
 1 of 12

5A.8 IDENTIFYING NONSTATIONARITY IN THE ATMOSPHERIC SURFACE LAYER 
 

Edgar L Andreas*1, Cathleen A. Geiger1, George Treviño2, and Kerry J. Claffey1 
 

1U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 
2CHIRES, Inc., San Antonio, Texas 

 
 
 
1.  INTRODUCTION 
 
 The atmospheric boundary layer is inherently 
nonstationary.  The sun rises and sets.  Fair-
weather clouds pass overhead and periodically 
shade the surface.  Thicker, more extensive cloud 
layers provide even more shading during daylight 
hours and act as a blanket against radiative 
cooling at night.  But the transition in sky 
conditions as these cloud layers develop or 
dissipate rapidly forces the surface temperature 
just as do fair-weather clouds and sunrise and 
sunset transitions. 
 The lower atmosphere responds almost 
immediately to this rapid surface forcing because 
the forcing manifests first as a change in surface 
temperature.  The surface temperature, in turn, 
feeds into the sensible and latent heat fluxes, 
which affect the near-surface atmospheric 
temperature and humidity profiles in short order.  
A change in the sensible heat flux also alters the 
near-surface atmospheric stratification and, thus, 
quickly influences the wind speed profile. 
 Monin-Obukhov similarity theory, which 
organizes our understanding of the atmospheric 
boundary layer—especially the atmospheric 
surface layer—relies on two assumptions that 
seem at odds with this depiction of the 
atmospheric boundary layer:  that the atmosphere 
is statistically stationary and that the surface is 
horizontally homogeneous.  In fact, in some cases, 
the nonstationarity and the horizontal 
inhomogeneity go hand-in-hand, even when the 
surface looks visually homogeneous.  For 
example, anyone who had flown over the U.S. 
Great Plains on a late-summer day featuring fair-
weather cumulus may have noticed the light and 
dark patches that the cloud shadows create on the 
uniformly brown surface.  Surface temperatures in  
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the cloud shadows can be 5–10°C cooler than in 
full sunlight.  Hence, a meteorological tower fixed 
on the surface would experience the 
nonstationarity of the passing clouds but also the 
horizontal inhomogeneity caused by the resulting 
variability in surface temperature (cf. Roth and 
Oke 1995). 
 Because clouds are ubiquitous, we speculate 
that many of the measurements of the Monin-
Obukhov similarity functions that have been 
reported were collected in nonstationary 
conditions.  Such violations of the premises on 
which Monin-Obukhov similarity rests may explain 
some of the scatter that still exists in these 
“universal” similarity functions despite almost 50 
years of measurements to quantify them (e.g., 
Högström 1996; Andreas et al. 1998; Johansson 
et al. 2001; Andreas 2002; Klipp and Mahrt 2004). 
 Still, the measured Monin-Obukhov similarity 
functions are not wildly scattered—just 
perplexingly scattered.  Hence, perhaps the need 
for stationary conditions is not a strong constraint 
on Monin-Obukhov similarity theory.  Our premise 
here, though, is that we know so little about how to 
handle or even to judge nonstationarity that we 
cannot make progress in determining its 
consequences without a better way to characterize 
it. 
 Foken and Wichura (1996), Vickers and 
Mahrt (1997), Mahrt (1998), and Andreas et al. 
(2003), among others, have described methods for 
identifying nonstationarity in atmospheric 
boundary layer time series.  But these three 
groups alone describe at least five methods for 
identifying nonstationarity—for example, 
comparing statistics from short series to statistics 
from longer series, computing trends, counting 
zero crossings, and using information in the 
probability density function.  That is, the 
community has reached no consensus on how to 
identify—let alone deal with—nonstationary. 
 Here we present yet another method for 
identifying nonstationarity, but our method has 
three advantages:  It has a theoretical basis, it 



 2 of 12

 
Fig. 1.  Instrument layout for our April 2005 experiment.  The “Turbulence 
Tower” is at the origin of our experimental grid. 

