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ABSTRACT  

Satellite studies have shown that cloud radiances (at both visible and infra red wavelengths) are scale 
invariant over scales spanning much of the meteorologically significant range, and airborne lidar data 
have shown that vertical cross sections of passive scalar clouds are also scaling but with quite different 
exponents in the horizontal and vertical directions. 

Over the last twenty years, many studies have been made of radiative transfer in scaling cloud fields, 
the vast majority of which have been limited to numerical studies in fairly optically thin clouds.  An 
exception to this was the development of a formalism for treating single scattering in optically thick but 
conservative multifractal clouds without significant holes.  In this paper we show how these results can be 
extended to non conservative and general “universal” multifractal clouds dominated by «Lévy holes», and 
how the analytic single scattering results can be generalized to multiple scattering including for very thick 
clouds.  These theoretical multiple scattering predictions are numerically tested using the discrete angle 
radiative transfer (DART) approach in which the radiances decouple into non-interacting families with only 
four (for 2-D clouds) radiance directions each. Sparse matrix techniques allow for rapid and extremely 
accurate solutions for the transfer; the accuracy is only limited by the spatial discretization. 

By “renormalizing” the cloud density, we relate the mean transmission statistics to those of an 
equivalent homogeneous cloud. Since the numerics on the special DART phase functions accurately 
validate a phase function independent theory the basic results will be valid for any phase function.  For 
realistic clouds (α=1.75, C1=0.1, H=0.33, 1-g=0.15) and optical thickeness of 100, we predict a 30-40% 
higher transmission when compared to the plane parallel predictions.   
*Corresponding author: Department of Physics, St. Lawrence University, Canton NY 13617 
e-mail: bwatson@stlawu.edu 

 

1. INTRODUCTION 

1.1 Overview 
Clouds – both meteorlogical and astrophysical 

– and their associated radiation fields are highly 
variable over huge ranges of space-time scales. 
An understanding of both the variability and the 
inter-relation between the two fields is of 
fundamental importance in meteorology, 
climatology, and astrophysics. The relation 
between radiation fields and the associated scatter 
density fields is also a challenging problem in the 
physics of disordered media (sporting many novel 
statistical features). This problem generally arises 
in systems with temporal and spatial variability 

originating in turbulent-like phenomena and is 
therefore ubiquitous.  

Since the variability is a consequence of 
turbulent atmospheric or magneto-turbulent 
astrophysical dynamics which span huge ranges 
of scale, the natural framework is scaling fields, 
i.e., multifractals. Indeed, in the atmosphere direct 
measurement of nearly 1000 satellite based cloud 
radiances spanning the scales of kilometers to 
thousands of kilometers has shown that the 
radiance fields are multifractal with deviations less 
than 1% per octave in scale ([Lovejoy et al., 2001], 
[Lovejoy, 2005 #826]). In this framework, the 
various cloud morphologies and types are simply 
manifestations of anisotropic (but still scaling) 
multifractal generating mechanisms. In 
astrophysical systems, scaling has been observed 
from planetary and stellar scales, up to interstellar 
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and even galactic scales (e.g. [Witt & Gordon, 
1996], [Varosi & Dwek, 1997], [Juvela, 1997], [Witt 
& Gordon, 2000], [Acker, et al., 2002], [Grosdidier 
& Acker, 2004], and references therein).  

Similarly, most astrophysical plasmas appear 
to be manifestations of magneto-hydrodynamical 
turbulence and are modeled by turbulent 
fragmentation processes.  Many studies were 
indeed devoted to characterize the monofractal 
nature of several astrophysical density or velocity 
fields (e.g. [Bazell & Désert, 1988], [Beech, 1992], 
[Blacher & Perdang, 1990], [Gill & Henriksen, 
1990], [Falgarone, et al., 1991], [Miesch & Bally, 
1994], [Brunt & Heyer, 2002], [Falgarone, et al., 
2004],  and references therein).  More recently, 
the multifractal nature of the intermittency has 
been recognized because intermittency affects 
many chemical reactions and, more generally, 
because it has a profound impact on structure 
formation (e.g., [Falgarone, et al., 2004], 
[Grosdidier & Acker, 2004], and references 
therein).  Hence,  as in terrestrial clouds, one is 
lead to adopt the multifractal approach in order to 
best describe astrophysical cloud morphologies 
and dynamics. Finally, there is also a strong need 
for quantitative results of radiative transport in 
astrophysical plasmas since most (if not all) of the 
information obtained from distant astrophysical 
sources is in the form of electromagnetic radiation. 
Note, however, that the magneto-hydrodynamical 
turbulence observed in some nebulae or giant 
molecular clouds (apparently supersonic) are 
different from atmospheric turbulence ([Fleck, 
1996], [Gill & Henriksen, 1990]), notably the 
scaling anisotropic vertical stratification of the 
latter ([Schertzer & Lovejoy, 1985], [Lilley et. al., 
2004]).  The large compressibility of the nebular 
gases and the possible multiplicity of turbulence 
energy sources are likely the main explanations 
for that difference.  

