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Abstract 
 

Downslope windstorms are of major concern to those living near the Boulder, Colorado area, 
often striking with little warning, bringing clear air wind gusts of 35-50 m/s or higher, and 
producing widespread damage across the city. Models used for forecasting these dangerous 
events are often not accurate. Hence, there is a need to apply different linear and non-linear 
statistical modeling techniques to a 10-year mountain-windstorm dataset. 

A set of eighteen predictors, based on a decade of data, are used in this study.  Linear 
regression, neural networks and support vector models are employed to relate the predictors to 
windstorm events. For the linear model, stepwise linear regression is applied. It is difficult to 
determine which predictor is the most important, although significance testing indicates 700 hPa 
flow is highly significant. The nonlinear techniques employed, support vector regression and a 
feedforward neural network did not filter out any predictors. The study indicates that there is a 
potential for improvement in peak wind forecasting using different methods and predictors. 

The models are evaluated using RMSE and median residuals.  The support vector regression 
model performed best. Stepwise linear regression yielded results that were accurate to within 8 
m/s, whereas a neural network reduced errors of 6 to 7 m/s and support vector regression had 
errors of 4 to 6 m/s. 85% of these forecasts based on nonlinear techniques predicted maximum 
wind gusts with an RMSE of less than 6 m/s, and all forecasts predicted wind gusts with an 
RMSE of below 12 m/s. In comparison, a linear model forecast wind gusts better than 6 m/s 60% 
of the time, and better than 12 m/s 95% of the time. These results suggest that meaningful 
improvements to mountain wind forecasts are achieved by application of newer non-linear 
techniques, such as neural networks and support vector regression.   

 

 

 

 

 

 

  



2 

1.  Introduction 
 

Mountain windstorms occur often in cities that 
are located on the lee side of the Rocky 
Mountains, particularly Boulder, Colorado (Figure 
1).  According to recent data from the National 
Climate Data Center, winds of 45 ms-1 or more are 
commonly observed near Boulder, Colorado, 
about ten times each year.  Such storms cause 
extensive tree and property damage.  Despite this, 
no modeling technique is currently used 
operationally that predicts mountain wind events 
accurately.  A previous study by Leptuch (2001) 
attempted to model wind speeds using a set of 18 
predictors using linear models.  That work 
established a baseline for which improvement can 
be assessed. 

 

 
 

Figure 1.  Topographical map of Colorado.  Boulder is 
marked in the lee of the Rocky Mountains.   

 
 

 According to Brinkman (1973), two general 
classes of windstorms are observed in the Rocky 
Mountains.  The first is the classic Chinook, which 
is referred to in this study as a "prefrontal" 
windstorm.  Prefrontal windstorms occur when a 
surface low-pressure system moves into northern 
Colorado or just east of that location, leading to a 
positive pressure perturbation on the windward 
side of the Rockies and a negative pressure 
perturbation on the lee side of the Rockies.  Such 
storms are common and are observed with strong 
warm advection over the Pacific Northwest, 
intense northwesterly flow over the Continental 
Divide, and lee cyclogenesis above the high 
plains.  The second class of windstorm is known 
as the "cold bora" type (denoted as "postfrontal" in 
this study).  This type of windstorm occurs often 
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when a surface anticyclone intensifies west of the 
Continental Divide and/or moves into northern 
Colorado.  Such positioning of the anticyclone 
leads to a rapid pressure rise west of the 
Continental Divide and a slower pressure rise east 
of the Divide.   
 A number of additional theories have been 
proposed to account for the formation and 
intensification of mountain windstorm events 
(Klemp and Lilly 1975, Peltier and Clark (1979), 
etc.). However, this paper considers the 
aforementioned situations that are based on lee-
wave theory.  By limiting the cases to these two, 
implementation of predictors is more 
straightforward.  It is important to remember that 
owing to the randomness of wind gusts and the 
variability of wind gust speeds, no theory can 
account for all types of mountain windstorms. 
 Klemp and Lilly (1975) show that, when the 
wavelength of a gravity wave is long enough to 
permit the wave to propagate vertically, the wave 
may propagate upward into a region where the 
Scorer parameter (see section 2.2.13) decreases 
rapidly with height.  Part of the energy from the 
wave is reflected downward, possibly resulting in 
wave resonance.  In their study, multiple-layer 
models were analyzed, and peak wind gusts that 
were generated were approximately double what 
are actually observed in the atmosphere.  Non-
linearities in the true atmosphere, including 
diffusion, were attributed to this apparent 
discrepancy in the results.  Klemp and Lilly's study 
was deemed useful for locating areas where lee 
waves should have a strong response, and these 
areas are expected to be useful for the prediction 
of mountain windstorms.  Klemp and Lilly's theory 
is not valid for longer waves, such as those 
considered by Scorer and Kleiforth (1959). 

In a pair of papers by Clark and Peltier (1977) 
and Peltier and Clark (1979), the development of 
finite-amplitude mountain waves was analyzed by 
observing flow over an isolated obstacle.  These 
studies determined that the linear theory proposed 
by Klemp and Lilly (1975) produced wind gusts 
that were too strong in comparison with those 
observed during mountain windstorms.  Hence, 
they developed a non-linear dynamic model that 
found that a critical layer induced by the mountain 
wave is responsible for producing mountain 
windstorms. 

