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Abstract

In this study, analytic and numerical methods are used to examine the nonlinear dynamics of gravity
waves forced by an isolated mountain. The topographic gravity waves take the form of a packet,
localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers
centered at zero. The wave packet propagates upwards in a density-stratified shear flow and reaches
a critical level, where the horizontal mean wind is the same as the wave phase speed. The governing
nonlinear time-dependent equations are solved numerically to study the nonlinear interactions that
take place between the wave packet and the mean wind. These interactions lead to the transfer of
momentum to the mean flow by the packet and the development of static instabilities in the vicinity
of the critical level. To obtain further insight into the results of the numerical simulations, analytic
solutions of the governing linearized equations are derived.

1. INTRODUCTION
Density-stratified air flow over mountains may give
rise to internal gravity waves which affect the general
circulation of the atmosphere though momentum and
energy transport and deposition. Such waves are re-
ferred to as topographic or mountain waves or as lee
waves, since they generally occur downstream of the
source.

Theoretical studies of gravity wave propagation in
stratified shear flows have helped advance our un-
derstanding of the mechanisms for topographic wave
generation and propagation and gravity-wave–mean-
flow interactions. By means of simplifications such
as the hydrostatic approximation and the Boussinesq
approximation the governing equations can be simpli-
fied to an extent that they become tractable to ana-
lytic or relatively inexpensive numerical solutions and,
thus, give some insight into the results obtained us-
ing more sophisticated models. A well-known exam-
ple is the model of Long (1953) which assumes the
fluid flow to be two-dimensional, steady and hydro-
static and, under further assumptions, leads to a sin-
gle linear Helmholtz equation for the flow field, which
can be readily solved. Analytic solutions of nonlin-
ear time-dependent non-hydrostatic models of topo-
graphic waves are harder to derive, but there have
been numerous numerical simulations at varying lev-
els of approximation [see, for example, Baines (1989)
or Wurtele, Sharman and Datta (1996) for reviews].
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An important feature of gravity wave propagation in
the atmosphere is the critical-level interaction. Such
interactions take place when gravity waves reach a
level in the atmosphere where their intrinsic phase
speed is zero, i.e., where the background wind speed
equals the wave phase speed, and they act as a
mechanism for momentum and energy deposition,
wave breaking and, in some cases, the onset of tur-
bulence. The literature on forced gravity wave criti-
cal levels begins with Booker and Bretherton’s (1967)
pioneering study of the linear problem. Later, a se-
ries of analytic studies was undertaken by Brown and
Stewartson (1982) extending Booker and Bretherton’s
solution to include nonlinearities.

There have been studies of topographic waves
forced by flow over an isolated mountain that have in-
cluded investigations of critical-level phenomena. An
importance issue in that context is the concept of res-
onance as defined in the papers of Clark and Peltier
(1984) and Bacmeister and Pierrehumbert (1988). In
these studies, the flow was said to be resonant for a
certain discrete set of distances between the source
and the critical level. In this resonant state, Clark and
Peltier (1984) predicted that there would be a large
drag force on the mountain. Bacmeister and Pierre-
humbert (1988) noted that the exact locations of the
resonant levels actually depend on the height of the
mountain.

More recently, Campbell and Maslowe (2003) car-
ried out a nonlinear numerical simulation of the evo-
lution of a forced gravity wave packet and found simi-
larities between their results and those of Bacmeister
and Pierrehumbert (1988), namely, a prolonged state
of absorption of the wave packet by the mean flow and



an observed outward outward flux of wave activity in
the horizontal direction. However, they did not inves-
tigate the possibility of resonance. The goal of this
project is to extend that study to the specific case of
topographic waves forced by an isolated mountain us-
ing analytic as well as numerical methods, and explor-
ing the possibility of resonance, among other issues.
Some preliminary results are presented here. Linear
analytic solutions are described in Section 3 and lin-
ear and nonlinear numerical solutions are presented
in Section 4.

2. MODEL FORMULATION

The governing equations for this study are the equa-
tions of motion for a two-dimensional fluid defined in
terms of Cartesian coordinates x and z in the horizon-
tal and vertical directions, respectively. The Boussi-
nesq approximation is made, i.e., density variations
with altitude are neglected in the acceleration terms,
but retained only in the buoyancy force term in the
vertical momentum equation. With this approximation
the continuity equation is simply

ux + wz = 0, (1)

where u and w are the horizontal and vertical compo-
nents of the velocity and the subscripts denote partial
differentiation. This allows us to define a streamfunc-
tion by

u = −Ψz, w = Ψx, (2)

so that the horizontal and vertical momentum equa-
tions can be combined into a single equation for the
streamfunction. Throughout this study we shall work
with nondimensional variables and parameters. The
various quantities are made nondimensional on the
basis of typical length scales L and H in the hori-
zontal and vertical directions respectively, U a typical
velocity scale, and ϕ the dimensional amplitude of the
waves at the source level. The scale L is related to
the width of the mountain, whileH corresponds to the
dimensional vertical wavelength of the waves.

