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1 INTRODUCTION
This represents interdisciplinary work (involving statis-
ticians, meteorologists and engineers) conducted as
part of the RAINMAP initiative
(http://www.rainmap.rl.ac.uk).

RAINMAP is a UK research council funded net-
work that aims to foster communication and collab-
oration between the diverse communities interested
in developing and applying models of rain rate varia-
tion. Many applications in telecommunications, urban
drainage design, pollution transport modeling and ero-
sion control require stochastic models of rain rate vari-
ation that statistically reproduced measured rain prop-
erties over a very broad range of spatial and temporal
scales. Scales as short as seconds and a few tens
of metres are important. Information on large-scale
variation is available from hydrological pulse models,
radar databases and numerical models (NWP). Tech-
niques have been proposed to stochastically down-
scale this information to much finer scales. Combin-
ing large-scale information with downscaling poten-
tially provides broad scale models with wide applica-
tion and high commercial value.

Disaggregation algorithms aim to produce ensem-
bles of rain rate series, with short integration times,
consistent with a time-series measured with longer in-
tegration times and some a priori known statistics. To
develop and test disaggregation algorithms, it is nec-
essary to have rain rate data measured at the finest
scale considered.

Rapid response rain gauges are devices for mea-
suring rain rates with integration times typically less
than one minute and often as short as ten seconds.
A widely used type of gauge measures the rain water
collected in a funnel by forming equally sized drops
and detecting their fall. The data recorded from the
gauge is the number of drops detected in a 10 second
integration time. At the end of each integration pe-
riod, a partially formed drop will be present within the
gauge. For the gauges operated by Rutherford Apple-
ton Laboratory, RAL, (Oxford, UK), each drop in a 10 s
period corresponds to a collected rain height of 0.004
mm.

This work develops a downscaling algorithm ca-
pable of producing ensembles of rain rate time-series,
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with integration times as short as 10 seconds, con-
sistent with a time-series of rain rates with integration
times as long as 6 hours. The algorithm is based on a
stochastic multiplicative cascade using beta distribu-
tions as the random generator. The parameters are
estimated from one gauge-year of rain gauge data,
with a 10 second integration period, collected in the
Southern UK. The statistical moments up to third or-
der, of nine gauge-years of data, are calculated for
integration times in the range 10 seconds to 6 hours.
These data are compared with time-series derived by
accumulating data at 10 second scale to larger inte-
gration times, and then downscaling using the pro-
posed algorithm.

2 MOMENT SCALING STRUCTURE
FUNCTION

The identification of simple or multi-scaling ranges of
rain rate variation provides a useful summarising statis-
tic and suggests a number of modelling algorithms.
Analysis methods identify ranges of scales where the
statistical moments of rain rate are a power law func-
tion of the size of the integration interval. The sum-
marizing statistic used as a basis of modelling is the
moment scaling structure function. Let Sq(λ) be the
qth moment of Rλ, the rain rate measured over an in-
tegration volume of scale λ i.e. Sq(λ) = E(Rq

λ) where

E(.) is the expected value. If Sq(λ) ∝ λζ(q), where
ζ(q) does not depend upon λ, over some range of
scales, then the rain rate is said to exhibit scaling. For
simple scaling ζ(q) is linear in q, otherwise it is known
as anomalous scaling. The function ζ(q) yields the
multifractal exponents.

Paulson (2002) shows that log rain rate is simple-
scaling for scales as short as 10 s and 300 m, and
is well modelled as an isotropic, homogeneous, frac-
tional Brownian process with Hurst coefficient H =
1/3. This assumption allows the simulation of rain
fields and time-series with a model we will call FBH1/3.
A log-rain-rate time series can be modelled as a Gaus-
sian sequence with a power-law spectral density with
an exponent of -5/3. The rain rate while raining time
series can then be calculated by shifting and scaling
the log rain rate sequence to the desired mean and
variance before exponentiation.
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3 GAUGE DATA
Data spanning three complete years, 2000 to 2002,
from 3 RAL Rapid Response Drop-Counting Gauges
will be used. Two gauges are located at Chilbolton
Observatory in the Southern UK, while the third gauge
is situated 9 km away at Sparsholt.