In this paper, we focus on the theoretically 
well-defined problem of radiative transport in 
multifractal media. There are two parts to the 
problem each with corresponding model choices.  
The first is for the cloud/medium, the second is for 
the transfer. For simplicity, we will limit our 
attention to isotropic (self-similar) multifractals, 
and to multifractals with stable, attractive 
generators: the “universal multifractals”. As for the 
choice of transport model, we opt for the traditional 
radiative transfer equation but with a special 
choice of scattering phase function such that 
scattering only occurs through a discrete set of 
angles. This makes the theory and numerics 
particularly simple ([Lovejoy, et al., 1990], [Gabriel, 
et al., 1990], [Davis, et al., 1990]) without 

modifying the basic statistical properties of the 
transport (the scaling exponents). The slightly 
simpler transport problem of diffusion on 
multifractals ([Meakin, 1987],[Lovejoy, et al., 
1998], , [Weissman & Havlin, 1988], [Lovejoy, et 
al., 1993],  [Marguerite, et al., 1997]) is itself quite 
interesting, but (except in 1-D, [Lovejoy, et al., 
1993], [Lovejoy, et al., 1995]) is not in the same 
universality class as radiative transport ([Lovejoy, 
et al., 1990]).  It could be mentioned that much of 
the work on transport in scaling media has 
focused on binary systems in which the medium is 
modeled as a geometric set of points (e.g. the 
problem of electrical conduction in a conducting 
percolating system, see the reviews [Havlin & 
Ben-Avraham, 1987] [Bouchaud & Georges, 
1990]); the corresponding fractal sets are simpler 
than the multifractal measures relevant to 
turbulence.  

1.2 External horizontal variability, and 
fractal models 

The theory of radiative transfer in plane 
parallel horizontally homogeneous (1-D) media is 
elegant and general ([Chandrasekhar, 1950]).  For 
horizontally inhomogeneous media there is no 
consensus on the appropriate model, nor is the 
transport problem tractable analytically.  For these 
reasons the use of 1-D models long dominated the 
field: in fact, the effect of horizontal variablity was 
both underestimated and neglected.  On the 
occasions where horizontally inhomogeneity was 
considered at all, it was usually reduced to the 
inhomogeneity of the external cloud/medium 
boundary (e.g. cubes, spheres, cylinders, e.g. 
[Busygin, et al., 1973], [McKee & Cox, 1976], 
[Preisendorfer & Stephens, 1984] with the internal 
field still being considered homogeneous.  When 
internal horizontal inhomogeneity was considered 
it was typically confined to narrow ranges of scale 
so that various transfer approximations could be 
justified, see e.g. [Weinman & Swartzrauber, 
1968], [Welch, et al., 1980]. 

Motivated by the explosion of interest in 
scaling systems and the realization that many 
geophysical systems (including clouds) were 
scaling over large ranges, the first studies of 
radiative transport on fractal systems appeared 
(e.g. [Gabriel, et al., 1986], [Cahalan, 1989], 
[Lovejoy & Schertzer, 1989], [Lovejoy et al., 1990], 
[Gabriel, et al., 1990], [Davis, et al., 1990], [Barker 
and Davies, 1992], [Cahalan, 1994 #854; Cahalan, 
1994 #95]). These works used various essentially 
academic fractal models and focused on the 
(spatial) mean (i.e., bulk) transmission and 
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reflectance. They clearly showed that i) fractality 
generally leads to non classical (“anomalous”) 
thick cloud scaling exponents, ii) the latter were 
strongly dependent on the type of scaling of the 
medium, and iii) they are independent of the 
phase function ([Lovejoy, et al., 1990]).   

By the 1990’s, it was clear that scaling 
generically leads to multifractal fields and that 
clouds were – as expected for turbulent fields – 
more nearly multi- than mono- fractal ([Gabriel, et 
al., 1988], [Lovejoy and Schertzer, 1990]). This 
pointed to the importance of understanding 
transport in the more realistic multifractal systems. 
Since the generic multifractal process is the 
multiplicative cascade, this leads to transport 
studies on cascade based cloud models. The two 
classes of cloud model which have been used for 
this purpose are the fractionally integrated flux 
model (FIF, [Schertzer & Lovejoy, 1987]) and the 
bounded cascade model [Cahalan, 1994]. In the 
FIF model, a multiplicative cascade generates a 
(scale by scale) conservative multifractal (for 
example, the energy flux to smaller scales), then a 
fractional integration (i.e. a power law filtering) is 
used to model the turbulent velocity or passive 
scalar density field; the details are given in section 
2. In the bounded cascade model, there is no 
conserved flux, the velocity or density fields are 
directly modeled with multiplicative cascades 
which are strongly “bounded” in order to obtain the 
necessary passive scalar statistics. In order to 
bound the cascade it is progressively and rapidly 
weakened at each step; as pointed out in [Lovejoy 
& Schertzer, 2006], this scale by scale bounding 
essentially kills off the intermittency so that the 
resulting field has the same scaling exponents as 
a truncated (non-intermittent, additive) gaussian 
process. Studies of radiative transport on the latter 
([Cahalan, 1994], have unsurprisingly concluded 
that the effect of the horizontal cloud heterogeneity 
on the radiative transfer is small. 

Finally, it is worth mentioning a related 
approach proposed by [Davis, et al., 1999] to 
phenomenologically account for the cloud 
variability by replacing the standard exponential 
transmission (Green’s) function by a power law 
corresponding to a Lévy flight model for photon 
paths. The justification is that cloud holes give rise 
to occasionally very long photon paths.  While this 
model is interesting, it is not clear which − if any − 
cloud physical processes would give rise to Lévy 
flights. It is interesting to note that the multifractal 
cloud models discussed here do indeed give rise 
to quite long tailed distributions – but not “fat-
tailed” (algebraic) ones such as in Lévy 
distributions. Although photon paths do exhibit 

clustering and other features of the Lévy walks 
(see Figs. 4 and 5), they in fact have finite 
variances. In addition, the Lévy flights correspond 
to “superdiffusion” in which, after N scatters,  
photons travel a distance Ns with s = 1/α  > 1/2 
whereas – due to the trapping of photons in dense 
regions – we find s < 1/2 i.e. “subdiffusion” 
corresponding to a quite different phenomenology. 