 
 
relies on accepted definitions of what constitutes 
nonstationarity, and it associates a probability as 
to whether any nonstationary period it identifies is 
truly nonstationary. 
 Averaging a nonstationary time series is a 
fundamental problem because, by definition, the 
resulting statistics depend on when you begin to 
average and how long you average.  We average 
using Treviño and Andreas’s (2000) Time 
Dependent Memory Method (TDMM), which was 
formulated especially to pull out the mean and 
turbulent fluctuations from a nonstationary series.  
We then invoke Priestley’s (1981) definitions of 
first-order and second-order nonstationarity and 
use standard statistical functions to test for first-
order and second-order nonstationarity.  These 
functions also help us assign significance levels to 
these tests. 
 The data we use in these analyses come 
from a dedicated experiment during which we 
combined a suite of radiation instruments to 
characterize forcing by sun, sky, and clouds and 
the surface’s response to this forcing with 
turbulence instruments to document the 
concomitant near-surface atmospheric response 
to this forcing.  Our analysis reveals 
nonstationarity in the near-surface air temperature 
and humidity associated with rapid changes in sky 
conditions.  Andreas et al. (2006) have reported 
some of our preliminary results. 
 

2.  MEASUREMENTS 
 
 The data we use in our analysis come from a 
two-week experiment conducted in a 15-acre field 
in Lebanon, New Hampshire, in April 2005.  The 
field had been mowed the previous fall and was, 
thus, covered in grass stubble and clippings a few 
centimeters thick.  When the experiment began, 
the grass was dormant and the ground was cold, 
with the soil still frozen a few centimeters below a 
thawed surface layer.  The grass greened up 
noticeably by the end of the experiment, however, 
but was still short. 
 Figure 1 shows our experimental layout and 
our main instrument cluster. 
 We used Eppley hemispherical, broadband 
longwave (model PIR) and shortwave (model 
PSP) radiometers to measure incoming and 
outgoing longwave and shortwave radiation.  We 
also used Heitronics infrared thermometers to 
measure the sky (KT 19.85II, wavelength 9.6–
11.5 µm) and surface (KT 19.81II, wavelength 8–
10 µm) temperatures.  These are narrow-beam 
radiometers; they have a 2.5° field of view.  Our 
last radiation instrument was a Thermoscan model 
S60 digital infrared camera from FLIR Systems.  
This operates in the 7.5–13 µm wavelength band 
and has 76,800 pixels in its field of view. 
 We sampled the Eppley radiometers and the 
Heitronics thermometers at 1 Hz and will 
concentrate on this rapidly sampled data in our 
analysis.  We obtained an image from the infrared 
camera once a minute and averaged over its 
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entire field of view to get the average surface 
temperatures we show soon. 
 Later, we will show temperatures obtained by 
converting the longwave radiation (QL) from both 
the Eppley up-looking and down-looking 
instruments to a blackbody temperature using 
 
  ( )0.25

BB LT Q /= σ  . (1) 
 
This gives TBB in kelvins when QL is in 2W m− , 
where σ ( 8 2 45.670400 10 W m K− − −= × ) is the 
Stefan-Boltzmann constant. 
 Near these radiation instruments, we had a 
“turbulence” tower with a three-axis, K-type sonic 
anemometer/thermometer from Applied 
Technologies Inc. (Kaimal et al. 1990; Kaimal and 
Gaynor 1991; Kaimal and Finnigan 1994, p. 218f.) 
mounted 3.6 m above the surface.  Placed just 
below the sonic (Kristensen et al. 1997) was a Li-
Cor 7500 fast-responding water vapor and carbon 
dioxide sensor.  We sampled all of these 
instruments at 10 Hz.  In the following plots, 
though, we show times series of these turbulence 
signals subsampled at 1 Hz simply for 
convenience. 
 For the possibility of putting these point 
measurements in a larger spatial context, we 
deployed a surface-layer scintillometer system 
(SLS20 from Scintec Atmosphärenmesstechnik 
GmbH) over a 182-m path such that our point 
instruments were near the center of the 
propagation path.  The scintillometer measures 
the refractive index structure parameter and the 
inner scale of turbulence with 1-minute averaging 
(Andreas et al. 2003). 
 Finally, we documented sky conditions with 
periodic pictures from an all-sky camera (Nikon 
Coolpix 4500 with a Nikon fisheye converter lens). 
 