According to Smith (1985) and Durran and 
Klemp (1987), there is a mean-state critical layer 
when the phase speed of a mountain wave equals 
the wind speed at some level in the atmosphere 
with vertical wind shear.  In the presence of a 
critical layer, any portion of the mountain wave 
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that is above the critical layer will be advected in 
the opposite direction, leading to a steepening of 
the wave and possible wave breaking.  The level 
at which the wind shifts is determined to be the 
critical layer (i.e., a wind shift from a negative u 
component to a positive u component -the level at 
which the flow goes to zero is defined as the 
critical layer).  This situation, however, is rarely 
observed near the lee side of the Rocky 
Mountains; thus, other parameters were sought 
that would predict windstorms successfully 
upstream of the mountain ranges.  Clearly, 
numerous ideas exist about the formation of 
significant mountain waves. 
 In section 2, the methods used in forming the 
statistical models are presented, while in section 3 
the results from applying the statistical modeling to 
the datasets are shown.  The key results are 
summarized in section 4.  
 
2.  Methods 
 
2.1 Data 

This study made use of National Weather 
Service (NWS) 0000 and 1200 UTC soundings 
from five sites: North Platte, Nebraska; Denver, 
Colorado; Grand Junction, Colorado; Lander, 
Wyoming; and Salt Lake City, Utah.  The 
soundings were obtained between 1 January 
1969, and 31 December 31 1978.  However, 
owing to the climatology of windstorms, no 
soundings between 15 May and 15 September 
were used.   

The verification wind-gust data were obtained 
from the (then) National Bureau of Standards 
(NBS), 325 Broadway, in Boulder.  Stimulated by 
the extremely destructive storms of 7 January 
1969 (Bergen and Murphy 1978) and 10-11 
January 1972 (Doyle 2000), there was an 
intensive ongoing effort to study Boulder 
windstorms during this period.  However, most of 
these data remained in analogue, strip-chart form 
and have never been processed.  The NBS data 
collection was unique in that the Guard Force at 
the NBS site was charged with the responsibility to 
record by hand every 3 hours (at 0000, 0300, 
0600, �, 2100 UTC) the peak gust during the 
previous 3-h period, if this peak gust equaled or 
exceeded 10 ms-1.  The NBS site is located in a 
residential area of Boulder, 1.5-3km to the east of 
the base of the Front-Range Foothills.  The local 
terrain slopes gently upward to the SW �W before 
the foothills are abruptly encountered.  The 3-cup 
anemometer was located atop the northeast end 
of the main building on the site, roughly 15m 
above ground level.  This anemometer is of 

unknown type, but one of us (JMB) recalls that it 
was of a generic rugged design characterized by a 
distance constant rather larger than that typical of 
current designs.   

The handwritten records were obtained from 
Wayne Sangster, formerly of the NWS Central 
Region, who used these data to develop his 
�Sangster Method�, discussed in Section 2.2.18, 
and were subsequently put in electronic form.  
Since we are interested in relating sounding 
properties upstream (west) of the Continental 
Divide to windstorms occurring just downstream, 
we chose to correlate the sounding data to 
Boulder gust occurrence near or after the launch 
time of the balloons (typically about 1115 and 
2315 UTC).  Given the nature of the 3-h periods 
for which we had peak gusts, we chose to relate 
the soundings to peak gusts occurring in seven 
different time periods: 0-12, 0-6, 6-12, 0-3, 3-6, 6-
9, and 9-12 h after nominal sounding times.  
These represent the time period over which the 
peak gust was observed.  For example, in a 1200 
UTC sounding, the 0-6 hour peak gust would be 
the gust observed between 1200 and 1800 UTC.  
With these different combinations, prediction could 
take place over different time periods spanning the 
12h interval between soundings.   Roughly 5% of 
daily wind data were missing and thus were not 
available for our study.    
 
2.2 Parameters 

The following is a list of the 18 predictors, 
each of which is followed by a description and 
brief definition.  In the following discussions, low 
levels are classified as the layer between 3100 
and 5600 m (roughly 700 mb to 500 mb), mid-
high levels are the layer between 5600 and 7400 
m (roughly 500 mb to 400 mb), and high levels 
are the layer between 5600 and 9400 m (roughly 
500 mb to 300 mb).  Parameters based out of 
the Grand Junction National Weather Service 
Office (GJT), the Lander National Weather 
Service Office (LND), and a mean between the 
two, led to three sets of parameters for each of 
the two types of windstorms.   

 
2.2.1  Temperature advection 

The first variable calculated was the 700 hPa 
geostrophic temperature advection.  Assuming 
thermal wind balance, it was estimated using the 
700 hPa geostrophic wind and the 500 � 700 hPa 
mean temperature gradient.  Positive values 
represented warm advection, and negative values 
represented cold advection.  The units of this 
parameter are K day-1. 
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2.2.2  700 hPa geostrophic wind direction 
This quantity is calculated by fitting the 700 

hPa wind height fields from three different sites, 
GJT, LND, and LBF, to a plane.  The resulting u 
and v wind components from this plane are used 
to determine the geostrophic wind using 
trigonometry.  It is assumed that the data are 
approximately geostrophic.  Data from DEN are 
neglected, since mesoscale terrain effects there 
sometimes contaminate the data.  The 700 hPa 
wind direction is determined to be significant since 
it is approximately the average height of the 
mountains and is therefore used to determine the 
likelihood of the formation of lee waves.  The units 
of this parameter are degrees. 
 