1.3 Transport in multifractal media 
 

To date, all numerical studies of radiative 
transport in multifractal media have used the 
special Discrete Angle (DA) phase functions 
mentioned above and described in detail in section 
2.  In addition, for obvious reasons, they have 
concentrated almost exclusively on two 
dimensional systems (see however [Gierens, 
1993], [Gierens, 1996a], [Gierens, 1996b], [Borde 
& Isaka, 1996]) with periodic horizontal boundary 
conditions and vertically incident radiation. Early 
studies were primarily numerical ([Davis, et al., 
1991], [Davis, et al., 1993]) and aimed at 
demonstrating the potentially large effect of 
multifractal heterogeneity on the spatially 
averaged (“bulk effect”) transport. For example, 
the latter papers found that for a cloud with strong 
intermittency (C1 = 1/2, see section 2; c.f. realistic 
cloud values C1 ≈ 0.1), and mean optical thickness 
100, the mean transmission is increased a factor 
of 3 with respect to the homogeneous counterpart. 
Similarly, [Borde & Isaka, 1996] numerically 
studied the statistical variation of mean cloud 
transmittances concentrating on the phase 
function and other parameters thought to be 
meteorologically most realistic. Since their clouds 
had relatively small effective optical thicknesses, 
the effect of the multifractality was not so large 
(the transfer problem becomes linear in the 
optically thin limit so that heterogeneity is no 
longer important). 

More recent approaches have attempted to 
obtain more theoretical insight into the relation 
between the multifractal cloud and associated 
radiation fields. Based on the radiative transfer 
Green’s function, [Naud, et al., 1996] have argued 
that with respect to the cloud, the radiation is a 
kind of integration (presumably of fractional order). 
These authors showed that since multifractal fields 
are superimpositions of singularities of all orders, 
above a given critical value the effect of this 
integration is simply to shift all the singularities 
(below this value, they are smoothed out).  
Developing this idea further with the help of a 
novel statistical closure technique, [Schertzer, et 
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al., 1997] showed that the transfer is indeed an 
integral over the cloud but over a generally fractal 
flux tube. This gives a multifractal generalization of 
the Independent Pixel Approximation (IPA) often 
used to interpret satellite cloud radiances.  
Unfortunately this insight has not yet been 
followed up. 

In this paper, we follow an approach based on 
the classical order of scattering method for solving 
the radiative transfer equation (the basis of the 
Monte Carlo solution method). The starting point is 
the exact calculation of single scattering statistics 
in multifractal clouds obtained by averaging the 
single scatter transmission function over the cloud 
statistics [Lovejoy, et al., 1995], which produces a 
“mean field” type of result. This is used to justify a 
renormalization of the cloud, i.e. to replace the 
heterogeneous multifractal cloud by an 
“equivalent” thinner, homogeneous cloud. In the 
special multifractals (with analytic K(q), see below) 
considered in [Davis, et al., 1993] this theoretically 
derived renormalization was shown to reproduce 
the numerical results and was very accurate even 
in optically thick clouds with high degrees of 
multiple scattering.  

While these results were promising, they could 
not be directly applied to realistic clouds for 
several reasons.   The first is that the cloud was 
assumed to be a conserved multifractal (a scale 
by scale energy flux).  This means that the density 
fields are much rougher than those of (non-
conserved) realistic clouds.  The second is that 
realistic clouds have low density regions (“Levy 
holes”) which are so frequent that their statistics 
are qualitatively different:  negative moments 
diverge and the moment scaling function K(q) is a 
not analytic at the origin.  This latter property is the 
source of serious (and interesting) technical 
difficulties discussed below.  Both assumptions 
are at odds with cloud observations (see e.g. 
[Tessier, et al., 1993], [Sachs, et al., 2001], 
[Lovejoy, 2005 #826]). In this paper, we generalize 
these earlier results to lifting this restriction 
obtaining renormalization methods for realistic 
multifractal exponent functions. The key aspect 
remaining to be treated for realistic multifractal 
clouds, is the effect of scaling anisotropy 
especially for the vertical stratification which, 
according to recent lidar measurements ([Lilley, et 
al., 2004]), is characterized by an “elliptical 
dimension” 2.55±0.02 (close to the theoretical 
value 23/9). 

 

2. Single scattering in multifractal clouds 

2.1 Multifractal cloud densities 
In this section we derive the single scattering 

statistics through a multifractal cloud; the 
presentation is somewhat simplified and improved 
with respect to that of [Lovejoy, et al., 1995] 
largely thanks to the systematic use of the Mellin 
transform. 

As a model we take a cloud with a multifractal 
density field 

 
! x( )   (in units such 

that
 
! = 1 ,

  
x = (x, y, z) ) defined on a cloud having 

unit outer scale L = 1 in each dimension. Following 
basic turbulence phenomenology, we first define a 
(scale by scale) conservative multifractal ϕλ with 
the following ensemble averaged moments at 
scale ratio λ (λ ≥1 is the ratio of the largest cloud 
scale, set equal to one, over the scale of 
observation): 

 
!

"

q
= "

K q( )

    (1) 
where K(q) is the (convex) moment scaling 
function.  

According to the usual turbulence 
phenomenology, the directly observable cloud 
density is related to the conserved flux !  by: 

 
!
"
= #

"
"$H

  (2) 
For example, according to Corrsin-Obukov 

([Corrsin, 1951], [Obukhov, 1949]) theory of 
passive scalars, ϕ = χ3/2ε−1/2, where χ is the passive 
scalar variance flux, ε is the energy flux and H = 
1/3. In the horizontal, [Lovejoy and Schertzer, 
1995], [Lilly et.al., 2004], have shown empirically 
that this is very close to the observations.  Eq. (2) 
is essentially the result of dimensional analysis, 
the linear scaling factor  !

"H  is interpreted 
statistically. In order to make a stochastic model of 
a field with the scaling statistics indicated in Eq. 
(2), the simplest procedure is to use the 
fractionally integrated flux (FIF) model ([Schertzer 
& Lovejoy, 1987]), in which it is interpreted as a 
fractional integration of order H (see section 4.8).   