3.  QUANTIFYING THE NONSTATIONARITY 
 
 One of the central issues in atmospheric 
turbulence is deciding how long to average a 
turbulence time series to obtain meaningful 
estimates of the mean, the variance, and the 
turbulent fluxes (e.g., Lumley and Panofsky 1964, 
p. 35ff.; Wyngaard 1973; Sreenivasan et al. 1978; 
Andreas 1988; Lenschow et al. 1994).  Most 
attempts to answer this question implicitly assume 
that the turbulence time series is stationary.  But in 
light of the host of time scales represented in the 
forcing that we described in the Introduction, we 

believe that an analysis based on assuming 
nonstationarity may be more realistic. 
 Turbulence analyses typically begin with an 
instantaneous measurement of some variable x  
(e.g., the longitudinal wind component).  The 
purpose of averaging is to separate this 
instantaneous value into mean (X) and turbulence (x) 
components such that 
 
  x X x= +  , (2) 
 
where the average of x is zero.  When a series is 
nonstationary, however, the mean of x  may not 
be approximately constant over typical hour-long 
averaging periods; X is thus ill-defined.  The 
average magnitude of x may also vary.  We show 
both manifestations of nonstationarity in our later 
figures. 
 Treviño and Andreas (2000), however, 
developed a rational way to separate the mean and 
the fluctuations, as required in (2), in a turbulence 
series that is assumed to be nonstationary.  The 
method applies equally well to stationary series, too, 
though.  Treviño and Andreas call their technique the 
Time Dependent Memory Method (TDMM; U.S. 
Patent No. 6,442,506) because it finds two time 
scales for averaging.  One scale—call it ∆T—defines 
an averaging window over which to compute the 
mean (i.e., X) and, in turn, to separate the turbulent 
part (i.e., x).  Finding ∆T requires that we specify the 
measurement accuracy and invoke the constraint 
that we cannot know something to better precision 
than our measurement accuracy. 
 A second time scale, the ‘memory,’ L, derives 
as the decorrelation time implied by the 
autocorrelation function of the turbulent part; it is 
essentially an integral scale.  Treviño and Andreas 
(2000) then take 10L as the averaging window over 
which to compute the variance, 2 2xσ = , where the 
overbar indicates a time average.  Using 10L as 
the window for computing σ2 provides an adequate 
number of independent samples.  Usually, 10L is 
computed to be less than ∆T; if it is not, we set the 
averaging time for computing variance to ∆T. 
 Using this method to choose proper averaging 
times—even when the series is nonstationary—we 
can compute the mean and variance along steps 
through that series and can test whether the series is 
stationarity or nonstationary.  Priestley (1981, p. 
104ff.) describes the concept of a process that is 
stationary at order m.  If a process is order-1 (first-
order) stationary, its mean does not change with 



 4 of 12

time.  If a process is order-2 (second-order) 
stationary, its variance does not change with time. 
 Under the hypothesis that the mean is 
constant, the statistic 
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has a Student’s t distribution with zero mean, 
variance 1, and ++ −i i 1n n 2  degrees of freedom.  
Here, Xi and Xi+1 and 2

iσ  and 2
i 1+σ are the means 

and variances of adjacent intervals in a turbulence 
time series, computed using TDMM, and ni and 
ni+1 are the number of independent samples used 
to compute the variances.  By computing t, we can 
test for first-order nonstationarity. 
 We compute Xi and σi every 30 seconds to 
ensure that adjacent values are independent and 
to have a reasonable number of degrees of 
freedom for each estimate.  We have estimated 
the integral scale for our turbulence data to be 
3 4s− .  Hence Xi values separated by 30 s are 
based on at least 10 independent samples.  We 
also set the minimum averaging time ∆T as 30 s, 
though it was usually computed to be longer.  
Thus, in the above t statistic, both ni and ni+1 are at 
least 10, and t has at least 18 degrees of freedom.  
If t  is larger than 2.878, then, the series is first-
order nonstationary at the 1% significance level. 
 Likewise, the statistic 
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has an F distribution with in 1−  and n 1n 1+ −  
degrees of freedom.  By computing F for adjacent 
intervals, we can test for second-order 
nonstationarity. 
 The Time Dependent Memory Method uses 
10L as the averaging window for variance.  That 
is, each variance estimate derives from 
approximately 10 independent samples since L is 
approximately the instantaneous correlation time 
of the series.  Hence, again, ni and ni+1 are both 10 
in (3) and (4).  Moreover, the F statistic reduces to 

2 2
i i 1/ +σ σ ; and in the F distribution, both degrees of 

freedom are 9.  Therefore, the 99% confidence 
interval for F in (4) is [ ]0.153,6.54 .  F values 

outside this interval indicate that a time series is 
second-order nonstationary at the 1% significance 
level. 
 