The rain accumulation, or rain height, occurring
between time t0 = 0 and t is related to the notional
instantaneous rain rate, r(τ) by:

H(t) =
Z t

τ=0
r(τ)dτ. (1)

A drop is detected by the gauge whenever an integer
multiple of the rain height quantisation ∆H is reached.
The number of drops detected up to time t is:

N(t) = bH(t)/∆Hc, (2)

where bxc is the largest integer less than or equal to
x. The measured rain height time-series, recorded at
intervals of ∆T is:

Hrg(i∆T ) = N(i∆T )∆H = H(i∆T )+ ε, (3)

where ε is a quantisation error which, for N(i∆T ) > 0,
is uniformly distributed over the interval (−∆H,∆H).
The magnitude depends on the size of partially formed
drops at the beginning and end of the measurement
period. Over any interval [t, t + ∆t] the measured av-
erage rain rate is:

R∆t(t) =
H(t +∆t)−H(t)

∆t
. (4)

When the number of drops measured over an interval
is small, the relative error in the derived rain rate, due
to gauge quantization, is large. For rain rates less than
∆R = ∆H/∆T the derived rain rate time-series oscil-
lates between zero and ∆R. These rain rates occur
for a high percentage of time and so the quantisation
artifact leads to large errors in the calculated autocor-
relation and power spectral density. Other second or-
der statistics, such as event duration distributions, will
also be distorted at low rain rates.

4 MULTIPLICATIVE CASCADE
In this section we develop the statistics of a multiplica-
tive cascade model (MCM) of rain rate averaged over
intervals that are halved at each level of the cascade.
Each iteration of the cascade yields a rain rate time-
series of measurements with half the integration time
and consistent with all longer integration time mea-
surements higher in the cascade.

The cascade begins with a rain rate time-series of
measurements averaged over intervals of length T0.
This is equivalent to knowledge of the total rain ac-
cumulation H(ti) at times ti = iT0, relative to t0 when

measurements began. The cascade proceeds by es-
timating the rain accumulation in the middle of each
interval as:

H(ti +T0/2)−H(ti) = w[H(ti +T0)−H(ti)], (5)

where w ∈ [0,1] is an independent and identically dis-
tributed sample from a random generator with PDF
GT0(w). The result is a rain rate time-series of mea-
surements averaged over intervals of length T1 = T0/2,
and consistent with the original, coarser scale time-
series. The cascade can be iterated, using a random
generator GTn(w), producing consistent time-series of
measurements averaged over intervals of length Tn =
2−nT0. If the average rain rate over the interval Tn
is Rn, then the average rain rates over the two half-
intervals in the next level of cascade are 2wRn and
2(1−w)Rn.

We propose a functional form (6) for the generator
distribution , based on distributions produced from rain
gauge measurements, see Figure 1.

GTn(w) = γTn [δ(w)+δ(w−1)]

+ (1−2γTn)B(αTn ,αTn ;w), (6)

where δ(w) is the delta function and B(α,β;w) is a
beta distribution with PDF:

B(α,β;w) =
Γ(α+β)

Γ(α)Γ(β)
wα−1(1−wβ−1). (7)

The first term in (6) yields w = 0 and w = 1, each with
probability γTn , when the rain occurs exclusively in one
half of the interval. In this application, symmetric beta
distributions will be used with parameters α = β and
we will use the notation B(α;w) = B(α,α;w).

5 PARAMETER VARIATION
To downscale a rain rate time-series, it is necessary
to know the generator distribution at each halving of
the integration period. Each generator distribution is
defined by two variables; γT , the probability of all the
rain falling in the first half of the measurement period,
and αT the beta distribution parameter.

In practice, the moment scaling function, Sq(t), of
a measured time-series is calculated as samples are
accumulated to coarser scales. As a time-series gen-
erated by a multiplicative cascade is accumulated to
calculate longer integration time measurements, the
PDF and moments at different accumulation scales
are not those present in the original cascade. There-
fore, the parameters γT and αT cannot be directly es-
timated from accumulated rain gauge data. However,
the variation of parameters estimated directly from data
suggests functional forms for parameter variations, and
this is demonstrated in this section.

The distribution of rain height fractions w can be
estimated from gauge data using:

wi =
H(t0 +Tn−1)−H(t0)
H(t0 +Tn)−H(t0)

,
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≈
N[(i+2n−1)∆T ]−N(i∆T )

N[(i+2n)∆T ]−N(i∆T )
. (8)

The estimates wi are unbiased but values that are ra-

Figure 1: Cumulative probability functions of rain
height fraction w (w 6= 0 and w 6= 1) for three integra-
tion periods: 200 s (blue) 1000 s (red) and 2000 s
(green). The solid curves are derived from rain gauge
measurements while the dashed curves are the maxi-
mum likelihood beta distributions

tios of small integers e.g. 1/2, 1/3, 2/3 etc. occur dis-
proportionately due to the quantization introduced by
the gauge. Figure 1 illustrates the cumulative proba-
bility functions (CDF) of w calculated from one gauge-
year of data, with wi = 0 and wi = 1 excluded. Also
plotted is the beta distribution CDF with parameters
derived by maximum likelihood estimation from the es-
timates wi.