Mathematically, K(q) could be practically any 
convex function, so that multifractal modeling and 
analysis would require an unknown function, the 
equivalent of an infinite number of parameters. 
Fortunately, multifractal processes possess stable 
and attractive generators Γλ : 

  

!
"
= #

$
% x

&D/$

'
"
= e

!
"

  (3) 
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where γα is a (white) Lévy noise subgenerator (of 
index α) and where “*” is the convolution operator 
([Schertzer & Lovejoy, 1987]) and D is the 
dimension of space. The corresponding 
conservative multifractal process ϕλ is then 
characterized by only two parameters α and C1: 

  
K q( ) =

C
1

! "1
q
!
" q( )

 (4) 
where 0 ≤ α ≤ 2 is the Lévy index of the generator 
(= log ϕλ; this is a Lévy process) and C1 is the 
codimension of the mean, i.e. it is the codimension 
of the singularities which give the dominant 
contribution to the mean of the process (recall that 
the codimension of a set is the difference between 
the dimension of space in which the process is 
embedded and the dimension of that given set). 
When α = 2, !

"
is a gaussian white noise and the 

“bare” ϕλ (i.e. the process cut-off at the finite 
resolution 1/λ) is just a log-normal process. In this 
case, K(q) is quadratic, hence analytic. However, 
when α < 2, the Lévy generator with its long 
algebraic tail completely changes the statistics and 
the phenomenology. In order for the moments q > 
0 of ϕλ negative extremes; it must be an 
asymmetrical “extremal Lévy”. The negative 
moments diverge due to the frequent large 
negative values of Γ.  This leads to the presence 
of “Lévy holes” (see Figure 1) which are large low 
valued density regions; for radiative transfer, they 
are fundamental since they are relatively optically 
transparent. 
NO SPACE  
Figure 1: This figure shows a  500 ! 500  pixel 
conservative (  H = 0 ) multifractal cloud with 
 ! = 1.75  and a relatively large intermittency 
parameter

  
C

1
= 0.3  (the fractal dimension of the set 

giving the dominant contribution to the mean value 
is 2-0.3=1.7). Large density regions appear white, 
small density regions appear black. Note the 
presence of very large low valued density regions 
which are of fundamental importance because 
they are relatively optically transparent. 

The above equations define the statistics of ρ 
via the moments; they can also be defined via 
their probability distributions:  

   
Pr !

"
> s( ) ! "#c $( )

; s = "$

 (5) 
where “ ! ” indicates equality to within slowly 
varying (e.g. logarithmic) factors. The moments 
and the probability densities are related by a 
Mellin transformation ([Schertzer & Lovejoy, 1992]; 
see Eq. (11) below); this reduces to a Legendre 

transformation ([Parisi & Frisch, 1985]) for the 
exponents: 

  

c !( ) = max
q

q! " K q( )( )

K q( ) = max
q

q! " c !( )( )
 (6) 

Eqs. (4) and (6) imply one to one relations 
between moments and singularities: 

  
! = "K q( ); q = "c !( )  (7) 

For universal multifractals, 

  

c !( ) = C
1

!
C

1
"#
+

1

#

$

%&
'

()

"#

= C
1

1

#
*

!
#!

0

+
$

%&
'

()

"#

; 0 + # < 1,  1< # + 2

 (8) 

where: 
 

1

!
+

1

"!
= 1  and

  

!
0
= "C

1

#$

$
= "

C
1

$ "1
.  It is 

valid for 
 
! > !

0
 for  1< ! < 2  (= 0 otherwise) and 

for 
 
! < !

0
 for  0 ! " < 1  (=0 otherwise).  For 

 ! = 2 the above is valid for all ! .  From Eq. (8) we 
see that for  1< ! " 2  γ0 is the largest space filling 
(the codimension being 0) singularity. In addition, 
since for 1< ! < 2 , 

 
c'(!

0
) = 0 , we see that it is also 

the most probable and gives the dominant 
contribution to the zeroth order (q=0) cloud density 
moment. 

Although real cloud fields are not conservative 
with H empirically close to the theoretical (Corrsin-
Obukhov) passive scalar value 1/3, in the first part 
of this paper, and for the sake of simplicity, we 
restrict ourselves to the conservative case with 
universal multifractal parameters H = 0,  1< ! " 2 , 
and 

  
0 ! C

1
 ! 2  (for the 2-D case). Whenever 

formulas are explicitly evaluated or graphical 
results displayed, we choose the values α = 1.75 
and C1 = 0.1, which approximate the parameters 
found in real clouds (see [Lovejoy, 2001], [Lovejoy 
& Schertzer, 2006]).   

02.2 Cloud radiative properties 
The extinction parameter !  is the scattering, 

absorption cross-section per unit mass of 
scattering media; it has dimensions of inverse 
distance.  In the following, it will be convenient to 
nondimensionalize the distances by the overall 
system size Lext (equivalent to considering a cloud 
of unit size), while simulttaneously 
nondimensionalizing κ by the same Lext.  It 
characterizes the strength of the matter-radiation 
coupling and is equal to the number of mean free 
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paths across a homogeneous cloud having the 
same average desnity. In a cloud of unit size, let 
 x  be the physical length of a photon path. The 
optical path length is then defined as, 

   

!(x) = " #
!
r( )dr

path

$
 (9) 

where the integration is over the straight line 
photon path of length x . The probability that a 
photon will travel a distance  x  without scattering 
is then given by the transmission function, 

 T = e
!" ,  (10) 

(known as “Beer’s Law”) and is the propagator 
from the radiative transfer equation. For “mean 
field” properties we require the statistical average 
of this quantity, the direct transmission, 

 
T x( ) , 

(where, for a fixed x , the average is to be taken 
over an ensemble of multifractal clouds), and the 
moments 

 
x

q
p = x

q
p p

x
x( )! dx

, (11) 

where 
 
p

x
x( ) = !