4.  RESULTS 
 
 Here we consider just two days from our 
experiment to demonstrate the various types of 
rapid forcing and to investigate nonstationarity. 
 Figure 2 shows time series from 26 April 
2005 of incoming shortwave radiation, surface 
temperature inferred from the down-looking 
Eppley radiometer, sky temperature from the up-
looking infrared thermometer, and air temperature 
from the sonic thermometer.  On a clear day, the 
shortwave trace is very smooth, with a peak near 
1000 W m–2 around noon.  On 26 April, though, 
thin cirrus before noon and cirrus and cirrostratus 
after noon blocked the sun to varying degrees.  
The sky temperature reiterates the presence and 
effects of these clouds.  A warming sky indicates 
increasing clouds, while a cooling sky signals 
dissipating clouds.  Between midnight and 
0400 hours, in fact, the sky and surface 
temperatures were nearly the same:  Clouds were 
so thick that the surface and the clouds were 
nearly in radiative equilibrium. 
 The forcing by these clouds and, especially, 
the change in forcing, is almost immediately 
evident in the surface temperature and in the air 
temperature.  For example, under the thick clouds 
between midnight and 0400 hours, the air 
temperature shows very small turbulent 
fluctuations.  But when these clouds begin 
clearing, the surface temperature falls by about 
5°C, and the air temperature likewise cools a 
degree or two.  Moreover, the air temperature 
trace shows large fluctuations, evidence of 
downward sensible heat transfer to offset the 
surface cooling. 
 During the day, you can follow ripples in the 
incoming shortwave radiation and sky temperature 
in Fig. 2 through the surface temperature and the 
air temperature.  The spiky shortwave trace 
implies that the cloud forcing can change quite 
rapidly, but the surface and air temperatures 
respond almost immediately. 
 Just one example of this daytime forcing in 
Fig. 2 is the persistent cloud from about 1500 to 
1700 hours.  As soon as evidence of the cloud 
appears in the shortwave and sky traces in the 
figure, the surface temperature begins falling from 
a local maximum near 1500 hours and falls almost 
15°C while the cloud lasts.  The air temperature 
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Fig. 2.  Time series for all of 26 April 2005 of incoming shortwave radiation, blackbody 
surface temperature from the down-looking Eppley radiometer, sky temperature from the 
up-looking infrared thermometer, and air temperature from the sonic thermometer.  All of 
these traces are 1-Hz data.  The lower two panels are t and F statistics computed every 
30 s from (3) and (4) from the raw 10-Hz temperature data; horizontal dashed lines are 
99% confidence limits. 
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follows suit almost immediately:  The air 
temperature falls about 4°C, and the turbulent 
fluctuations decrease to nighttime levels. 
 The lower two panels in Fig. 2 show time 
series of the t and F statistics computed from the 
10-Hz temperature data.  An obvious feature of 
these two traces is that the first eight hours of the 
day show many more excursions of t and F 
outside their respective 99% confidence limits than 
during the rest of the day.  These statistics, thus, 
confirm what most micrometeorologists already 
know:  Conditions at night are often nonstationary.  
But the t and F statistics also highlight periods of 
nonstationarity during daylight hours that evidently 
result from cloud forcing.  For example, the cloud 
between 1500 and 1700 hours affected air 
temperature enough to produce clusters of 
excursions beyond the 99% confidence limits in 
both t and F during this period. 
 Figure 3 shows several day-long time series 
from 22 April 2005.  This day featured clear skies 
from midnight until 0900 hours, as evidence by our 
up-looking infrared thermometer (“Sky Temp.”) 
seeing sky temperatures lower than its minimum 
instrumental range.  Thin cirrus clouds, many from 
spreading contrails, then began forming.  Next, 
thicker cirrostratus developed at about 1530 hours 
and intermittently blocked and revealed the sun 
until about 1800 hours.  Finally, thicker clouds 
developed after sunset, as evidenced by the sky 
temperature. 
 Again, the forcing by clouds ripples quickly 
through the surface and air temperatures in Fig. 3.  
The clearest example is for the sequence between 
1530 and 1800 hours, which was under the 
influence of cirrostratus clouds with four main 
clearing episodes.  The two surface temperatures 
and the air temperature all show nearly 
instantaneous and significant cooling when the 
clouds encroach but also show warming 
coincident with the thinning or clearing events 
during this period.  The water vapor trace also 
shows up-going spikes that correspond with these 
clearing events. 
 The cluster of lower water vapor densities 
centered at 1530 hours may also be associated 
with the arrival of this cloud.  Likewise, the steep 
increase in water vapor density after 2000 hours 
seems correlated with the thick clouds that 
developed then. 
 Figure 4 shows the t and F statistics every 
30 s for the temperature and water vapor traces 
depicted in Fig. 3.  As with Fig. 2, we see in Fig. 4 
a lot more excursions for t and F outside their 