Figure 2: Variation of the measured rain gauge beta
function parameters, αT (circles) and βT (squares),
with scale. The dotted lines indicate the best fit power
laws to the measured data. The solid line is the al-
pha and beta parameters for the FBH1/3 model while
the dashed line is simulated gauge data based on the
FBH1/3 time-series

Figure 2 illustrates the variation of the beta func-

tion parameters αT and βT with accumulation scale.
Nine gauge-years of gauge data were accumulated to
integration times that were even multiples of 10 s up to
104 s. Rain height fractions were calculated using (8)
and beta functions we fitted using maximum likelihood
estimation. Also plotted are the parameters for simu-
lated FBH1/3 data. Simulated rain gauge time-series
are calculated from the FBH1/3 time-series using (2)
and (3) to generate Hrg(t) from H(t). Due to the sym-
metry in the beta distribution parameters α = β, only
one line is visible for each of the simulated rain rate
and rain gauge sequences. The simulated rain gauge
time-series has a similar flattening of the alpha and
beta curves below 200 s, as the curves derived from
measured rain gauge data. This suggests that the flat-
tening is an artifact due to gauge quantization. The
FBH1/3 model produces continuous rain, with no zero
rain rates, and has a scale break at 3000 s linked to
the size of continuous rain events. These lead to the
deviation from power-law variation as this integration
time is approached. Slight asymmetry exists between
αT and βT derived from measured data. This is con-
sistent with slightly more rain falling in the latter half of
periods suggesting that the onset of rain may be more
gradual than the end of rain events. However, for this
initial investigation, we will assume that αT = βT and
that this parameter follows a power-law over the range
10 s to 10800 s (approximately 3 hours).

Figure 3: Variation of the γT parameter from the mea-
sured rain gauge data (solid) and the simulated gauge
data based on the FBH1/3 time-series (dotted). The
dashed line is a power-law fit to large scale variation
of measured γT

Figure 3 illustrates the variation of γT estimated
from the measured rain height fraction distributions
and from simulated rain gauge measurements based
on FBH1/3 data. Gauge quantisation leads to bias in
the estimation of this parameter. For light rain events,
and at the edges of all rain events, gauge quantization
leads to oscillation between samples with zero and
one drops detected, and hence large over-estimation
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of γT . The FBH1/3 model yields continuous rain and
so has γT = 0. However, after the gauge simulation
introduces quantization to the FBH1/3 sequence, the
simulated data yields large values of γT for integration
periods up to 2000 s. Above this scale the variation is
well approximated by a power law.

6 PARAMETER ESTIMATION
The generator distributions of the multiplicative cas-
cade (5) are different from the distributions of the w
variable (8) as a time-series is accumulated. In this
section the cascade parameters are calculated by min-
imising the difference between the scaling moments of
measured rain rate time-series and time-series formed
by downscaling.

Based on observations in Section 5, the parame-
ters γT and αT are assumed to follow power laws i.e.

γT = AγT Bγ , (9)

αT = AαT Bα . (10)

One gauge-year of data has been used to estimate
the four parameters Aα, Aγ, Bα and Bγ by numerical
minimization of the difference between statistics of the
original and downscaled time-series. For each set of
parameters, the process was repeated 50 times. An
error function was defined as the sum of the absolute
differences between the second and third moments
the original rain gauge time-series Mq(Tk), over the
twelve scales Tk = 2k × 10 s for k = 0,1, . . . ,11, and
MDS

q (Tk) the moments of the downscaled series i.e.

ε(Aα,Aγ,Bα,Bγ) =
11

∑
k=0

3

∑
q=2

|MDS
q (Tk)−Mq(Tk)|. (11)

The first moment q = 1 is not included in the error
function as the cascade method conserves rain accu-
mulation during downscaling, and so no error is in-
troduced. Higher order moments could have been
included, possibly with declining weights. However,
these moments become increasingly sensitive to ex-
treme rain rates, with return times longer than the span
of the dataset, and it was felt that this would lead to
over-fitting to the data. The accumulation times tested
were chosen to span the downscaling scales of inter-
est.

The calculation of the error associated with a set
of parameters can be summarized as follows.

1. Calculate the scaling moments of one gauge-
year of rain rate data i.e. Mq(Tk) = E(RTk) for
q = 2,3 and for 12 accumulation scales Tk.

2. Accumulate the gauge data to an integration time
of 20480 s and then downscale to 10 s using
the multiplicative cascade with parameters Aα,
Aγ, Bα and Bγ using the cascade defined by (5)
based on generator distribution (6) and param-
eters from (9) and (10).