 
2.2.3  700 hPa geostrophic wind speed [m s-1] 

The calculation of 700 hPa geostrophic wind 
speed is the same manner as for the 700 hPa 
geostrophic direction.  Observational data 
indicates that there is a minimum value of wind 
speed at the ridge-top level below which 
windstorms do not occur, roughly 9 m/s. 
 
2.2.4  U DEN [m s-1] 
     This wind component is an approximation to 
the flow component normal to the terrain west of 
the Continental Divide west of Boulder.  It is 
derived from the Denver rawinsonde.  The 
direction of U  backs linearly with height from 
290° below 3100 m to 270° above 4200 m.  
Inspection of a topographic map (Fig. 10) reveals 
that the Front Range west of Boulder (crest 
approximately 3700 - 4200m) is oriented N-S.  
However, when considering the state as a whole, 
the 3350m (~11,000 ft) elevation contour west of  
the Continental Divide tends to be oriented NNE-
SSW (Fig. 10).  To account for this, we take the 
perpendicular used to compute U  as backing 
with height in the elevation range indicated.  
 
2.2.5 Local U [m s-1] 
     This parameter is computed identically to 
U DEN, but for either GJT or LND, or an average 
of the two.   
 
2.2.6  700 hPa � 500 hPa geostrophic shear 
direction 

This parameter is defined as the difference 
between the direction of the 700 hPa geostrophic 
wind and the 500 hPa geostrophic wind.  If it is 
positive, it corresponds to show warm air 
advection, and if it is negative, it is deemed to 

show cold air advection.  This is significant in that 
the parameter is used to diagnose the synoptic 
type of storm system as either prefrontal or 
postfrontal.  A postfrontal case is defined as one 
characterized by a sounding containing more than 
15° of backing in this layer, while all other cases 
were deemed as prefrontal.  The units of this 
quantity are in degrees. 
 
2.2.7  Ratio of the 700 hPa wind speed by the 700 
hPa geostrophic wind speed at Denver 

This quantity diagnoses the degree of 
ageostrophy at DEN.  The total wind is selected, 
as opposed as normal-to-barrier wind, so that the 
results give the departure from geostrophy in 
cases where the winds are both normal to the 
barrier and parallel to the barrier.  This parameter 
is dimensionless. 
 
2.2.8  Difference between 700 hPa wind direction 
and the 700 hPa geostrophic wind direction            

This parameter is used to determine whether 
the DEN sounding site was contaminated by lee 
vortices.  A filtering program is applied to 
determine if the DEN sounding site was not 
suitable to apply as one of the three soundings 
used to determine the 700 mb geostrophic wind.  
Negative values imply cross-height flow, likely due 
to boundary-layer friction.  The units of this 
parameter are degrees. 
 
2.2.9  Mountain top relative humidity  

During the cool season, a downslope wind 
event induced by convective outflow can occur.  
Such an even may occur when evaporative 
cooling from precipitation falling from a foehn 
cloud intensifies the downslope wind, leading to 
strong surface wind gusts.  This event is very 
difficult to forecast using objective methods, and 
relative humidity was chosen to account for these 
specific types of events.  This parameter is 
dimensionless. 
 
2.2.10  Cross mountain height difference 

This quantity is the difference between the 850 
hPa height (m) at GJT and that at DEN.  It is used 
to determine the intensity of synoptic scale forcing 
that is present in the area.  A large value implies 
strong synoptic flow and high winds, whereas a 
small value implies weak synoptic flow and lighter 
winds.   
 
2.2.11 Static-stability ratio 

This parameter is the ratio of the mean-layer 
Brunt Väisälä parameter, N2, of low levels to that 
at high levels.  This parameter is applied to 
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diagnose the change with height of static stability 
in the atmosphere.  Decreasing static-stability with 
height is thought to be favorable for the 
development of windstorm formation.  This 
parameter has no dimensions. 
 
2.2.12 Froude height 

This parameter is the height at which the 
Froude number equals unity.  This quantity 
represents the height at which upslope winds have 
enough momentum to go across the top of the 
mountain, as opposed to being directed around 
the mountaintop.  Froude height is calculated by: 

∫=
H

dz
U
NFr                                                    (1)    (1)  

 
where N is the Brunt-Väisälä frequency and U is 
the magnitude of the normal-to-mountain 
component of the wind.  This quantity is integrated 
from ridge-top down to the surface; thus, H is the 
mountain height.  This quantity is given in 
kilometers. 
 