respective 99% confidence bands between 
midnight and 0800 hours than later in the day. 
 On this day, the F statistic, which quantifies 
changes in variance and, thus, second-order 
nonstationarity, seems to be a better indicator of 
cloud forcing than the t statistic.  For example, the 
F statistic for both air temperature and water vapor 
density responds with excursions outside the 99% 
confidence band when clouds move in at about 
1530 hours.  The corresponding t statistic here, 
which quantities a change in the mean and, thus, 
first-order nonstationarity, increases a bit in 
magnitude but remains within the 99% confidence 
band at the start of the episode. 
 Lastly, we want to look more closely at the 
midnight-to-0800-hours period for 22 April and 
demonstrate that the t and F statistics have 
implications for the dynamics that govern the 
nonstationarity.  Figures 5 and 6 combine the 
temperature and water vapor traces, respectively, 
from Fig. 3 with the t and F statistics from Fig. 4 
for midnight to 0800 hours on 22 April.  In these 
expanded plots, it is easier to see what behavior in 
the time series of the physical variable produces a 
large response in t or F.  For example, any high 
peak or deep valley in the time series usually 
correlates with t or F excursions outside the 99% 
confidence bands.  Likewise, any quiet period in 
the turbulence that is followed by a relatively noisy 
period, or vice versa, correlates with excursions in 
F.  The deep, steep valley in air temperature (Fig. 
5) at about 0600 hours, for instance, is an event 
that produces responses in both t and F.  The 
rapid climb but decreasing variability in water 
vapor density (Fig. 6) for 0330 to 0430 hours is 
another event producing responses in both t and 
F. 
 Figures 7 and 8, respectively, show 
alternative presentations of the t and F statistics 
for temperature and water vapor density.  Here we 
take the same information as in Figs. 5 and 6 but 
plot F versus t.  These plots more clearly show 
how often the series are strictly stationary, first-
order but not second-order nonstationary, second-
order but not first-order nonstationary, and both 
first-order and second-order nonstationary. 
 In the t and F scatter plot for air temperature 
(Fig. 7), 111 of 959 samples show first-order 
nonstationarity.  That is, these samples lie in 
sectors I–IV and b and d.  Likewise, 179 of 959 
samples show second-order nonstationarity.  
These samples lie in sectors I–IV and a and c.  
Since we are testing for first-order and second-
order nonstationarity at the 1% significance level, 
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Fig. 3.  Time series for all of 22 April 2005 of incoming shortwave radiation, sky 
temperature from the up-looking infrared thermometer, surface temperature measured by 
both the infrared camera and the down-looking infrared thermometer, air temperature 
measured by the sonic, and water vapor density measured by the Li-Cor 7500.  All traces 
are 1-Hz data except the infrared camera, which sampled once a minute. 
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Fig. 4.  The t and F statistics every 30 s computed using (3) and (4) and the raw 10-Hz data 
for the air temperature and water vapor series depicted in Fig. 3.  The dashed lines are 99% 
confidence limits. 
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Fig. 5.  Air temperature from midnight to 
0800 hours on 22 April 2005 and corresponding t 
and F statistics at 30-s intervals.  The dashed 
lines are 99% confidence limits. 

Fig. 6.  As in Fig. 5, but this plot is for water vapor 
density. 