The function Ψ(x, z, t) is the total streamfunction;
it is decomposed into a contribution from the steady
basic flow and a time-dependent perturbation in the
form of a gravity wave packet:

Ψ(x, z, t) = ψ̄(z) + εψ(x, z, t). (3)

The basic flow is a shear flow depending on z and in-
dependent of x; it has velocity (ū(z), 0), where ū(z) =
−ψ̄z, and density ρ̄(z). It is assumed that ψ ∼ O(1),
so the parameter ε gives a measure of the magni-
tude of the waves relative to that of the basic flow and,
hence, defines the height of the mountain. The total
density is also decomposed into a steady basic part ρ̄
and a time-dependent perturbation ερ(x, z, t).

The governing equations for the evolution of the
perturbation are

ζt + ūζx − ū
′′

ψx + g(ρ̄)−1ρx + ε(ψxζz − ψzζx)

−Re−1∇2ζ +Re−1ε−1ū
′′′

= 0, (4)

where
ζ = ∇2ψ (5)

is the perturbation vorticity, and

ρt + ūρx + ρ̄
′

ψx + ε(ψxρz − ψzρx)

−Re−1Pr−1∇2ρ−Re−1Pr−1ε−1ρ̄
′′

= 0. (6)

As before, the subscripts x and z denote partial differ-
entiation, while the primes denote differentiation with
respect to z. The Laplacian operator is nondimen-
sional and takes the form

∇2 = δ
∂2

∂x2
+

∂2

∂z2
,

where δ = H2/L2 is the square of the aspect ratio
and gives a measure of the magnitude of the vertical
scales to the horizontal. The limit δ → 0 is the “long-
wave limit”, or more precisely it corresponds to a wave
packet of long horizontal extent. The limit of small δ is
also a condition for the flow to be hydrostatic (see, for
example, Baines, 1995). The constant g is the accel-
eration due to gravity andRe and Pr are the Reynolds
number and Prandtl number respectively. The viscous
and heat conduction terms are included in the nonlin-
ear numerical simulations for the stabilizing effect that
they have on the solutions; however, it is assumed
that Re � 1, which is an appropriate assumption for
geophysical flows. The Prandtl number Pr is set to
0.72, the value of the Prandtl number for air. The last
term in each of equations (4) and (6) must be included
because the mean density and velocity profiles used
in our numerical simulations do not satisfy the equa-
tions with the viscous and heat conduction terms in-
cluded; however, the inclusion of these terms is found
to have a negligible effect on the qualitative behaviour
of the numerical solutions.

3. LINEAR ANALYTIC SOLUTIONS

In this section, analytic solutions of the linearized
equations are discussed. The goal of this project is to
extend these solutions to take into account the non-
linear terms, but in this paper only linear solutions are
presented. The linear analytic solutions help us to in-
terpret and understand the numerical solutions which
are described in Section 4. The linearized equations
are obtained by setting ε to zero in equations (4)–(6)
to zero and further omitting the viscous and heat con-
duction terms. The resulting equations can then be



combined to give a single equation for the stream-
function of the wave packet:

[

∂

∂t
+ū

∂

∂x

]2

∇2ψ−ū′′

(z)

[

∂

∂t
+ū

∂

∂x

]

ψx+N2ψxx = 0,

(7)
where N is the Brunt-Väisälä frequency or buoyancy
frequency and is defined as:

N2 = −g
ρ̄

dρ̄

dz
. (8)

Equation (7) shall be used as a simple model for
the time evolution of small-amplitude gravity waves
forced by flow over an isolated mountain. The do-
main of our solution is taken to be the semi-infinite
region −∞ < x < ∞, 0 < z < ∞. The mountain
is represented by a Gaussian function which is used
as a lower boundary condition for the amplitude of the
perturbation streamfunction, i.e.,

ψ(x, 0, t) = e−µ2x2

. (9)

The parameter µ is assumed to be small (relative to
unity).

