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1. Introduction

Traditional tornado identification is primarily dependent
on reflectivity and/or shear signatures. The detection of
potential tornadic storms by identifying hook echoes was
documented by Stout and Huff (1953), and was realized
as a tornado precursory signature after the Illinois tornado
(Fujita 1958). The NSSL Tornado Detection Algorithm
(NSSL TDA) (Mitchell et al. 1998) searches for strong
and localized azimuthal shears. However, if a tornado is
located at far ranges or if the tornado is small compared to
the radar resolution volume, the shear signature becomes
difficult to identify (Brown and Lemon 1976). Recently,
a half-degree angular sampling was proposed to improve
the shear signatures (Brown et al. 2002). However, the
statistical error of the spectral moment estimates increases
due to that fewer samples are used. Because tornado de-
bris consists of an assemble of particles of various sizes
and irregular shapes, some of them have distinct polari-
metric signatures that are different from hydrometers, and
can be used to improve tornado detection (Ryzhkov et al.
2005).

The Doppler spectra from a tornadic region are differ-
ent from Gaussian-like spectra from by other regions of
the storm. Broad and flat tornado spectral signatures were
found in simulated data, and bimodal spectra were ob-
served by pulse Doppler radar (Zrni¢ and Doviak 1975).
These distinct spectral signatures can be used to improve
the detection capability.

In this work, a neuro-fuzzy method is developed based
on spectral analysis, neural network and fuzzy logic, in
which tornado signatures in both velocity and spectrum
domains are integrated to improve the tornado detection.
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This paper is organized as follows: in section 2, tornado
spectral analysis of simulation and real data are examined
and the parameters used in the neuro-fuzzy method are
described; in section 3, the neuro-fuzzy tornado detection
algorithm (NFTDA) is presented; its application to real
tornado cases is presented in section 4; A summary and
conclusions are given in section 5.

2. Tornado spectral signatures

A wide and bimodal tornado spectrum was simulated by
a combined Rankine vortex model with uniform and hol-
low reflectivity profiles (Zrni¢ and Doviak 1975), simi-
lar spectra were observed by a pulse-Doppler radar (Zrni¢
et al. 1985). The spectrum width, o, is an intuitive pa-
rameter to describe the broad spectrum feature. However,
spectrum width does not provide sufficient information
of the spectrum shape. Therefore other parameters are
developed to characterize the tornado spectral signatures
(TSS). First of all, the third order spectrum (termed bis-
pectrum) retains the phase information of the Fourier co-
efficients, in which most shape information of the signal
resides (Oppenheim and Lim 1981). To use the bispec-
trum effectively, the phase of radial integrated bispectrum
(PRIB), denoted by P value (Chandran and Elgar 1993)
is proposed to characterize TSS, in which the spectrum
in decibel is considered as a 1D image (Yu et al. 2006).
Secondly, the spectrum variance, o, is used to define the
flatness of a spectrum ('Yu et al. 2006). Another parameter,
the eigen-ratio, x g, defined as the ratio of the minimum to
the maximum eigen values, is also included (Yeary et al.
2006).

To study how these four TSS parameters vary with
range for different conditions, numerical simulations are
firstly conducted. A tornado modeled by a Rankine vortex
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Figure 1: The variation of TSS with normalized range P value (upper left), eigen-ratio (upper right), spectrum width
(lower left), spectrum variance(lower right) for tornado and non-tornado case.

within a mesocyclone is generated. The radius of the tor-
nado is 70 m, with the maximum tangential velocity of 50
m s~—! and the maximum radial velocity of 15 ms—!. Az-
imuth shear dv/dx = 0.08 s~ is included. Maximum am-
biguous velocity and angular sampling are 35 m s—! and
1 °, respectively. Because the spectrum shape depends
on the vortex location within the radar volume (Zrni¢ and
Doviak 1975), spectra from 5 different relative azimuth
angles, -0.5 °, -0.25°, 0 °, 0.25 °, 0.5 © and 5 different
ranges -125 m, -65 m, 0 m, 65 m, and 125 m are gener-
ated. In addition, both Gaussian and doughnut-shape re-
flectivity are simulated, and a uniform signal-to-noise ra-
tio (SNR) of 30 dB was applied to all the data. Note only
spectra from the region close to the tornado center have
distinct TSS. Spectra from regions further from the vortex
center are similar to those with typical Gaussian shapes.
In Figure 1, T4, N, represents spectra from the range cells
where the tornado is centered and 5 km east of the tornado
center, respectively. The subscripts d and G indicate the
doughnut-shape and Gaussian reflectivity, respectively. It
is apparent that distinct differences between tornado case
and non-tornado case can be observed from all four pa-
rameters. These parameters are slightly effected by the
reflectivity structure, and can be used to identify tornadic
evens at far ranges.