2.2.13  Integrated Scorer parameter 

This parameter is designed to determine the 
phase shift lφ  of vertically propagating waves 
between the Froude height and the tropopause, 
and is given by the following: 

∫= ldzl π
φ

2
1

                                                     (2)   (2) 

 
where l  is the Scorer parameter (Scorer 1949) 
and represents the vertical wave number, which is 
defined as 2π  /Lz, with Lz  being the vertical 
wavelength in meters. A phase shift of nπ  
represents the optimum phasing for a reflecting 
wave.  The original equation for the Scorer 
parameter, (equation 3), has the following two 
terms:  
 

2

2

2

2
2 )1(

z
U

UU
Nl

∂
∂−=                              (3)  (3)                

where U is the magnitude of the normal-to-
mountain component of the wind and N is the 
Brunt-Väisälä frequency.  In calculating the Scorer 
parameter, it can be shown that including the 
second term leads to significant noise in a small 
data set; thus, this term was neglected.  If the 
value of l is determined to be negative over a thin 
layer, it is set it to zero.  Negative values of the 
Scorer parameter are an artifact of small 
superadiabatic layers that are created by the 

splines used to fill missing sounding data.  In 
contrast to Klemp and Lilly (1975), the Froude 
height is selected as a lower limit instead of 700 
hPa.  This parameter is dimensionless.   
 
 2.2.14  Characteristic impedance ratio 

This parameter, (C.I.R), is used to determine 
the joint vertical variation of cross-mountain flow 
and static stability.  This parameter was first 
defined in Blumen (1985), and is given as: 

∑

∑

=

=





= n

i
highii

n

i
lowii

UN

UN
RIC

1

1

)(

)(

25
36...                            (4)

 
where iU is the magnitude of the normal-to-
mountain component of the wind, 36/25 is a 
reflection coefficient determined numerically by 
Blumen (1985), and Ni is the Brunt-Väisälä 
frequency.  If the quantity Ni × iU  tends not to 
increase with height, there is a greater likelihood 
of windstorms.  The quantity i represents the 
height of the calculation of the C.I.R.  This quantity 
is dimensionless. 
 
2.2.15 Lowest Tropopause 

This parameter shows the height in kilometers 
of the lowest of the tropopause levels at DEN, 
GJT, and LND.  Lower values of this parameter 
are generally associated with synoptic scale low-
pressure systems with strong vertical forcing, 
leading to strong winds, etc. 
 
2.2.16 Local Tropopause 

This parameter is the tropopause height in 
kilometers at the observing site.  This parameter is 
used for comparisons with tropopause heights at 
LND and GJT.  In the case in which one of the two 
locations had the lower tropopause, this value is 
used for both the lowest tropopause and the local 
tropopause. 
  
2.2.17 Postfrontal Parameter 

This parameter, (PF), calculated using the 
following equation, is designed to measure 
forward wind shear in postfrontal situations.   

)( int
int

highmid

opmounta
opmounta U
U

UPf
−

=                       (5)

where U is the magnitude of the normal-to-
mountain component of the wind. 
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A commonly observed feature of windstorms is 
strong cross-mountain flow at the mountaintop 
associated with cyclogenesis in the Plains and 
weaker cross-mountain flow aloft with a near-zero 
thermal wind component.  The dimensions of this 
parameter are meters per second. 
 
2.2.18 Sangster Parameter 

This parameter is closely related to the NW 
component of the geostrophic wind NW of 
Boulder, CO.  According to Sangster (1977), this 
parameter is defined as: 
 

LNDGJTSLC ZZZ 850850850 2−+                             (6)  (6) 
 
where Z850SLC, Z850GJT, and Z850LND are the 850 hPa 
heights at SLC, GJT, and LND. 
This parameter is currently used operationally in 
Boulder as a forecast tool for windstorm events.  
Units are in meters. 
 
2.3  Models 
 
2.3.1  Linear Regression Model 
 

The linear regression model is the first of three 
types of models used to forecast peak wind gusts.  
Multiple linear regression was used due to the 
multivariate nature of the data set.  The prediction 
equation used in multiple linear regression, 
according to Wilks (1995) is: 

∑
=

+=
k

i
kko xBBY

1

�                   (7) 

 
where xk is each individual parameter and B is the 
coefficient for each predictor and is analogous with 
the slope.  Each coefficient is calculated using the 
following: 

∑ ∑

∑ ∑∑

= =

= ==

−

−
= n

j

n

j
ijij

n

j

n

j
ij

n

j
ijijij

i

xxn

yxyxn
B

1 1

22

1 11

)()(
  (8) 

 
where Bi is each coefficient, n is the number of 
observations, xij is each predictor from each row, 
and yij is the wind observation from each row.   
 

An example of the solution obtained by 
multiple linear regression is given in Figure 2.  In 
Figure 2, a prefrontal case from GJT at 0000 UTC 
was selected for analysis.  This figure shows a plot 
of the Sangster parameter versus the peak wind 

gusts over 0-12 hours.  A hypothetical regression 
line is plotted as well, to see how the linear 
regression would fit a line to the data. 

 
Figure 2.  Scatter plot of Sangster parameter vs. Peak 
wind gusts for prefrontal GJT 0000 TC with hypothetical 
regression line. 
 
2.3.2 Support Vector Regression Model 
The support vector regression (SVR) model was 
selected since it has been shown to offer 
promising results in other studies (Richman et al. 
2005) as well as its ability to model nonlinear input 
data.  In SVR, the functional dependence of the 
dependent variable y is based on a set of 
independent variables x.  Like other regression 
problems, the relationship between the 
independent and dependent variables is given by 
a deterministic function )(xf  plus the addition of 
some additive noise.  The goal is to find a 
functional form for )(xf  that can correctly predict 
new cases that the SVR has not been presented 
with before. This can be achieved by training the 
SVR model on a sample set, i.e., training set, a 
process that involves the sequential optimization 
of an error function. 