The configuration studied here is a special case of
the more general configuration involving a mountain
range with multiple peaks, a simple representation of
which is given by the lower boundary condition

ψ(x, 0, t) = Re{e−µ2x2

eikx}. (10)

The parameter µ is assumed to be sufficiently small
that the horizontal extent of the mountain range is
much greater than the distance between individual
peaks and there are several peaks within the moun-
tain range. The general problem described by equa-
tion (7) with the boundary condition (10) can be
solved using the method of multiple scaling. In this
method we define two horizontal scales: the “fast”
scale defined by the variable x and a “slow” scale de-
fined by the variable X = µx. The boundary con-
dition can then be written as e−X2

eikx and we seek
solutions of the form ψ(x,X, z, t) = φ(X, z, t)eikx.
When this expression is substituted into equation (7),
an equation for φ is obtained where each x derivative
in (7) is replaced by the linear operator ik + µ ∂

∂X
.

In our problem where k = 0, there is only a slow
scale and no fast scale. The boundary condition is
e−X2

and we seek solutions of the form ψ(X, z, t) =
φ(X, z, t), so each x derivative in (7) is replaced by
µ ∂

∂X
.

3.1 Steady solution
The simplest configuration to study analytically is that
in which the solution is independent of time, i.e., the

wave packet takes the form φ(X, z), and ū is a linear
function of z. In that case (7) becomes

ū2

(

δµ2 ∂2

∂X2
+

∂2

∂z2

)

φXX +N2φXX = 0. (11)

We can find a solution in even powers of the parame-
ter µ:

φ ∼ φ(0)(X, y) + δµ2φ(1)(X, y) + δ2µ4φ(1)(X, y) + . . .
(12)

In the long wave limit (δ = 0), the solution is given
just by the first term in the series. If δ is O(1), the
leading-order term in the series solution is a reason-
able approximation for the solution, since µ is small.
This term satisfies

ū2φ
(0)
zzXX +N2φ

(0)
XX = 0. (13)

In a situation where there is no vertical shear, i.e.,
where ū is constant, we can solve for φXX and then
integrate twice with respect to X to obtain a solution
of the form

φ(0) ∼ A(X)e−
N

ū
z +B(X)e

N

ū
z +α(z)X+β(z). (14)

The functions A(X), B(X), α(z) and β(z) are easily
found from the boundary conditions. We require that
φ → 0 as X → ±∞ and, thus, α(z) and β(z) must
both be zero. The boundary condition at z = 0 is (9)
and the upper boundary condition is that φ be finite
as z → ∞, which means the function B(X) must be
zero. Thus, the solution is

φ(0) ∼ e−X2

e−
N

ū
z. (15)

So with increasing altitude the wave packet ampli-
tude decays and, to leading order in the parameter
µ, the basic shape of the packet is unchanged from
its shape at the source level. Having found φ(0), the
subsequent terms in the series (12) can be obtained
successively. These terms describe the modifications
to the shape of the packet as it propagates upwards.

In a situation where there is wind shear, i.e., where
ū depends on altitude z, the behaviour of the solution
depends on whether there are any levels where the
wind changes direction from easterly to westerly or
vice versa, i.e., levels where ū = 0. Such levels are
critical levels, since the wave packet phase speed is
zero, and they correspond to values of z for which the
equation (13) is singular.

To understand what happens at a critical level,
let us consider the simplest horizontal wind profile
for which one can occur: the linear profile ū(z) =
a(z − zc), where zc is the altitude at which the criti-
cal level occurs and a = ū′(z) is a constant. In that
case, the solution of equation (13) can be shown to
be

φ(0) ∼ A(X)(z − zc)
1

2
+i

√

N2

ū′2
− 1

4

+B(X)(z − zc)
1

2
−i

√

N2

ū′2
− 1

4 , (16)



after applying the condition that φ → 0 as X → ±∞.
The upper boundary condition in this case is a radi-
ation condition which specifies that there be no in-
coming wave energy from infinity and that the solu-
tion be finite as z → ∞. By using group velocity ar-
guments Booker and Bretherton (1967) showed that
of the two solutions in (16) the one with the plus sign
corresponds to an upward-propagating wave and the
one with the negative sign to a downward-propagating
wave. The radiation condition thus tells us that we
must choose the one with the plus sign and, applying
the condition at the source level, the solution is found
to be

φ(0) ∼ e−X2 (z − zc)
1

2
+i

√

N2

ū′2
− 1

4

(−zc)
1

2
+i

√

N2

ū′2
− 1

4 .