" T

"x
 is just the probability 

density for paths of length x . 

The starting point is to write down an 
expression for the direct transmission 

  
T x( ) = e!" p

"
"( )d"

0

#

$ , (12)  
where 

 
p
!
!( )  is the probability density for finding 

an optical path length as given by Eq. (9) and is a 
one-dimensional integral over a large scale factor 

  
! " 1 x  of a multifractal field that has been 
developed to some fine inner scale with scale ratio 
L; in other words, we start with an original 
multifractal with a high scale ratio   !!1and 
spatially average to a smaller scale ratio ! .  It is 
referred to as the “dressed field.”  Mathematically, 
the dressed field 

  
!
" ,d

 at scale ratio ! < "  is: 

  

!
" ,d

= " !
# $x( )d $x

1/"
%

 (13) 
For moments q below a critical value

 
q

D
, the 

bare and dressed statistics are the same to within 
factors of order unity:

  
!
" ,d

q # !
"

q .  However for 

 
q > q

D
 the former diverge while the latter remain 

finite [Schertzer & Lovejoy, 1987]. We assume 
here that 

 
q < q

D
 so that it is acceptable to replace 

the dressed field by the bare field developed only 
down the scale ! , i.e. we take

  
!
" ,d

# !
"

.  Defining 

 
!

p
 as the (dimensionless) optical thickness 

through a physical distance  x  in a (random) cloud 
singularity γ , and recalling that for a multifractal 
field !

"
= "#  with the singularities γ being an 

extremal Lévy random variable having probability 
density

 
p !( ) , we find the following approximation: 

  

!
p
" #$

%
x = #$

%
%&1

= #%
' &1

. (14) 
This “bare = dressed” approximation should 

be valid so long as  x  is small compared to 1 (the 
outer scale of the cloud):  for small λ  the bare field 
has undergone few cascade steps and therefore is 
less variable than the dressed field. In fact, the 
limit  !" 1  is the uniform cloud, and serves as a 
useful check. 

2.3 The direct transmission 
We begin by finding an integral expression for 

 
T  that can be evaluated.  For technical reasons 

it is more convenient use the normalization of the 
probability density so as to rewrite Eq. (12) as 

  
T x( ) = 1! 1! e!"( ) p

"
"( )d"

0

#

$  (15) 
The problem now is that with the exception of 

the exponential part, Lévy probability densities are 
not expressible in closed form except in the 
special cases  ! = 1  (Cauchy probability density 
function),  ! = 1 / 2 (“inverse Gaussian”), and  ! = 2  
(Gaussian pdf). However, the Mellin transform of 

 
p
!
 is straightforward so that with the help of the 

Parseval formula for products, we rewrite Eq. (15) 
in terms of the Mellin transformed quantities. We 
obtain an integral in the complex plane of the 
product of Mellin transforms (see, e.g. [Bleistein & 
Handelsman, 1986]). 

  

T = 1!
1

2" i
M[1! e!#

;!q]M[ p
#

r!i$

r+i$

% ;1+ q]dq

 (16) 
with the Mellin transform and its inverse given by 

  

M[ f (!);q] " !q#1

0

$

% f (!) d!

f (!) =
1

2& i
!#q

c#i$

c+i$

% M[ f ;q] dq

. (17) 
The two Mellin transforms in equation (16) can 

be evaluated: 

  

M[1! e
!" ;!q] = !#(!q)

M[ p
"
(");1+ q] = $

q
x

q!K(q)

 (18) 
The first transform is a standard result. The 

second arises from the definition of the moment 
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scaling function 
  
K(q)  (Eq. (4) with  x = !

"1 ).  We 
therefore arrive at an essential expression, 

  

T x( ) = 1+
1

2! i
"q

r#i$
0< r <1

r+i$

% xq#K(q)&(#q) dq

. (19) 
The integration is along a vertical path which 

lies in the common strip of analyticity of the two 
Mellin transforms. While this does not at first seem 
like a simplification, it will provide a useful tool in 
finding asymptotic expansions for the photon path 
moments.  Moreover it can be easily integrated 
numerically, as shown in Figure 2. 

NO SPACE 

Figure 2: 
  
ln T  vs. x (numerical integration). 

Here ! = 100 . For path lengths less than
 
x

c
, the 

mean transmission is essentially exponential at 
some reduced value  

 
Two observations are in order.  The first is that 

the direct transmission through a cloud with a 
large variability in scatterers density can be much 
greater than for a uniform cloud of the same ! .  
The second is that there are at least two main 
regimes: a short-distance regime in which the 
transmission is approximately exponential at some 
reduced value of ! , and a long-distance regime in 
which the transmission falls off more gradually.   

 

2.4 The singularity formalism for single 
scattering 

 
We have seen that in multifractals for 

large ! , the probability and moment 
descriptions are simply related through a 
Legendre transformation (Eq. (6)). [Lovejoy, et 
al., 1995] showed that for large !  an analogous 
set of exponents and relations exist for the 
radiative transfer. First, define the (random) 
“scattering singularity” 

 
!

p
for the random optical 

distance traversed by a photon before 
scattering: 

 
!

p
= "

#
p

  (20) 

Now, we interpret the mean transmittance 
 

T  
as the probability distribution of the random 
photon scattering distances: 

   
T = Pr !

p
> "

#
p( ) ! "$c

p
#

p( )

 (21) 

We now use, 

  
x = !

p
/ " = "

#
p
$1

 (22) 

and insert this into Eq. (19): 

  

!
"c

p
#

p( )
= 1+

1

2$ i
!

q#
p
"K(q) #

p
"1( )

r"i%
0< r <1

r+i%

& '("q) dq 

. (23) 
If we now assume that 

  
K(q)  is analytic at the 

origin, we can take  r  to the left (past the pole in 
  
!("q) at the origin); this residue contributes a 
value –1 which cancels the one in Eq.(23) to yield  

