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1. Introduction 
 
 The main objective of the Terrain-induced 
Rotor Experiment (T-REX) is to understand the 
nature of coupling of mountain-induced rotor 
circulations to the structure and evolution of 
overlying mountain waves and to the underlying 
boundary layer (Grubi i  et al. 2004). T-REX also 
seeks to gain a better understanding of mountain 
wave dynamics including the characteristics of 
wave generation, propagation, and breakdown.  
Field activities took place in March and April 2006 
in the Owens Valley region both upwind and 
directly east of the southern Sierra Nevada 
Mountains, which is the tallest, steepest, nearly 
two-dimensional topographic barrier in the 
contiguous U.S.  Of the many ground-based and 
airborne instrumentation systems employed in the 
field, the structure of mountain waves are best 
revealed with in situ and dropsonde data from two 
aircraft – the High-performance Instrumented 
Airborne Platform for Environmental Research 
(HIAPER) and the Wyoming King Air – and the 
boundary layer wind profilers on the Integrated 
Sounding System (Cohn et al. 2006). 
 
 Several groups ran high-resolution 
nonhydrostatic models over similar domains in 
support of either real-time decision-making or the 
research objectives of T-REX.  Of particular 
interest is the ability of the Weather Research and 
Forecasting (WRF) model to correctly predict 
mountain waves.  WRF is running operationally at 
5–6 km resolution in the NCEP High-Resolution 
Window domain and at 24-km resolution in the 
NCEP Short-Range Ensemble Forecast system.  
The WRF-NAM recently replaced the 12-km Eta 
model, and the WRF-Rapid Refresh will replace 
the Rapid Update Cycle (RUC) model in 2008. 
 
 
 

 The Advanced Research WRF (ARW) and the 
WRF-Nonhydrostatic Mesoscale Model (NMM) 
models were run during the T-REX field exercise 
twice daily as a joint effort between the NOAA 
Earth Systems Research Laboratory (ESRL) 
Global Systems Division and the Developmental 
Testbed Center (DTC). The ARW and NMM were 
both configured on a 450 km X 450 km domain 
with 2-km grid spacing and 51 vertical levels.  The 
model cores both made use of the “Eta physics” 
(consisting of the Ferrier microphysics, Mellor-
Yamada-Janjic boundary layer scheme, the NOAH 
Land Surface Model, Janjic Eta surface layer 
physics, and the GFDL radiation package). Given 
the small grid spacing, cumulus parameterization 
was not invoked. The ARW model configuration 
includes a 1.5-order TKE closure scheme.  Both 
models were initialized with analyses from the 
operational 13-km RUC model and used the same 
boundary conditions.  No data assimilation was 
performed.  The use of an identical set of 
boundary and initial conditions and interoperable 
physics in both cores allowed us to isolate the 
sensitivity of the predictability and structure of 
simulated mountain waves and wave breaking to 
the model numerics alone.  
 
 The main purpose in running the two WRF 
models was to investigate a variety of numerical 
issues relevant to the prediction of mountain 
waves (the 2-km model resolution was not quite 
fine enough to simulate rotors).  One of the issues 
we are studying is how “internal divergence 
damping” used in the NMM model affects the 
simulated wave structures and energy spectra, 
namely whether better or worse agreement with 
the T-REX observations occurs with this technique 
activated. The divergence damping is calculated at 
each NMM model level to reduce the vertical 
propagation of gravity wave energy, whereas the 
ARW uses a three-dimensional damping 
mechanism.  The expected difference is that Corresponding author address: Steven E. Koch, 
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internal gravity waves should be progressively 
minimized with increasing height using the NMM 
approach, whereas only the external wave mode 
would be treated in the ARW approach.  The NMM 
method eliminates the need for any other 
mechanism to absorb downwardly propagating 
gravity waves.  By contrast, a diffusive damping 
sponge layer was used in the upper 5 km (33%) of 
the ARW model. A second issue we are 
investigating concerns how changes made to the 
depth of the diffusive sponge layer and the 
damping coefficient impacts the ARW solutions.  A 
third matter being studied concerns the effect of 
different terrain smoothing approaches upon the 
numerical representation of the steep topographic 
slopes, and whether spurious accelerations may 
have arisen as the result of truncation errors in the 
computation of the horizontal pressure gradient in 
terrain-following coordinates. 
 