Consider a data set (xi,yi), where x is the input 
and y is the output.  It is desired to find a function 

)(xf  that has ε deviation from yi for all training 
data.  For a basic example, consider a linear case, 
with the following as our function: 

ibxwxf +>=< ,)(    (9) 
 
The idea is to minimize the normalization of w, 
which is the weight, and this is found as: 

||)||
2
1min( 2w such that 

 
ε≤−><− bxwy ii ,  and   (10) 
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ε≤+><+− bxwy ii ,    
      
For this case, it was assumed that there was a 
feasible result, so Lagrangian duality theory 
(Haykin 1999) was applied to obtain an equation 
for w, indicated by equation 11, 

∑
=

−=
n

i
iii xaaw

1

* )(    (11)             

                    
and substituting this result into equation 9: 
 

∑ +><−= iiii bxxaaxf ,)()( *   (12) 

 
After obtaining equation 12, one can substitute 

a kernel function in for <x,xi>, say k(x,xi).  In this 
example, one can substitute this kernel function 
directly.  For the case of nonlinear separability, 
each data point is mapped to a higher dimension 
using a feature map φ.  This makes the dot 
product become <φ(x),φ(xi)>, and a kernel 
function can be used to replace this dot product as 
well.  There are three common kernel functions 
that are used with support vector regression, 
including: 
1.  polynomial     pT yxyxk )1(),( +=            (13) 
 

2. radial basis function   k(x,y) = 
2

2
||||

2
1 yx

e
−

−
σ    (14) 

 
3.  tangent hyperbolic 

)tanh(),( 1ββ += yxyxk T
o          (15) 

 
For this study, the polynomial kernel function 

was chosen, as after several runs this kernel 
function was found to offer the most accurate 
predictions on the training data.  After 
implementing the kernel function, a loss function is 
implemented.  It is used to define the differences 
between f(x) and y.   
 
C(f(x)-y)=(f(x)-y)2    (16) 
 
 
By using this loss function, the problem solution is 
given by the following equation: 
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By setting βi = (αi � αi

*), equation 17 becomes: 
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0
1
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=

n

i
iβ      (18) 

 
This leads to the regression function being given 
by: 
 

∑ += bxxkxf ii ),()( β    (19) 

 
 
where iβ  is the mean of β and b  is:  
 

∑
=

−=
n

j
jiii xxkYb

1
),(β  

 
Figure 3 shows a sample of support vector 

machines from Richman et al. (2005) in which a 
set of binary data are optimally separated into two 
classes in feature space, represented by 1 and -1.  
These numbers are applied to a support vector 
machine in an attempt to determine the optimal 
solution for the modeling function, represented by 
the dashed line in Figure 3.  This figure is merely 
an illustration, as support vector regression does 
not classify data, but instead yields a modeled 
result that does not penalize small errors in the 
margin.  In our case the forecast is a wind speed 
in meters per second.   
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Figure 3.  A geometric representation of Support Vector 
Regression.  The dashed line is the optimal solution. 
 
 
2.3.3 Neural Networks Model 
 

The final form of model used in this study was 
the feed-forward neural network (Haykin 1999).  
The neural network uses a nonlinear technique to 
attempt to fit a curve to a dataset, as opposed to 
fitting a line.  The neural network is named as it is 
thought to be similar to operation of the human 
brain.  In the brain, data are entered into the body 
through nerve endings; the data run through a 
network of nerves and end up at the brain.  The 
brain then processes the nerve input and yields an 
output to the senses.  Similarly, the neural network 
first enters an input dataset through the input 
layer, then the data travels through the neurons to 
the hidden layer where the data are modeled, and 
the data finally exit through the output layer of the 
network as a modeled result.   

The neural network operates by using an 
activation function to introduce nonlinearity into the 
system, therefore attempting to model peak winds 
in a nonlinear way.  The primary goal of the neural 
network is to discover an optimal set of weighted 
neurons that model each predictor in the best way.  
The following shows the goal for the neural 
network in function form. 

))(()( nvny jjj ϕ=    (20) 
 
where yi is the output of the neural network (in this 
case a predicted peak wind gust), φi is the 
activation function, and vi is the input into the 
hidden layer, defined as: 

∑
=

=
m

i
jjii nxnwv

0

)()(    (21) 

 

where m is the number of input data (in this case 
18), xj is the input data set, and w �s the initial 
weights selected at random.  The activation 
function selected for this study is the hyperbolic 
tangent activation function, which is defined as: 

j

j

x

x

jj
e
enx −

−

+
−=

1
1))((ϕ    

     (22) 
 

The goal of the feed-forward neural network is 
to discover a value of w that will minimize the 
error: 
 

))((min 2
ijijij dye −=    (23) 

 
where eij is the root mean square error in the 
model and dij is the observed peak wind gust.  
According to Hayken (1999), in order to discover 
the optimal solution for the weights, an 
optimization technique must be used.  In our work, 
this was the steepest descent method.  This 
method converges on the optimal weights the 
fastest by calculating the gradient at each weight, 
thus determining optimal decrease or increase 
values.  The following shows how this method 
works. 
 