(17)

The ratio N2/ū′2 is the Richardson number of the
background flow (denoted as Ri), which is constant in
this configuration, and gives a measure of the relative
importance of the stratification to the shear. For at-
mospheric flows the Richardson number is large, in
fact much larger than 1/4, and so the square root

γ =

√

N2

ū′2 − 1
4

is real. As is well-known from Booker

and Bretherton’s study, the z-dependent part of the
solution (17) can be written as

(z−zc)
1

2
+iγ =

{

(z − zc)
1

2 eiγ log (z−zc), z > zc

(z − zc)
1

2 eiγ log |z−zc|eγπ, z < zc

(18)
which shows that it is reduced across the critical level
by a factor of e−γπ. Since γ is large, this means that
the wave packet amplitude is essentially reduced to
zero above the critical level. The expressions in (18)
also show that the vertical wavelength of the wave
packet becomes increasing short as the packet ap-
proaches the critical level from below.

In the more general case where ū is not a linear
function of z, the solution of equation (13) can be ob-
tained as a series in powers of (z − zc), where zc is
the altitude at which the critical level occurs. The first
term in the series is the solution given in (17), so near
the critical level where (z − zc) � 1, the solution can
be approximated by (17). The qualitative behaviour of
the solution near the critical level is the same as that
for the case represented by (17); the vertical wave-
length decreases as the packet approaches the criti-
cal level from below, there is a phase change of −π
across the critical level, and the amplitude of the wave
packet decreases by the same exponential factor.

The decrease in the wave packet amplitude at the
critical level means that there is a corresponding de-
crease in the vertical flux of the horizontal wave mo-
mentum, which would be independent of height in the
absence of a critical level (Eliassen and Palm, 1961).
This means that there is a transfer of momentum to
the mean flow from the wave packet, i.e., the packet

is absorbed by the mean flow. Of course, to study this
momentum transfer we need to use a nonlinear model
(such as that described in Section 4.2).

3.2 Time-dependent solution
A more realistic representation of the solution is ob-
tained by allowing the solution to vary with time. Our
on-going investigation deals with the solution of the
linear time-dependent problem defined by equation
(7) with the boundary condition (9). Preliminary re-
sults show that in addition to the fast time variable
t there is a slow time variable T which controls the
long-time evolution of the wave packet. The appropri-
ate definition of the slow time variable to found to be
T = µt, where µ is the parameter that determines the
horizontal extent of the wave packet (the width of the
mountain). The linear time-dependent solutions de-
rived in this manner can be used as the starting point
of a nonlinear analysis, which is the eventual goal of
this project.

4. NUMERICAL SIMULATIONS

4.1 The numerical model

In the numerical simulations we solve the governing
time-dependent nonlinear equations (4)–(6) The nu-
merical methods used for the simulations are based
on those of Campbell and Maslowe (2003). The z
derivatives are approximated using finite differences.
In the x direction we take a Fourier transform of the
equations, solve the transformed equations numeri-
cally and then invert the transform. In the nonlin-
ear simulations a pseudo-spectral approximation is
needed for transforming the nonlinear terms.

The numerical solutions are carried out on the rect-
angular domain −50 < x < 50, 0 < z < 10. A lower
boundary condition of the form (9) is applied at z = 0
to represent the effect of an isolated mountain. The
lower boundary condition is kept fixed and the evo-
lution of the wave packet is calculated starting from
a zero initial condition. The Fourier transform of the
lower boundary condition (9) is

ψ̂(κ, z = 0, t) = F{ψ(x, z = 0, t)} =

√
π

µ
e−κ2/4µ2

.

(19)
This is a Gaussian function, centered at the
wavenumber (Fourier coefficient) κ = 0 and its width
in Fourier space is determined by the parameter µ; for
small µ it is high and narrow, for large µ it is low and
wide. With this boundary condition, the Fourier spec-
trum of the solution is centered at the zero wavenum-
ber. In the nonlinear simulations there are interactions
between the various wavenumber components of the
wavepacket and these give rise to a wave-induced
mean flow as we shall see in Section 4.3.
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Figure 1: Linear simulation of a gravity wave packet
forced by isolated topography: Perturbation streamfunction
ψ(x, z, t) at nondimensional time t = 100. The contour lev-
els range from negative values of ψ (shown in blue) through
zero (green) to positive values (red).

4.2 Linear simulations
Before proceeding to the nonlinear simulations, we
first carry out a numerical solution of equations (4)–(6)
with the nonlinear terms set to zero. The viscous and
heat conduction terms are also set to zero in these
linear computations.