 This paper begins with a brief summary of 
present understanding of mountain wave 
generation and wave breaking in section 2, 
including a discussion of the primary controlling 
parameters for mountain waves from theory. The 
relationships of these computed parameters to the 
simulated wave structures are examined in our 
numerical simulations.  We then describe some 
initial findings from our real-time model simulations 
in section 3.  We present results in section 4 that 
were obtained in experiments run recently since 
the end of the field phase that relate to some of 
the numerical issues discussed above. 
 
 
2. Background on mountain waves 
 
 Favorable conditions for the occurrence of 
mountain waves are believed to consist of a stable 
layer or inversion and relatively strong cross-
mountain winds at the mountaintop level.  Using 
linear theory, Scorer (1949) showed that vertical 
variations in stability and wind shear could 
produce trapped lee waves if the Scorer parameter 
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decreases sufficiently rapidly from the lower stable 
layer to the less stable upper layer, i.e., if 
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where H is the depth of the lower layer, N is the 
Brunt-Väisälä frequency, U is the incident wind 
speed, Uzz is the curvature in the wind profile, and 
k = 2 x is the horizontal wavenumber.  

Trapped waves may help to promote the 
development of rotors (Grubi i  et al. 2004).   
 
 The width of the mountain in a two-
dimensional framework also plays a role in 
determining whether the waves are evanescent 
(trapped modes lacking any vertical tilt) or freely 
propagating (phase lines tilting upstream).  As 
shown by Queney (1948), for a very narrow 
mountain with half-width a << U/N, the mountain 
primarily forces evanescent waves – characteristic 
of nonhydrostatic trapped lee waves, whereas 
vertically propagating modes dominate for wide 
mountains with a >> U/N (for U ~ 10 m s-1 and N ~ 
10-2 s-1, we have U/N = 1 km).  Mountains with 
half-widths in the range of 1 – 10 km can produce 
both kinds of wave modes.  As the parameter 
Na/U increases from a value of 1 to 10, one 
gradually progresses from the nonhydrostatic to 
the hydrostatic regime, and for this reason, we will 
refer to Na/U as the hydrostatic parameter. 
 
 Another parameter important for determining 
the nature of mountain waves is the Froude 
number (also referred to as the nonlinearity 
parameter), defined as 
 
  F = Nh U , 

 
where h is the mountain height.  As the Froude 
number increases from 0 to 1, the waves become 
increasingly nonlinear, causing the wave fronts to 
become steeper and perhaps to break. In a study 
of the partial reflection of vertically propagating 
mountain waves in a mean state with constant 
wind speed and a two-layer stability structure, 
Durran (1986) found that the most rapid transition 
from linear to nonlinear (characterized by large 
drag) occurred as the Froude number in the lower 
layer increased from 0.2 to 0.6.  The Froude 
number has other influences on the nature of the 
gravity wave response.  For 0 < Nh/U < 0.5, lee 
waves occur downstream of the obstacle similar to 
the prediction from linear theory, whereas for 0.5 < 
Nh/U < 2.0, upstream-propagating waves are 
observed in the steady-state, hydrostatic case 
(Baines and Hoinka 1985) 
 
 If wave energy can leak upwards and 
propagate to higher altitudes, this can result in 



 

wave breaking aloft, which occurs as vertically 
propagating gravity waves amplify, in part due to 
the decrease of density with altitude and nonlinear 
processes.  One consequence of mountain wave 
breaking is that the waves lose energy due to 
turbulent breakdown.  Klemp and Lilly (1975) 
showed from linear gravity wave theory that the 
waves can become intense if an inversion is 
present near the mountain-top level upstream of 
the obstacle and the layers beneath the inversion 
and above it both have a thickness equaling  the 
vertical wavelength of a hydrostatic gravity wave in 
the respective layer ( z = 2 U/N).  Since the 
vertical wavelength is shorter in the more stable 
layer near the surface, the predicted optimal 
structure is one in which there is a relatively thin 
inversion near the mountain top level and a 
thicker, less stable layer aloft.  This structure 
supports waves that are not fully reflective, i.e., 
they do not lead to a resonant mode, as in the 
case of the lee waves studied by Scorer. 
 