)()()( nynnw ijji ηδ=∆    (24) 
 
where )(nw ji∆ is the change in the weights, η is a 
constant called the learning rate that determines 
how quickly the system converges, δj is the 
gradient, and y is the output from the network.  To 
put this result in terms of the activation function, 
take the derivative and multiply it by the error.  
This leads to the following: 
 

)())(()()( nynvnenw ijijji ϕη ′=∆   (25) 
 
where ))(( nv jϕ ′ is the derivative of the activation 
function.  After adjusting the weights with the 
determined result from the neural network, one 
epoch has been completed.  Normally, several 
hundred epochs are required to determine an 
optimal solution. 
 
2.4 Methodologies 

One complication with using neural networks 
and support vector regression is that many of the 
variables used in each calculation are not set to 
specific values.  Multiple experiments of each set 
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are required to determine the optimal solutions for 
each of the two models.  For example, in this 
study, five hidden nodes were selected for the 
neural network, with a learning rate of 0.3, a 
hyperbolic tangent activation function, and 1000 
epochs.  This was found to be the most efficient 
for both computing resources and for modeling.  In 
support vector regression, a cost function value C 
of 1 was selected, with a quadratic loss function 
and a polynomial kernel function.  These values 
were determined after performing many 
experiments with varying values for the cost 
function and the quadratic loss function.  One 
other concern is the variable nature of the neural 
network, as weights are determined randomly and 
several model runs are needed to determine a 
mean of modeled wind speeds, as well as to 
converge on an optimal solution.   Figure 4 
represents the neural network selected for 
modeling peak wind speeds.  

 

 
 

 
Figure 4:  Architecture of neural network selected for this 

study.  X values represent the 18 predictors; circles represent 
layers, which represent a run through the model; lines 
represent weighted neurons in which the data are optimally 
weighted. 

 
Since raw sounding data were used to 

calculate the 18 predictors, it was common to find 
gaps in the sounding data.  A Cardinal cubic spline 
was implemented to account for the holes in the 
soundings.  A grid resolution of a 100 m resolution 
was used for the spline, with a spline tension 
coefficient of 0.5.  All data were separated into 
prefrontal and postfrontal cases, as described 
previously.  There was a further prescreening of 
data, as all data that had a 700 hPa wind direction 
that was not between 240° and 350° and all data 

that had a 700 hPa wind speed less than 8 ms-1 
were removed (Brown 1986).   

After obtaining data for each of the cases 
surviving the screening process, these were 
analyzed line by line in search for non-real values.  
These values were indicated as NA or Inf in the 
data matrix, and 99999 in the raw wind data.  A 
large number of NA�s were discovered in the 
integrated Scorer parameter and the static stability 
ratio because small superadiabatic layers were 
created by the cardinal splines.  This screening 
device was designed to account for the fact that a 
superadiabatic layer leads to a Brunt-Väisälä 
frequency that is less than zero, and thus to a non-
real integrated Scorer parameter and a non-real 
static stability ratio.  This device would then find 
five levels that showed an increase in potential 
temperature with height, and set them to NA in the 
Scorer parameter and the static stability ratio.  
This device was considered unnecessary and 
removed, restoring many of the data points that 
were previously deleted.  The remaining days with 
NA values were subsequently removed, leaving 
roughly 1000 cases for each prefrontal dataset 
and 200 test cases for each postfrontal dataset.   

Another problem with the dataset was the 
abundance of 0 meter per second wind gusts.  
After investigating this problem, it was found that 
during data collection period all wind speeds that 
were below 10 ms-1 were recorded as 0 ms-1.  
Since these data were all recorded 30 years ago, 
there was no access to the original wind data from 
these days.  The lack of lower wind speed data 
proved troublesome when attempting to implement 
linear models on our data, since it led to a large 
bias in the results as well as poor residual values.  
A threshold was selected to remove all wind data 
that had peak gusts that were below 18 meters per 
second, classifying this threshold as a strong wind 
event.  In doing this, we removed roughly 80% of 
our data, which made it more difficult to model.  
Table 1 shows how many data points were used in 
each model.   
 
3.  Results   

The three models were tested on these data: a 
purely linear stepwise model using the �efroysom� 
(Insightful Corporation 2002) technique, a support 
vector regression model, and a neural network.  
Training and testing data were obtained by 
dividing the data sets into two halves.  Each half 
was used in training, and the other half was used 
to test on the trained model.  For example, the 
GJT prefrontal dataset for 0000 UTC had 230 data 
points.  We divided the matrix of predictors for this 
case into two matrices of 115 points in each, 
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trained a model on the first half and tested on the second, then reversed the process.  The training  
Dataset name 0-12 h 0-6 h 6-12 h 0-3 h 3-6 h 6-9 h 9-12 h
prefrontal_gjt_0z 230 162 157 96 126 107 115
prefrontal_gjt_12z 222 137 170 97 104 128 116
postfrontal_gjt_0z 46 41 21 34 24 18 9
postfrontal_gjt_12z 58 39 41 21 30 38 26
prefrontal_lnd_0z 227 157 155 89 121 110 113
prefrontal_lnd_12z 223 137 171 92 59 126 117
postfrontal_lnd_0z 47 41 22 33 24 18 10
postfrontal_lnd_12z 59 39 42 22 30 39 28
prefrontal_lg_0z 232 162 159 95 59 36 115
prefrontal_lg_12z 230 144 176 101 109 131 122
postfrontal_lg_0z 48 42 23 34 25 19 10
postfrontal_lg_12z 57 38 40 21 29 37 25  
 
Table 1:  Number of data points used in each model 
 
Training and testing data were selected at random 
using a random number program in Matlab 
(Mathworks, Inc. 2002).  These data were used in 
each of the three statistical models listed 
previously.   Table 2 lists the models used, as well 
as a number that corresponds to each number, 
which will be referenced in the results. 
 