  

!
"c

p
#

p( )
=

1

2$ i
!

q#
p
"K(q) #

p
"1( )

r"i%
r<0

r+i%

& '("q) dq 

 (24) 

Note that the assumption of analyticity at the 
origin is valid for many popular multifractal 
models such as the log-Poisson model ([She 
and Levesque, 1994]) or the “p model” 
([Meneveau and Sreenivasan, 1987]) but is 
invalid for all the universal multifractals except 
the special “lognormal” multifractal ! = 2  (see 
[Lovejoy,et.al., 1995] for the latter); the cases 
 ! < 2  have a branch cut along the negative real 
axis ending at the origin.  The final step is to 
make a transformation of variables and define 
the photon moment exponent

  
K

p
(q

p
) , 

  
q

p
= K q( )! q

 

  
K

p
(q

p
) = K(q)

  (25) 

to obtain: 

   

!
"c

p
#

p( )
! !

"q
p
#

p
+K

p
(q

p
)

"$

0"

% f(q
p
) dq

p

 (26) 

where we have deformed the limits of 
integration to lie on the negative 

 
q

p
 axis.  f is an 

unimportant sub-exponential function (see 
[Lovejoy, et al., 1995]).  If 

  
K(q)  and hence 

  
K

p
(q

p
)  have unique minima (recall, they are 

convex), and since
 
K(0) = K(1) = 0 , if 

  
K(q)  is 

real for
  
q < 0 , then this minimum occurs for 

real
  
q

p
< 0 ; it will lie on the domain of integration 

above.  In that case, the “moving maximum” 
method of asymptotic approximation (c.f. 
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[Bender and Orszag, 1978]) allows us to 
conclude that for large enough ! : 

  

c
p
!

p( ) = max
q

q
p
!

p
" K

p
q

p( )( )
K

p
q

p( ) = max
q

q
p
!

p
" c

p
!

p( )( )
 (27) 

The final formula relating cloud and scattering 
exponents follows by inverting the transform; we 
see for example that: 

  
!

p

q
p = "

K
p

q
p( )
= "

q
p x

q
p

 (28) 

The Legendre pairs in Eqs. (6) and (27) allow 
us to associate unique singularities with 
moments: 

  

! = "K q( ) =
dq

p

dq
+1

!
p
= "K

p
q

p( ) =
dq

dq
p

+1

 (29) 

from which we derive, 

  
! "1( ) !

p
"1( ) = 1

 (30) 

Eqs. (15), (20), (21), (22) and (24) (which are 
only exact in the limit ! > "# $ ) establish one 
to one relations between cloud densities and 
statistics, and photon paths and statistics; these 
will be quite helpful in interpreting the results 
below. These relationships between exponents 
are only between values which give dominant 
contributions to integrals; they are only exact in 
the limit of large ! , large ! .  For example, using 
Eq. (30) we see that the most probable cloud 

density singularity, 
  

!
0
= "

C
1

# "1
, corresponds to 

the photon scattering singularity: 

  
!

p0
= 1" a ;

  

a =
1

1! "
0

= 1+
C

1

# !1

$

%&
'

()

!1

(31) 

is the exponent for the photon distance  x  that 
will play a fundamental role in later 
developments.  Since we saw 

 
!

0
  dominates 

the moment
  
q = 0 , and 

  
q

p
= K(q) ! q  we see 

that 
  
!

p0
 gives the dominant contribution 

to
  
q

p
= 0 , and finally, this shows that 

  
c

p
'(!

p0
) = q

p
(!

p0
) = 0  so that 

  
!

p0
 is in fact the 

most probable photon scattering singularity.  In 
the case ! = 2 , [Lovejoy, et al., 1995] show: 

  

c
p
!

p( ) =
1" 1+C

1
( ) 1" !

p( )( )
2

4C
1

1" !
p( )

K
p

q
p( ) = q

p
"

1+C
1( )

2

+ 4C
1
q

p
" 1+C

1( )
2C

1  (32) 

In the following section, we show how this 
formalism can be extended to the case  1< ! < 2  
and show the corresponding graphs of

  
K

p
,
  
c

p
.   

3. Single Scattering Direct Transmission and 
Moments for1< ! < 2  

3.1 The transmission function  

 

The idea of two scattering regimes is more 
than apparent.  For the special value of photon 
path length 

  
x

0
 (corresponding to the most 

probable path length singularity
  
!

p0
): 

  
x = x

0
= !1"#

p 0

= !"a
= !

" 1+
C

1

$"1

%

&
'

(

)
*

"1

 (33) 
 

which might be called the renormalized scattering 
length. Eq.(19) is practically stationary with 
respect to a change in !  (see Figure 3).  
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Figure 3. 
  
ln T  vs. scaled distance 

  
x / x

c
(numerical integration).  solid line ! =10, 

dashed line ! =100, dottted line ! =1000.  

 
This behavior can be traced to the fact that the 

linear term in the exponent of the integrand of Eq. 
(19)  vanishes at 

  
x

0
 leaving, 

  

T x
c( ) = 1+

1

2! i
"

#
p 0

q$

r%i&

r+i&

' ((%q) dq

) e%1

 (34) 
The simplification comes about by choosing 

an integration path with   r ! 0  so that   !
"

p 0
q
#

$ 1  
over the range where the gamma function is 
makes its major contribution.  We then apply the 
inverse Mellin transform of Eq.(17) (this argument 
does not work for α<1).  The approximation is 
borne out by the numerics in Figure 3.  Since the 
transmission function falls to 1/e at 

  
x

0
 it is easy to 

see that a good approximation for the transmission 
in the short distance regime is given by 

  

T ! e
"#

eff
x
,   x < x

0
;

#
eff

= x
0

"1
= # a

= #
1+

C
1

$"1

%

&
'

(

)
*

"1

.
 (35) (36) 

The approximation of Eq. (35) is plotted in 
Figure 2 and is a central result:  for single 
scatterings the transmission is essentially 
exponential but with a reduced or renormalized 
extinction coefficient.  More justification of this will 
be given later, Figs. 4 and 5 show the implications 
for photon path distributions. Another way of 
thinking about this is that 

 
T  is determined 

almost entirely for short distances by the most 
probable singularity in the density field. 