 Peltier and Clark (1979) showed that flow 
overturning and consequent dramatic acceleration 
of the low-level flow in the lee of a mountain 
results when the Froude number F is slightly 
supercritical, i.e., when F> 1.  A trapped resonant 
mode develops in the low wind speed “cavity” that 
occurs between the ground and the region of 
overturning (Laprise and Peltier 1989).  If the wind 
speed goes to zero and the Richardson number 
(Ri) is smaller than 0.25 at such a “critical level” 
due to the development of local shear instability, 
then “wave over-reflection” may even occur.  
However, Clark and Peltier (1984) demonstrated 
that only if the height of the critical layer above the 
topography is  of the vertical wavelength for a 
hydrostatic gravity wave or some integral number 
of such wavelengths in excess of this, would the 
upwardly propagating and reflected waves 
interfere constructively in such a way as to result 
in a large amplitude resonant response.   
 
 The results of Smith (1985), in which a 
“dividing streamline” separates the laminar flow 
beneath the wave breaking region from the 
turbulent flow above, showed that high amplitude 
gravity waves occur if the critical layer is located 
anywhere between  and  vertical wavelengths.  
This prediction was supported by Durran and 
Klemp (1987), who found that, as the depth of the 
lower stable layer increased for a fixed mountain 
height, the flow evolved from one of “supercritical” 
(decelerating flow), to a propagating hydraulic 
jump, a stationary hydraulic jump, and finally, to 

subcritical flow everywhere (accelerating restricted 
flow).  These results are qualitatively similar to the 
behavior of a free surface in hydraulic theory. 
 
 Numerical models have become sophisticated 
tools for study of the structure and dynamics of 
mountain waves and rotors.  Doyle et al. (2000) 
conduced experiments of the infamous Boulder 
windstorm of 11 January 1972 using two-
dimensional nonhydrostatic models with a 
horizontal grid spacing of 1 km for a “Witch of 
Agnesi” mountain with a half-width a = 10 km.  The 
models differed in many respects, including the 
finite differencing techniques, though all the 
models employed terrain-following vertical 
coordinates.  Some of the models used the 
anelastic equations while others were 
compressible. Some used fourth-order smoothing 
while others used second-order. Some had explicit 
prediction equations for turbulent kinetic energy 
(TKE) while others represented turbulence with 
simple first-order closure techniques. Despite 
these many differences, all of the models tested 
(WRF was not one of them) produced upper-level 
wave breaking in similar regions just downstream 
and above the hydraulic jump in the lower 
troposphere immediately downwind of the 
mountain.  The damping effect of the wave-
induced critical layer on the vertical extent of the 
wave breaking was apparent in plots of the 
Richardson number fields.  On the other hand, the 
structure of the wave breaking was greatly 
affected by the numerical dissipation, the 
numerical representation of horizontal advection, 
the lateral boundary conditions, and especially by 
the vertical resolution.  In particular, models that 
used less horizontal eddy diffusivity tended to 
exhibit smaller-scale wave breaking substructures 
relative to the other models.  These sensitivities 
help to motivate the current study. 
 
3. Results of real-time simulations 
 
 We show a number of vertical cross-sections 
obtained from the model simulations for various 
cases.  Most of these displays are oriented along 
the cross-mountain flight track option B for the 
HIAPER (2450 – 650), since the prevailing flow 
pattern aloft was southwesterly in most cases.  
The span of cross section B is 275 km (Fig. 1).  
For the purpose of calculating the governing flow 
parameters from theory for this cross section, we 
used the following values for the dominant 
mountain range: mountain half-width a = 65 km 
and mountain height h = 3.6 km. 