Model name Number

GJT prefrontal 0000 UTC, first half 1
GJT prefrontal 1200 UTC, first half 2
GJT postfrontal 0000 UTC, first half 3
GJT postfrontal 1200 UTC, first half 4
LND prefrontal 0000 UTC, first half 5
LND prefrontal 1200 UTC, first half 6
LND postfrontal 0000 UTC, first half 7
LND postfrontal 1200 UTC, first half 8
GJT and LND prefrontal 0000 UTC, first half 9
GJT and LND prefrontal 1200 UTC, first half 10
GJT and LND postfrontal 0000 UTC, first half 11
GJT and LND postfrontal 1200 UTC, first half 12
GJT prefrontal 0000 UTC, second half 13
GJT prefrontal 1200 UTC, second half 14
GJT postfrontal 0000 UTC, second half 15
GJT postfrontal 1200 UTC, second half 16
LND prefrontal 0000 UTC, second half 17
LND prefrontal 1200 UTC, second half 18
LND postfrontal 0000 UTC, second half 19
LND postfrontal 1200 UTC, second half 20
GJT and LND prefrontal 0000 UTC, second half 21
GJT and LND prefrontal 1200 UTC, second half 22
GJT and LND postfrontal 0000 UTC, second half 23
GJT and LND postfrontal 1200 UTC, second half 24  
 
 
Table 2. List of models and model numbers used in the 
figures. 
 
 
3.1 Linear Model   

S-Plus (Insightful Corporation 2002) was used 
to create the linear models that were designed to 
forecast peak wind gusts.  After implementing a 
stepwise regression, often only a few predictors 
remained.  This method showed that there were 
only two linear predictors that were present in 
many model runs, the 700 hPa wind speed and 

the 700 hPa cross-mountain wind in Denver.  A 
complete table of the number of times each 
predictor appears in a model is included in Table 3 
below.  Other significant predictors included the 
Sangster parameter, the Froude height, 700 hPa 
temperature advection and the 500 hPa -700 hPa 
geostrophic wind shear.   

Another method to determine the bias of each 
model is the median residual.  Each residual was 
calculated as observed � predicted; thus, a 
negative value represents an over-forecast and a 
positive value represents an under-forecast.  The 
median residual measures the bias of the model 
by showing the data point at the second quartile, 
which is a good measure of the central tendency 
of the data set.  The median residual was selected 
for this study because the residual vectors 
contained numerous outliers.  The mean would 
include these outliers, thus not providing a good 
interpretation of the central tendency of the 
models.  Once a median was determined at each 
of the possible seven time increments, all 
increments were averaged to get a time-averaged 
statistic used for analysis of model performance.  
Figure 5 shows the time-averaged median 
residuals for these linear models.  Each model 
number corresponds to Table 2, which shows the 
model name versus the model number.   Although 
the models seemed to center around 0 ms, there 
was a slight bias towards the negative (in 18 out of 
the 24 models the bias was negative), implying 
that for linear regression the models tend to 
overforecast peak winds.   

 
 
Predictor Name Quantity
Temp advection 35
700 geos direction 17
700 geos magnitude 64
700 normal wind denver 56
700 normal wind local 29
500-700 geos shear 30
700 meas/700 geos ratio 20
700 meas - 700 geos 22
relative humidity 18
cross mountain height difference 25
static stability ratio 12
froude height 29
scorer parameter 15
characteristic impedence ratio 14
lowest tropopause level 22
local tropopause level 20
postfrontal parameter 29
sangster parameter 33  
 



11 

Table 3: Number of times each predictor appears in the linear 
regression model. 
 

 

 
 
Figure 5.  Time-Averaged boxplot of median residual in m/s vs. 
model number for the linear regression models.  Numbers 
along the horizontal axis represent a particular model that is 
listed in table 3.   
 

The parameter used to represent error was 
the root mean square error: 
          

 2)( YYRMSE −=
)

           (26) 
 
where Ŷ is the observed peak wind gust and Y is 
the modeled, or where Ŷ � Y is the residual winds 
in ms-1.  The models seemed fairly accurate, 
having a mean value of RMSE near 6.33 ms-1.  A 
plot of RMSE against the particular model number 
is given in Figure 6. 
 

 
 
Figure 6.   Same as Figure 5, but for RMSE instead of median 
residual. 
 

Some problems with the linear regression 
model are observed when considering the RMSE 
values for a particular model.  Some models had 
large outliers, as the LND value for a 6-12 hour 
prefrontal model run contained an RMSE value of 
21.15 ms-1.  In part, this is attributable to high 
correlation between the predictors, as is shown in 
Table 4 below.  Since values of correlation are 
desired to be below the absolute value of 0.5, the 
correlation between the 12th parameter and the 
28th parameter was excessive (-0.71).  These high 
correlations may have led to some degradation of 
results for the linear models, as these were 
improved upon using SVR. 
 
