9); for the cases of pure 
temporal behaviour / 0.81 0.04vτξ ξ = ± ; whereas 
the theory predicts 5/6.  Estimated errors are 
standard deviations from the mean values of the 
ratios.  These results are presented as a 
parametric plot of vξ  vs. τξ  in Fig. 15 (analogous 
to Fig. 9 in (Lilley et al. 2005).  Deviations from 
linear behaviour occur at high values of q due to 

poor statistics. 
Figure 15. Parametric dependence of ξτ(q) vs. ξv(q) (q = 
0.1, 0.2, …, 3) for three cases of horizontal wind 
domination and three cases of pure temporal 
development, the slopes of reference theoretical lines 
are Ht/ Hz=9/5 (dashed) and Ht/ Hz=6/5 (solid); red - 
Langley0807, magenta - Langley0808, blue - Egbert 
0530, light blue - Egbert 0616, green - Egbert 0602, 
yellow - Egbert 0603. Strong deviation from theoretical 
behavior for some cases are due to pure statistics for 
high orders q. 

In order to find the temporal exponent tH  we 
must make an assumption for zH . Assuming the 
theoretical value zH =5/9, we obtain 

( ) ( )/t z vH H q qτ= ξ ξ  ≈ 0.68 ≤ 0.03, compared to 
the theoretical value tH =2/3.  Alternatively, 
assuming that zH  is structure function exponents 
ratio for the wind domination case 

/ 0.54 0.02 vτξ ξ = ± , we obtain 
(0.54 0.02) /(0.81 0.04) 0.67 0.06tH = ± ± = ± .  Finally 

we obtain the elliptical dimension of space-time 
atmospheric motions which is the trace of the 
generator Gst: 

2 29 9 3.22...st st z tD Tr(G ) H H /= = + + = ≈     (19) 

The experimental values based on theoretical and 
empirical zH  are 3.24 0.03stD ≈ ±  and 

3.21 0.06stD ≈ ±  respectively, which is again very 
close to the theoretical prediction (19). 

Now, taking into account convincing evidence of 
stratification exponents, we can estimate sphero-
scale sl . In order to do this we plotted a horizontal 
-vertical analogue of the space-time Stommel 
diagrams which establish relationships between 
displacements in orthogonal directions 
corresponding to the same fluctuation of density. 
Using theoretical extrapolation of the diagrams we 
found intersections with bisector which take place 
at sphero-scales. The results are given with Table 
3. We see that values of sl  are distributed from 14 
cm to 2.34 m. 

Table 3. Estimations of sphero-scale 
Data set sl , m 
0814t5 0.58 
0814t7 0.36 
0814t9 0.39 
0814t17 0.77 
0814t20 0.94 
0815t6 0.14 
0815t8 0.36 
0815t10 0.34 
0815t18 2.34 
0815t22 0.27 
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Figure 16. Horizontal vertical scale diagrams for 
different vertical horizontal data sets. Dashed pink and 
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blue lines are theoretical extrapolation for the highest 
and lowest diagrams. Black line – bisector. 

Vertical-time Stommel diagrams are presented in 
fig. 17. They give qualitative evidence of vertical 
and temporal stratification exponents. 
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Figure 17. Vertical-time Stommel diagrams for different 
vertical-time data sets. Dashed lines are theoretical fits: 
red and light green – slopes of 5/9, light blue and pink – 
5/6 and blue shows mixed behaviour, but further 
analysis shows that scaling is correct only for small 
displacements. 

5.  CONCLUSIONS 

In a recent paper (Lovejoy et al. 2006), we 
proposed an anisotropic turbulence/wave model 
for the horizontal velocity and passive scalar 
fields.  The model was an anisotropic, space-time, 
multifractal extension of the classical Kolmogorov 
and Corrsin-Obukhov laws, it was a 
turbulence/wave extension of the classical 
Fractionally Integrated Flux model.  In (Lilley et al. 
2004), we empirically verified the model by 
studying the horizontal-vertical stratification of 
passive scalars. This lead directly to the precise 
estimate for the elliptical dimension of the spatial 
structures: sD =2.55≤0.02, which eliminates the 
main competing theories of stratification (with 