 

  

 
Fig. 1.  Terrain height (m) for the Sierra Nevada 
region in T-REX used in the WRF 2-km model 
simulations. Model domain shown is 450 km on 
each side.  Also shown are the three cross 
sections corresponding to the HIAPER tracks. 
 
 According to Doyle et al. (2006), the largest 
amplitude mountain waves observed by HIAPER 
occurred during the flights of IOP 4 (14 March), 
IOP 6 (25 March), and IOP 13 (16 April), when the 
maximum vertical velocity observed by the aircraft 
was 6, 12, and 10 m s-1, respectively.  We show 
results here for IOP13 and IOP10 (8-9 April). 

 
 Analysis of the real-time WRF model forecasts 
indicates that the NMM divergence-damping effect 
reduced the amplitude of vertically propagating 
waves considerably more than did the ARW 
upper-layer sponge scheme.  NMM forecast 
gravity waves in the lower stratosphere were much 
smoother, weaker (or even non-existent), and 
displayed shorter horizontal and vertical 
wavelengths than in the ARW model. These 
characteristic differences are illustrated in the case 
of IOP10 in Fig. 2.  Note that the horizontal 
wavelength in the NMM case is only approximately 
one-half of the 18-km wavelength characterizing 
the hydrostatic mountain wave in the ARW 
solution. Such a 9-km wavelength is barely 
resolvable by a 2-km grid model and suggests 
problems needing to be addressed. 

 
Fig. 2a.  Horizontal wind speed (m s-1, see color 
bar at bottom) and isentropes (4K interval 
contours) in section B from a 9-h ARW forecast 
valid at 0900 UTC 8 April 2006.  Note vertically 
propagating hydrostatic mountain wave in the 
immediate lee of the Sierra Nevada and 
downstream lee wave train.  Ordinate is 
pressure (hPa). 
 

 
Fig. 2b.  As in Fig. 2a, except from the 9-h NMM 
forecast.  Note the much weaker mountain wave 
in the immediate lee of the Sierra Nevada, and 
its shorter horizontal and vertical wavelengths 
relative to that in the ARW forecast. 
 
 An even more startling difference in the 
prediction of mountain waves between the two 
WRF models is shown in Fig. 3 for another model 
run made 24h later during IOP10.  In this case, the 
NMM failed altogether to produce either the 
hydrostatic mountain wave or the train of 
nonhydrostatic lee waves downstream of the 
Sierra Nevada mountain chain. 



 

 

 
Fig. 3a.  As in Fig. 2a, except for an 18-h ARW 
forecast valid for 0600 UTC 10 April 2006.  Note 
the vertically propagating mountain wave in the 
immediate lee of the Sierra Nevada, and a train 
of lee waves downstream of the mountains. 
 

 
Fig. 3b.  As in Fig. 3a, except for an 18-h NMM 
forecast valid for 0600 UTC 10 April 2006.  Note 
the total absence of either a hydrostatic 
mountain wave or a train of nonhydrostatic lee 
waves in this model forecast. 
 
 
4. Sensitivity experiments 
 
 Since the field phase of T-REX ended only a 
couple of months ago, only a small number of 
sensitivity experiments have been performed so 
far to examine a number of numerical issues.  
The primary experiments completed to date 
concern the vertical CFL (timestep) condition, 
and tests of the sponge damping layer depth 
and damping coefficient. 

 

 
Fig. 4a.  Omega vertical velocity (color-fill, Pa/s) 
and 2K isentropes from a 24-h ARW model 
forecast valid at 00 UTC 10 April 2006 using a 
7.5-sec timestep. 
 

 
Fig. 4b.  As in Fig. 4a, except from a 24-h ARW 
model forecast valid at 00 UTC 10 April 2006, 
except using a 5.0-sec timestep. 
 

a. Vertical CFL instability and other issues 
 
 Normally, the presence of an undesirable 
numerical instability, known as the “violation of the 
vertical CFL criterion” can be easily identified and 
this problem corrected by shortening of the model 
timestep.  This instability developed in the NMM 
real-time model simulation of the IOP13 case, but 
was easily corrected by reducing the timestep from 
4 sec to 3 sec.  In other cases, although the 
timestep choice did not produce any apparent 
instability, it did nonetheless affect the model 
solution in subtle and unanticipated ways.  An 
example of this behavior is demonstrated in Fig. 4. 