 
NO SPACE 

Fig. 4:  This shows part of a random photon 
path using the derived distribution assuming each 
step is statistically independent ( ! = 1000 ). 
Although the walk appears very similar to a Lévy 
flight (notice the clusters within clusters), the 
variance is in fact finite, the walk with independent 
steps will eventually tend to the standard gaussian 
brownian motion limit.  The clustering is in fact due 
to the sharp difference in the statistics of short and 
long steps (

  
x < x

0
,
  
x > x

0
 respectively).  In section 

4 we see that even for large numbers of steps, 
they are not independent due to the long range 
correlations in the multifractal cloud (Fig. 5).   

 
Fig. 5:  Three photons paths, 100 scatters 

each on a conservative multifractal cloud (2-D), 
with α=1.75, C1=0.1.  We also see clustering when 
the photon moves into dense cloud regions.  The 
cloud (and path) are periodic.  Note here, discrete 
angle phase functions were used, isotropic in the 
four orthogonal directions. 

 

3.2 The photon moment statistics: the 
power law term 

 
We turn our attention now to the path length 

moments, 

  
x

q
p = x

q
p p

x
x( )

0

1

! dx = " x
q

p
# T

#x0

1

! dx
 (37) 

Recall that the upper limit here is not infinity 
because the cloud has an outer scale of  x = 1 .  
Integrating by parts we get, 

  
x

q
p

= !x
q

p T
0

1

+ q
p

0

1

" x
q

p
!1

T dx
 (38) 

The boundary term evaluates  to e
!" ; it can be 

ignored for large !  . After substituting our integral 
expression for 

 
T  we arrive at, 

  

x
q

p
= 1! e!"

+W (q
p
)

W (q
p
) #

q
p

2$ i
x

q
p
!1

0

1

% "q xq!K (q)&(!q) dq
r!i'
0<r<1

r+i'

% dx

 (39) 
The order of integration may be reversed, 

justified on grounds of uniform convergence. The 
integral with respect to  x  is elementary giving 
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W (q
p
) =

q
p

2! i

"q#($q)

q
p
+ q $ K(q)

dq
r$i%
0<r<1

r+i%

&  (40) 

An analysis of Eq. (40) depends critically on 
the properties of the moment scaling function K(q), 
which determines the locations of the poles of the 
integrand.  For conservative multifractals, K(q)is a 
concave upward function with K(0)=K(1)=0  as 
shown in Fig. 6. 
NO SPACE 

Fig. 6: 
  
K(q) vs.

 
q . The location of the poles in the 

integrand of Eq. (40) are given by the solution 
of

  
q

p
+ q = K(q) . 

It is obvious from the figure that there will 
always be one real root of 

  
q

p
+ q = K(q) ,  (41) 

within 
  
0 ! q

"
< 1  for 

  
!1< q

p
" 0   so that the 

condition on the integration path  in Eq. (40) can 
be satisfied by taking 

  
q
!
< r < 1 .  We also see that 

the condition can never be satisfied for 
  
q

p
! "1 ;  in 

other words, these photon path moments diverge.  
If K(q) is analytic (as is shown in the figure), then 
the positive moments can be handled with no 
modification.  When K(q) is given by Eq. (4) 
with ! < 2 , however, K(q)has a branch cut along 
the negative q-axis and q- will be complex and 
multiple–valued.  In any event, so long as

  
!1" q

p
 

Eq. (40) is applicable.   
It is important to appreciate that although Eq. 

(41) relating q, qp, and K(q) is the same as that 
obtained for analytic K(q) relating dominant 
exponents, here, the relation determines the 
positions of poles in a complex integral.  In this 
way, the relation continues to be important even 
when the exponential is not dominant (as we shall 
see for 1<α<2 below). See Figures 7 and 8. 

When K(q)is analytic, the evaluation of Eq. 
(40) is straightforward, especially if the two roots 
can be obtained in closed form.  The case for α=2 
is given in Eq. (32). 

 
Fig. 7: 

  
K

p
(q

p
) as a function of 

 
q

p
 obtained 

numerically using the Eq. (25); all curves 
have

  
C

1
= 0.1 , from bottom to top,  ! = 1.1 to 1.9 in 

steps of 0.1.  Curves for other 
  
C

1
 values are 

obtained using the fact that 
  
K(q) / C

1
= K

p
(q

p
) / C

1
 

is independent of
  
C

1
. 

 

 
 
Fig. 8: cp(γp): Obtained by numerical Legendre 

transformation of the above. Here we have  α=1.3 
to 1.9 (bottom to top). 

 

3.3 The photon moment statistics: the 
logarithmic terms 

 
We have seen that the poles will give us 

power law terms.  Space limitations prevent us 
from giving a complete analysis of the logarithmic 
terms.  We present only a summary of the results 
and leave the details for a future paper. 
 