sD =2, 7/3, 3). 
In this paper, we focused on the temporal 

behaviour; primarily the space-time stratification, 
but also the intermittency.  The temporal scaling is 
more complex than the pure horizontal or vertical 
scaling treated in (Lilley et al. 2004) due to the 
effect of advection which leads to non-diagonal 
generators G.  The consequences for (1D) time 
series is that there are in general three competing 
scalings with exponents H=1/3, 3/5, ½ 
(corresponding to τβ =5/3, 11/5, 2).  The first two 
correspond to domination by horizontal and 
vertical advection, the third to “pure” temporal 
development.  Surveying the literature, we again 
found support for the theory since many studies 

found τβ  in the range 5/3 – 2 (in addition, the main 
gravity wave theories agree about this). 

In sections 3, 4, we again used lidar data - 
although this time of both aerosol and cirrus 
clouds - from six ground based lidar vertical-time 
cross-sections.  We first confirmed the theoretical 
predictions in orthogonal ( , )z t  directions.  In order 
to test the theory more generally (in non-
orthogonal directions) and to more fully determine 
the physical scale function (the existence of which 
is the basic hypothesis of the FIF model), we 
developed a new Anisotropic Scaling Analysis 
Technique (ASAT) which we applied both in real 
and Fourier spaces.  We compared the 
theoretically predicted behaviour to the data and 
showed good agreement between theory and 
experimental results over a wide range of space-
time scales.  As far as we could tell, the scaling of 
the cirrus clouds and aerosols were the same; 
they both followed the theoretical predictions of 
the turbulence/wave 29/9D space-time model. 

Using this technique, we revisited some of the 
( , )x z  cross-sections discussed in (Lilley et al. 
2004) reconfirming the theory for non-orthogonal 
directions and determining the spatial part of the 
“symmetrized” scale functions.  Due to this 
“symmetrization” and other factors, the measured 
scale function is not the same as the underlying 
physical scale function; hence we were unable to 
directly verify the wave extension to the classical 
FIF model. 

Since in the FIF, an anisotropic physical scale is 
introduced to replace standard isotropic scales, it 
predicts that the anisotropies of the weak and 
strong structures are the same, hence it predicts 
constant ratios for structure function exponents in 
orthogonal directions.  For the horizontal wind 
dominated cases we find the ratio 

/ =0.54 0.02 v zHτξ ξ = ±  (theory predicts 
5 / 9 0.556zH = ≈  and in (Lilley et al. 2004) a direct 

estimate gives zH =0.55±0.02) and for the pure 
temporal development case we found 

/ / 0.81 0.04v z tH Hτξ ξ = = ±  (theory predicts 
/ (5 / 9) /(2 / 3) 5 / 6 0.833z tH H = = ≈ ), hence tH = 

0.54/0.81= 0.67±0.06 or tH =0.55/0.81 =0.68±0.03 
depending on whether the empirical or theoretical 

zH  is used; theory predicts 2/3.  We conclude that 
the theory is confirmed to within experimental 
accuracy.  This analysis gave us elliptical 
dimension in full space-time domain ( , , , ) x y z t  

1 1 0.54 0.67 3.21 0.06stD ≈ + + + = ± , 
1 1 5 / 9 0.68 3.24 0.03stD ≈ + + + = ±  that is very close 

to theoretical value of 29/9. 
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If the analyses and models discussed here are 
correct in their essentials, then atmospheric 
dynamics are in many ways simpler than usually 
assumed, primarily because the 29/9D model 
unifies the dynamics over the entire dynamically 
significant range of space-time scales.  
Theoretically, this is compatible - if not demanded 
- by the dynamical equations which are scaling 
from planetary down to dissipation scales.  All the 
competing models require on the contrary the 
existence of strong scale separations with the 
small and large scales interacting only weakly.  
This is true not only of the classical 2D-3D 
isotropic turbulence model, but also of the 
anisotropic gravity wave models which require a 
linearization of the dynamics about an ill defined 
reference state.  The failure of modern data to 
corroborate the existence of a scale separation is 
probably the single most compelling argument in 
favour of the anisotropic scaling model; in this 
series, state-of-the-art lidar data quantitatively 
support the 29/9D model while excluding the 
competing 2D, 3D and 7/3D (gravity wave) 
models. 
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