In the results shown here the nondimensional pa-
rameter µ is set to a value of 0.2, so that the hor-
izontal extent of the mountain is within the interval
−10 < x < 10. The background flow is set up so that
the zero-wind line is at z = 5 nondimensional units.
The mountain forces a wave packet that propagates
up towards the critical level with an increasingly short
vertical wavelength and is completely absorbed there,
as predicted by the analytic solution. Figure 1 shows
the streamlines (contours of the perturbation stream-
function ψ) at time t = 100 nondimensional units. By
this time the solution has evolved in an almost steady
state; the wave amplitude at a fixed point in space
consists of small-amplitude oscillations in time about
a fixed value.

4.3 Nonlinear simulations
In this section we describe the results of the numer-
ical solution of the nonlinear equations (4)–(6). Fig-
ure 2(a) shows the perturbation streamfunction ψ at
t = 200. There is still no transmission of wave activity
above the critical level; the wave packet is completely
absorbed by the mean flow. Momentum is deposited
in the mean flow by the packet and the mean flow is
gradually modified as shown in Figure 3.

Continuing the simulation shown in Figure 2(a) to

x

z

(a)

x

z

(b)

Figure 2: Nonlinear simulation of a gravity wave packet
forced by isolated topography: Perturbation streamfunction
ψ(x, z, t) at nondimensional time (a) t = 200 and (b) t =
400. The contour levels range from negative values of ψ
(shown in blue) through zero (green) to positive values (red).
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Figure 3: Nonlinear simulation of a gravity wave packet
forced by isolated topography: Wave-induced horizontal
mean velocity as a function of altitude at nondimensional
time t = 200.

a later time t = 400, we see that the streamlines are
modified further in the region below the critical level,
indicating the possibility of wave reflections (Figure 2
b). Contours of the density ρ̄(z)+ερ(x, z, t) at t = 200
in the vicinity of the critical levels are shown in Figure
4. At this time the density contours have started to
overturn, indicating the onset of static instabilities.

5. CONCLUDING REMARKS

In this study, we used analytic and numerical methods
to examine the evolution of an internal gravity wave
packet forced by an isolated mountain. The Boussi-
nesq approximation was made and that allowed us to
simplify our governing equations into a single equa-
tion for the streamfunction of the wave packet. An an-
alytic solution was derived the configuration in which
the wave amplitude does not depend on time. In
that case the governing equation for the amplitude of
the packet is singular at the zero-wind level or critical
level. As the packet propagates up to the critical level,
its vertical wavelength decreases and at the critical
level its amplitude is reduced to zero. The next steps
in our analysis would involve including the effects of
time-dependence and nonlinearity.

All our numerical solutions were time-dependent.
In the linear configuration a quasi-steady was reached
and the results were in agreement with the analysis in
the sense that there was almost complete absorption
of the wave packet at the critical level. In the nonlinear
simulations, although there was still no transmission
of the packet through the critical level, static instabili-
ties began to develop at late time and the streamlines
were modified below the critical level, suggestive of

x

z

Figure 4: Nonlinear simulation of a gravity wave packet
forced by isolated topography: Total density ρ̄(z)+ερ(x, z, t)
at nondimensional time t = 200. Contour levels decrease
with altitude (from dark blue through light blue to white).

wave reflections.
The phenomenon of critical-level reflection in non-

linear gravity wave propagation problems is well-
known and has been observed in earlier studies. In
the last of a series of three articles, in which they ex-
tended the linear analysis of Booker & Bretherton into
the nonlinear regime, Brown and Stewartson (1982)
found evidence of gravity wave reflections at a non-
linear critical level; however, their analysis was lim-
ited to relatively early times. Campbell and Maslowe
(2003) also observed wave reflections in their numeri-
cal simulations. The configuration they studied is sim-
ilar to that described here, but their study focused on
the case where the wave source spectrum is centered
at some nonzero horizontal wavenumber, as in equa-
tion (10). This corresponds to a mountain range with
multiple peaks. The wave packet then comprises a
spectrum of waves (or Fourier coefficients) centered
at a nonzero wavenumber κ = k and the derivation of
an analytic solution is considerably more complicated
than in the configuration examined here.

With the present configuration the analytic solution
procedure is simplified by the fact that the spectrum
is centered at the zero wavenumber κ = 0 and, thus,
we anticipate being able to derive an approximate an-
alytic solution more readily. Once found the solution
could be used to obtain insight into the results of the
nonlinear numerical simulations.
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