For positive and negative moments the first three 
terms in the asymptotic expansion are 
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x
q

p ~ !(1+ aq
p
)"#aq

p+ B log"( )
#$
+C log"( )

#($+1)

B =
C

1

q
p
!(2#$)

C =
%

E
%

0

q
p

#
2%

0
(1# %

0
)

q
p

2

&

'
(

)

*
+

1

!(#$)
, %

0
=

#C
1

$ #1

a = 1+
C

1

$ #1

&
'(

)
*+

#1

 

 (42) 
 

Note that the two logarithmic terms vanish for 
α =2. For large κ it is the first (algebraic) term 
which dominates the negative moments since 
q(qp) is positive.  This expression will be applicable 
to both positive and negative moments, the only 
distinction being that the algebraic and logarithmic 
terms trade places in importance as qp changes 
sign.  Once again, we have seen that the statistics 
of short pathlengths (which are described by the 
negative qp) differ from the long pathlength 
(described by the positive qp).  This is not really 
surprising since the Lévy probability density for the 
density singularities is maximally asymmetric,  
except, of course, for the symmetric Gaussian 
case of  ! = 2 .  But for this exception the 
logarithmic terms vanish so the moment function is 
always algebraic, a result that obtains  whenever 
K(q) is analytic.  Fig. 9 shows that the above 
approximations are indeed quite accurate for qp=2. 
NO SPACE 
Fig. 9:  For α=1.75, C1=0.1, we show ln<x2> 
versus log10 κ  The heavy solid line gives the 
numerical integration of eq. (40).  The thin solid 
lines indicate the first term (exponential) and 
second (logarithmic) terms respectively of eq.(42).  
The dashed line shows the improvement when the 
third term of eq. (42) is included.  

4. Multiple scattering 

4.1 Discussion 
From the point of view of applications, the 

above results have severe limitations. First, it is 
not obvious how the above single scattering 
calculations are relevant to multiple scattered 
radiation in thick clouds.  In addition, even for 
single scattering, it is not clear that the results will 
be relevant in non conservative clouds in which 
the cloud density is related to the (scale by scale) 
conservative multifractal fluxes by a fractional 
integration i.e.: 

 
! x( ) = " x( )# x

$ D$H( )  (43) 

where φ is a flux and “*” denotes “convolution” and 
D is the dimension of space.   For example the 
Corrsin-Obukov law for passive scalar advection 

yields H=1/3 and φ=χ1/2ε−1/6 where χ is the 
passive scalar variance flux and ε is the energy 
flux.  Observations ([Lilley, et al., 2004], [Lovejoy 
and Schertzer, 1995]) show that in the horizontal 
H is indeed close to 1/3.  Unfortunately, the 
analytic treatment of the statistics of the above FIF 
model with H≠0 is too difficult; the same is true of 
extending the above directly to multiple scattering 
since successive scatters are strongly correlated. 

In order to study both multiple scattering and 
the effect of H>0, we therefore turn to numerical 
techniques.  Probably the simplest technique of all 
is the Monte Carlo technique which is indeed quite 
standard for radiative transfer calculations.  In this 
technique, photons are simulated and statistics 
are built up from many virtual photons.  
Considering pure scattering (no absorption), after 
starting the photon off at a boundary in the 
direction of incident radiation, it propagates in a 
straight line until the total integrated optical 
thickness equals an exponential random deviate 
(this comes from the standard exponential 
propagator/Green’s function,  e

!" ).  The direction 
of the photon is then changed randomly according 
to the scattering phase function.  Fig. (14) 
immediately shows the difficulty in applying single 
scattering results; the successive scatters never 
completely decorrelate; rather than obtaining a 
standard linear law of variance growth with 
number of scatters N, one obtains an anomalous 
law: 

  
x

2
! N

a

  (44) 
with a given by Eq.(42).  One can also see from 
the figure that the N=1 result of single scattering 
theory is above the asymptotic line so that clearly 
the multiple scattering cannot be obtained trivially 
from the single scattering result.  We can already 
note that if we define the “effective” number of 
scatters as Νa=Ν a, then we recover the classical 

homogeneous medium result for Νa.  The result of 
Eq. (47) shows that the fractal dimension Df of the 
photon path (e.g. in fig. 5) is: 

  
D

f
= 2 / a = 2+

2C
1

! "1  (45) 
 

which fills the plane (since 0 < ɑ < 1 and C1 >  0). 
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Although we do not give more than numerical 
justification for this result, we note that for α=2 (the 
log-normal multifractal), ɑ=1/(1+C1) which is 
identical to the exponent for 1-D diffusion in that 
case ([Lovejoy, et al., 1998]).  What is curious is 
that the 1-D diffusion result does not continue to 
be valid in 2-D ([Marguerite, et al., 1997]), 
whereas fig. 10 shows that the 1-D diffusion result 
holds for 2-D radiative transfer.  The difference is 
presumably in the nature of the “trapping” of 
random walking particles. 

 
Fig. 10:  This shows ln<x2> vs. lnN for α=1.75, 

C1=0, κ=512; the largest rms distance (measured 
in pixels) corresponds to 90 pixels.  The orange 
line is Na where a is the theoretical exponent (eq. 
0.44) = 0.882 here; the black line is the classical 
linear variance law.  Since a<1, we have 
“subdiffusion. 

5. CONCLUSION 

We showed how our earlier single scattering 
theory 1) can be extended to non-conservative 
(H>0) general “universal” multifractal clouds, and 
2) how the analytic single-scattering results can be 
generalized to multiple-scattering.  Indeed, the 
theoretical and numerical single scattering analytic 
results give accurate predictions for the mean 
cloud optical properties of clouds with realistic 
multifractal parameters and cloud optical 
thicknesses. By varying the extinction coefficient, 
we are able to study the effect of increasing cloud 
thickness, for typical cloud mean optical thickness 
in the range 8-100.  For example, using the 
observed multifractal cloud characteristics, we 
predict that the mean cloud transmission 
decreases with the 0.88 power of the total optical 
thickness (the corresponding homogeneous 
exponent being unity). For clouds with a total 
optical thickness of 100 (with 1 - g = 0.15) this is a 
non-negligible 30-40% effect with respect to 
homogeneity. 
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