Furthermore, two tornado cases, the 8 May 2003 Moore
tornado, and the 10 May 2003 Edmond tornado, are used
in the histogram in Figure 2. In these histograms, the re-
gions within the damage path and with large velocity dif-

ference between adjacent azimuths (larger than 50 ms—1)
are defined as tornado cases, others are defined as non-
tornado cases. It is evident that for tornado case, the o,
X R, and P value are large but the o is small.

3. NFTDA

3a. Motivation

The fuzzy logic has inherit advantages for tornado detec-
tion. As exemplified in Figure 2. it is evident that there
is no clear distinction between the PDF of tornado and
non-tornado cases. Therefore, it is difficult to accurately
set a threshold for detection. On the other hand, the fuzzy
logic approach can avoid strict individual thresholds, and
instead different fuzzy membership functions are used.
Moreover, decision is made based on all the available pa-
rameters, which can mitigate the dependency on single
parameter. As a result, more reliable and robust detection
result can be obtained.

The fuzzy membership functions are initialized based
on the statistical analysis of the real data. A neural net-
work is also integrated into the fuzzy logic system. Due to
the self-learning ability of neural networks, the member-
ship functions will be adjusted through the training pro-
cess (Wang et al. 2005).
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Figure 2: Normalized histogram of spectrum width (upper left), P value (upper middle), spectrum variance (upper
right), eigen-ratio (lower right), velocity difference (lower middle), signal to noise ratio (lower right) for tornado and

non-tornado regions.

3b. Neuro-fuzzy logic in tornado detection

The fuzzy logic system consists of four subsystems:
fuzzification, rule inference, aggregation, and defuzzifica-
tion (Liu and Chandrasekar 2000). A schematic diagram
of the neuro-fuzzy system is shown in Figure 3.

In fuzzification, two membership functions, S-shape
and Z-shape, are used in this work to convert crisp in-
puts into fuzzy membership degrees. These two functions,
representing tornado and non-tornado cases for all the pa-
rameters, are shown in Figure 4. In the rule inference,
the correlation-product, which is commonly used in the
multi-input and multi-output fuzzy system, is used to es-
tablish the relationship between a fuzzy input and output.
The two final degrees will be the inputs of another node
termed aggregation. In this node, a maximum operation
will be performed to make the final decision, and a detec-
tion result will be given in the defuzzification part.

4. Performance evaluation

The performance of the NFTDA is evaluated using radar
data from two tornado events: 1.) 10 May 2003 Edmond
OK F3 tornado 2.) 8 May 2003 Moore OK F4 tornado.
Detection results and tornado damage paths from ground
survey for these two events are shown in Figure 5. Addi-
tionally NSSL TDA on KOUN and NWS TDA on KTLX
are denoted by triangles and downward triangles, respec-

tively, and are termed TDA-KOUN and TDA-KTLX. Re-
sults from the NFTDA on KOUN is denoted by solid cir-
cles. The damage path with green shade represents 8 May
case, and cyan shade represents 10 May case. The lo-
cation of KTLX is marked, and KOUN is located at the
origin.

4a. Thetornado event on 10 May 2003 Edmond OK

The tornado with maximum intensity of F3 occurred 7
miles south of Edmond, Oklahoma on 10 May 2003. This
tornado lasted approximate 37 minutes and moved 18
miles. The time series data were collected by KOUN
for approximately two hours. At the same time the
TWIN LAKES (KTLX) operational WSR-88D, which is
20 miles northeast of the KOUN, also observed the tor-
nado and recorded the level 1l data. KTLX locates closer
to tornado compared to KOUN, thus the NWS TDA de-
tection results are used as reference. A comparison of de-
tection results are shown in Tables 1, 2 and 3.