Correlation of Coefficients model 2 [12] model 2[28]

model 2[12]
model 2[28] -0.7083
model 2[20] 0.0831 -0.3344  
 
Table 4:  Sample correlation matrix.  The model number comes 
from table 4, and the numbers in brackets represent the 
parameter selected.  The parameters are numbered according 
to table 1. 
 
3.2 Support Vector Regression Model   

After applying linear models to the windstorm 
data, we implemented a Matlab (Mathworks, Inc. 
2002) program to attempt to use SVR (Trafalis et 
al. 2003) to model the wind data.  The code 
required training on half the data and testing on 
the other half.   
 Figure 7 indicates that these data, while 
showing no skewness, seem to center around 0 
ms-1, which implies that the model forecast with 
little bias.  A very slight tendency towards 
overforecasting was observed, as more models 
seemed to report a negative value of median 
residual.  However, this result is better than the 
result obtained from linear regression, as there are 
no large median residual values from using SVR. 
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Figure 7.   Same as Figure 5, but for support vector 
regression. 
  The mean value of RMSE for SVR from Figure 
8 was 5.22 ms-1, which is lower than the 6.33 ms-1 

that was obtained from linear regression.  
Moreover, there are no significant outliers, as the 
largest value of RMSE is 11.69 ms-1, and the 
minimum is also quite low at 3.42 ms-1.  Taken 
collectively, these results indicate that support 
vector regression was superior to multiple linear 
regression for modeling these data. 
 

 
 

Figure 8.   Same as Figure 6, but for support vector regression. 
 
3.3 Neural Networks 

A feedforward neural network (NN) (Haykin 
1999) was applied to the windstorm data using the 
�newff� command in Matlab (Mathworks, Inc. 
2002).  Figure 9 shows a time-averaged median 
residual obtained from the artificial neural network 
from the 10 model runs, and Figure 10 illustrates 
the time-averaged RMSE results from the 10 runs.   

 

 

 
Figure 9.  Same as Figure 5, but for neural networks. 
Figure 10 indicates that the NN model 

overforecast peak winds when using the second 
half of the data set as a training set and the first 
half of the data set as a testing set.   Ironically, it 
underforecast peak winds when using the first half 
of the dataset as a training set and the second half 
as a testing data set. The time-averaged RMSE 
values center near 7 ms-1, which is comparable to 
linear regression for this dataset.  Some extreme 
outliers were present in different NN model runs, 
including a 16.91 ms-1 RMSE value for the 
averaged dataset of LND and GJT at 0000 UTC 
for the 0-12 hour time step.  One result of note is 
that the values of RMSE tended to be higher for a 
prefrontal case than for the postfrontal case.   
 

 
 

Figure 10.  Same as Figure 6, but for neural networks. 
 
4.  Conclusions 

The purpose of this study was to create 
models to be used to forecast peak wind gusts 
in the Boulder, Colorado area.  These models 
were needed because we are currently unable 
to forecast downslope windstorm events well.  
The models created in this study will be given to 
the Boulder, Colorado National Weather Service 
office and be put into operation, in replacement 
of current forecasting techniques for downslope 
windstorms.  Short range forecasting was also a 
result of this study, now peak wind speeds can 
be forecast only 3 hours in advance.  Once a 
sounding is inserted into the model, peak wind 
speeds can be forecast with ease. 

In the linear model, stepwise linear 
regression was used; using this model, 
significant predictors could have been ignored.  
It is difficult to see which predictors are the most 
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important, although Table 3 seems to indicate 
that 700 mb flow alone is most significant.  Both 
support vector regression and the feedforward 
neural network did not filter out any predictors, 
but instead fit a non-linear function to all 
predictors, so that no important data were 
discarded.  However, this study did not 
conclusively discover any set of these nineteen 
predictors that did a significantly better job of 
forecasting peak winds than any of the other 
predictors.  Through this study, it was found that 
many different methods and predictors could be 
used to forecast peak winds successfully. 

Through comparison of both RMSE and 
median residuals, it was found that our support 
vector regression model performed the best.  
85% of our forecasts predicted maximum wind 
gusts with an RMSE of better than 6 ms-1, and 
all of our forecasts predicted wind gusts with an 
RMSE of better than 12 ms-1.  Our linear model 
forecasted wind gusts better than 6 ms-1 60% of 
the time, and better than 12 ms-1 95% of the 
time.  These results are a vast improvement to 
the techniques available to forecasters at this 
point.  The result of this study is the knowledge 
that nonlinear modeling techniques such as 
support vector regression and neural networks 
are far superior to stepwise linear regression. 
These results can be implemented into an 
operational support vector regression model 
used by the Boulder National Weather Service 
office, an essential step resulting from this study. 

  Additionally, these results can be applied to 
different windstorm prone regions in the lee of 
the Rocky Mountains, determining the optimal 
set of predictors for a variety of regions and 
investigation of additional candidate predictors 
of peak wind gusts is important, so that models 
can be improved further. 
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