 

In this case, the timestep for the ARW model was 
varied from its default value used in real-time (7.5 
sec, see Fig. 4a) to smaller values of 6.0 sec and 
5.0 sec (Fig. 4b).  No significant difference in the 
simulations should have occurred, yet careful 
inspection reveals subtle differences in the vertical 
velocity field, even in the planetary boundary layer.  
This suggests that the solution had not converged. 
 

b. Diffusive sponge layer depth and damping 
coefficient tests 

 
 The upper boundary condition is a non-trivial 
problem for prediction of mountain wave structure, 
as it should act to greatly reduce the spurious 
reflection of upward-propagating gravity waves to 
avoid fictitious sources of vertical fluxes of energy 
and momentum.  Special care must be taken since 
the upper boundary condition will fundamentally 
affect the entire wave solution.  The design of the 
upper dissipative “sponge” layer in the ARW model 
follows Klemp and Lilly (1978), which uses a 
smoothly-varying (sin2 z) function to represent the 
increase of eddy viscosity with height.  
Insufficiently weak maximum viscosity causes 
large reflection, however reflection can also arise 
when the maximum viscosity is chosen too large, 
as then its vertical gradient can create problems.  
As the viscous sponge layer depth decreases, the 
sensitivity to varying viscosity increases.  We 
performed several tests of varying viscous layer 
depth (from 5 km to 10 km) and damping 
coefficient (from 0.0 to 0.04 and 0.06).  Our results 
show a significant sensitivity to the choice of these 
variables (Fig. 5).  While this is not unexpected, it 
was surprising to see how much influence the 
viscous sponge properties had upon vertical 
motions in the lower troposphere.  We are 
continuing to conduct experiments to arrive at a 
more optimal solution. 
 
 
5. Conclusions  
 
 Despite these many numerical issues 
regarding appropriate timesteps to use in both 
WRF models, the viscous sponge layer properties 
in the ARW model, and the NMM divergence-
damping impacts, there were cases of upper-level 
wave breaking in both the ARW and NMM 
forecasts that were verifiable in the HIAPER 
aircraft measurements.  The perturbations were 
very large on a number of occasions, the largest 
being for the IOP13 case (16 April 2006), where 
horizontal wind speed perturbations of 50 m s-1 

and 15 K potential temperature perturbations over 
a distance of just 30 km were forecast.  The 
vertical motions associated with the mountain 
waves forecast by the ARW model in this case 
were as large as 7.5 m s-1 at 11.3 km and 3.8 m s-1 
at 13.1 km, compared to the values observed by 
HIAPER of 10 and 6 m s-1, respectively (see Fig. 
12 in Doyle et al. 2006). 
 

 
Fig. 5a.  As in Fig. 4a, except from a 24-h ARW 
model forecast valid at 00 UTC 17 April 2006, 
using no upper-level viscous damping layer. 
Model timestep is 7.5 sec. 
 

 
Fig. 5b.  As in Fig. 5a, except from a 24-h ARW 
model forecast valid at 00 UTC 17 April 2006, 
using a damping coefficient of 0.06 for a 5-km 
deep viscous damping layer.  Note reduction of 
wave reflection in uppermost layer, but also 
other effects unexpectedly occur at low levels. 
 
 At the conference, we will discuss the results 
of additional sensitivity experiments being run for 
selected IOP events after the field phase to 



 

investigate such issues as the method used for 
reducing spurious gravity wave reflection off of 
the top boundary, the NMM divergence damping 
method, and the handling of the terrain insofar as 
its smoothness and effects on the surface 
pressure gradient force are concerned.  We also 
hope to be able to show actual aircraft 
measurements needed to verify the model 
simulations. 
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