At 0331, 0343, 0349, and 0355 UTC, the tornado loca-
tions detected by the TDA-KOUN were within the dam-
age path. However, at 0337 a tornado was identified ap-
proximately 2 km north of the damage path. In addition,
two locations at approximately 6 km north and south of
the damage path were identified as tornado at 0401 UTC.
After 0401 UTC no tornado was detected, although the
tornado damage path suggested the tornado existed be-
yond that time.
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Figure 4: Membership functions used in the NFTDA for: spectrum width (upper left), P (upper middle), spectrum
variance (upper right),, eigen-ratio (lower right), velocity difference (lower middle).

Table 1: Detection results from

NFTDA

Time(UTC)

[ 0331 [ 08:37

03:43 | 03:49 | 03:55

04:01 | 04:07 | 04:13 | 04:19 |

Range(km)

35.625

37.625

39.625 | 40.625 | 42.625

44,125 | 48.125 | 52.625 | 55.375

Detection Results Yes

Yes

Yes

Yes Yes

No Yes Yes Yes

Match Results Yes

Yes

Yes

Yes Yes

N/A Yes Yes Yes
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Figure 5: Detection results from three tornado detection algorithms: TDA-KTLX, TDA-KOUN, NFTDA

Table 2: Detection results from TDA-KOUN

|  Time(UTC) || 03:31 [ 03:37 | 03:43 | 03:49 | 03:55 | 04:01 | 04:07 | 04:13 | 04:19 |
Range(km) 35.188 | 38.892 | 38.892 | 40.744 | 42.596 | 46.33/33.36 | N/A | N/A | N/A
Detection Results Yes Yes Yes Yes Yes Yes No No No
Match Results Yes Yes Yes Yes Yes No No No No
Table 3: Detection results from TDA-KTLX
| Time(UTC) ] 03:29 [03:39 [ 03:44 | 0349 | 0354 [ 0359 | 04:04 |
Range(km) 27.36 | 25.75 | 25.75 | 25.75/27.36 | 25.75/27.36 | 27.36/28.97 | 27.36/30.40
Detection Results Yes Yes Yes Yes Yes Yes Yes
Match Results Yes Yes Yes Yes/No Yes/No No/No Yes/No
| Time(UTC) || 04:09 | 04:14 | 04:19 \
Range(km) 28.97 | 30.58 | 32.16
Detection Results Yes Yes Yes
Match Results Yes Yes Yes




The detection results from the NFTDA and TDA-
KOUN are similar from 0331 UTC to 0355 UTC. The
distance between the tornado and KOUN varies approx-
imately from 35.625 km to 42.625 km during this period.
At later times (0407, 0413 and 0419 UTC) when the tor-
nado moved further away from the KOUN, the NFTDA
could still detect the tornado while the TDA-KOUN did
not identify the tornado. It is evident that the NFTDA de-
tection results agree with the damage path more favorably
than the results from the TDA-KOUN.

4b. The tornado event on 8 May 2003 Moore OK

On 8 May 2003, a maximum intensity of F4 tornado was
observed by KOUN, which lasted about 23 minutes and
moved approximately 14 miles. Both KOUN and KTLX
recorded the detection results of this tornado event, which
are showed in Figure 5. However only limited KOUN
time series data (at 2232 and 2238 UTC) are available.
Large azimuth shear were observed in some locations due
to second-trip echoes. The NFTDA can suppress the shear
information to reduce the false detections in these regions.

5. Summary and conclusions

In this paper a new tornado detection algorithm NFTDA
which uses fuzzy logic and neuro network is presented.
Besides velocity shear, additional parameters describing
spectral signatures, o,, P, xg and o, are used in the
NFTDA. All these four parameters show the significant
differences between tornado case and non-tornado case
even in far range. Two tornado events are used to eval-
uate the performance of the NFTDA. Compared to tradi-
tional shear-based TDA, the NFTDA is less sensitive to
the velocity smoothening effect and is able to detect tor-
nadoes in far range. In addition extending the detection
range, this NFTDA can also decrease the false alarm rates
caused by second-trip echoes.
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