3. Pass the accumulated, downscaled time-series
through a rain gauge simulator to introduce rain
rate quantization.

4. Use 50 repetitions of steps 2 and 3 to estimate
scaling moments of accumulated, downscaled,
quantized time-series.

5. Calculate the error using (11).

Each downscaling cascade yields a different fine-scale
rain rate time series consistent with the coarse-scale
series, due to the stochastic nature of the cascade.
Fifty repetitions was chosen as it yielded an estimate
of (11) with a relative error of approximately 5%.

The Nelder-Meads simplex method, Nelder and
Mead (1965), was used to minimize (11), starting with
initial values based on measured estimates, see Fig-
ures 2 and 3. The best fit parameters, for T measured
in seconds, were:

Aα = 145,Aγ = 0.00612,Bα = −0.531,Bγ = 0.174.
(12)

Figure 4: The moment scaling structure function
Sq(T ) for one rain gauge-year of data (solid lines) and
for the simulated rain gauge data based on the time-
series downscaled from approximately 6 hours. The
upper and lower quartiles from 50 downscaling simu-
lations are indicated by the dashed lines. The curves
correspond to moments, from bottom to top, of q=0.5,
1, 1.5, 2, 2.5 and 3

Figure 4 illustrates the variation of the moment
scaling structure function Sq(T ) for one rain gauge-
year of data and for the simulated rain gauge data
based on the accumulated, downscaled time-series.
For the simulated data the median and upper and lower
quartiles of 50 simulations are plotted. Neither the
measured nor simulated data is multi-scaling over the
range of scales considered, although ranges which
are approximately scaling can be identified e.g. 300
to 10000 s. For q > 1 the measured statistics lie be-
tween the lower and upper quartile of the simulated
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results. For higher order q the measured moments
become increasingly sensitive to small numbers of ex-
treme rain rate values in the time-series. The relatively
poor agreement for q = 0.5 suggests that the statis-
tics of light rain rates are less well reproduced by the
downscaling algorithm.

Figure 5: The same statistics as Figure 4 but using all
9 gauge-years of data

The parameters derived from a single gauge-year
of data were then used to downscale all the 9 gauge-
years of available data. These data include the one
gauge-year of data used to derive the cascade pa-
rameters. Also included are data from a different site
and years to that used to train the cascade. Figure
5 illustrates the variation of Sq(T ) derived from all 9
gauge-years of data and compares these with the re-
sults from 50 simulated gauge series produced by ac-
cumulation and downscaling. For q > 1 the measured
statistics closely track the upper quartile curves im-
plying higher extreme values of rain rate occur in the
data outside the one gauge-year used for parameter
estimation.

In a further investigation, the four parameters Aα,
Aγ, Bα and Bγ were estimated using each gauge-year
of data individually. The purpose of this study was to
investigate year-to-year and inter-site variability. The
estimated parameters varied by approximately 3% with
no consistent inter-year or inter-site pattern.

7 CONCLUSIONS
Nine gauge-years of 10 s integration time rain rate
measurements have been analysed to yield the mo-
ment scaling structure function over temporal ranges
10 s to 80000 s. At least two multi-scaling ranges are
necessary to approximate the moment scaling func-
tion well.

A multiplicative cascade disaggregation algorithm
has been developed from the rain gauge data. A ran-
dom variable w has been defined, equal to the pro-
portion of rain that falls in the first half of an accumu-
lation period. After examination of the data, a beta

distribution has been chosen as the generator distri-
bution. Measured distributions have been shown to be
slightly asymmetric due to non-stationarity of the rain
rate time-series. The parameters of the beta distri-
butions have been calculated, allowing rain rate time-
series to be disaggregated within the scale range 10 s
to 20000 s, while reproducing measured moments up
to third order with reasonable accuracy.

The downscaling method developed in this work
was aimed at taking the finest scale data available
and introducing detailed variation down to 10 s. Al-
though the method has been tested up to periods as
long as six hours, the algorithm becomes site spe-
cific when the coarse data has an accumulation period
much longer than event durations. The relative pro-
portion of convective and stratiform events depends
strongly on seasons and the local climate. When the
initial rain accumulation data is sufficiently coarse as
to have lost this distinction, then the incidence of short-
intense and long-moderate events is determined by
the downscaling algorithm. The algorithm described
has been trained to Southern UK conditions. When
the initial rain data is sufficiently fine to characterise
rain events, such as five-minute accumulations, then
the downscaling algorithm is likely to have much wider
applicability.

Future work will investigate the affects of asym-
metric generator distribution and seasonal variation.
The assumption that rain height fractions w are inde-
pendent needs to be tested and, possibly, a correla-
tion structure built into the method. Data from differ-
ent sites and climates will be tested to determine the
applicability of the algorithm and parameters.
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