 
 
we would expect only 10 t and 10 F values (i.e., 
1% of 959 samples) to randomly fall outside the 
central box in Fig. 7 if the data were truly 
stationary.  We can therefore easily conclude that 
the air temperature data for 0000 to 0800 hours on 
22 April were nonstationary at either first order or 
second order. 
 A more restrictive test might be to call the 
data nonstationary only if they exhibit first-order 
and second-order nonstationarity simultaneously.  
In other words, only samples that fall in sectors 
I IV−  would be indicators of a nonstationary time 
series.  Still, however, in Fig. 7, 72 samples, 7.5% 
of the available data, fall in these sectors.  Thus, 
even with this narrower definition of 
nonstationarity, the temperature trace in Fig. 5 
would still be judged nonstationary. 
 Figure 7 also reveals something about the 
dynamics of the nonstationarity.  Most of the 
samples that display both first-order and second-

order nonstationarity fall in sector IV.  Here t is 
negative, and F is greater than one.  From our 
definitions of t and F [see (3) and (4)], t is negative 
when the mean increases between adjacent 
samples; and F is greater than one when the 
variance decreases between adjacent samples.  
Thus, for Fig. 7 at least, the preferred regime that 
produces both first-order and second-order 
nonstationarity is for the mean to increase while 
the variance simultaneously decreases. 
 Such behavior is evidence of coherent 
structure—essentially temperature ramps (Antonia 
et al. 1979; Phong-anant et al. 1980; Kikuchi and 
Chiba 1985)—in the atmospheric surface layer.  
Antonia and Chambers (1978), Antonia et al. 
(1979, 1982), and Phong-anant et al. (1980) 
describe such ramps in the unstably stratified 
surface layer; while Kikuchi and Chiba (1985) and 
Revelle (1993) report ramps in the stably stratified 
surface layer, which is the situation represented in 
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Fig. 7.  The t and F statistics for the air 
temperature data in Fig. 5 are displayed as a 
scatter plot.  Markers within the central box are 
within both t and F 99% confidence bands and 
would indicate stationary data.  Markers in 
sectors a and c indicate first-order stationary but 
second-order nonstationary data.  Markers in 
sectors b and d indicate first-order nonstationary 
but second-order stationary data.  Markers in 
sectors I–IV indicate data that are both first-
order and second-order nonstationary. 

Fig. 8.  As in Fig. 7, but this shows the t and F 
statistics for water vapor density from Fig. 6.  
This plot would have the same sectors 
delineated in Fig. 7, but we omit the dashed 
lines for less cluttered viewing.  Markers in the 
central box indicate strict stationarity. 

 
 
Figs. 5–8.  Furthermore, in our case, the ramps 
seem to be evidence of coherent “sweeps” (e.g., 
Högström and Bergström 1996) that bring 
relatively warm air from aloft down to the surface 
to offset the radiative losses. 
 While Figs. 5 and 7 suggest that the 
temperature signal for 0000 to 0800 hours on 22 
April was nonstationary, our similar analysis 
shows that temperature is better behaved for 
0800 hours through midnight.  In Fig. 4, the t and 
F statistics for temperature make fewer excursions 
outside their 99% confidence bands.  During this 
period, only 2.3% of the t values and only 2.6% of 
the F values stray outside the 99% confidence 
bands.  These extreme values, however, generally 
cluster and, thus, indicate isolated nonstationary 
events within a signal that is basically stationary.  
In fact, in only 0.3% of the samples from 
0800 hours through midnight do t and F 
simultaneously exceed their respective 99% 
confidence limits.  Based on this more restrictive 
definition of nonstationarity, we might conclude 
that the temperature trace for 0800 to 2400 hours 
on 22 April in Fig. 3 represents stationary 

conditions despite the obvious rapid forcing by the 
clouds. 
 Figure 8, the scatter plot of t and F for water 
vapor density for 0000 to 0800 hours on 22 April, 
contrasts with Fig. 7.  Here, 13.6% of the t 
statistics fall outside the 99% confidence band—
that is, they fall in sectors I–IV and b and d.  But 
only 6.3% of the F statistics fall outside the 99% 
confidence band.  Thus, as with Fig. 7, Fig. 8 
shows ample evidence of first-order and second-
order nonstationarity.  But only a bit more than 1% 
of the samples (10 of 959) in Fig. 8 exhibit first-
order and second-order nonstationarity 
simultaneously.  Consequently, with this more 
restrictive definition of nonstationarity, we might 
conclude that the water vapor trace in Fig. 6 is 
essentially stationary. 
 Moreover, no samples fall in sector IV, which 
was the most populated of the simultaneously 
nonstationary temperature cases in Fig. 7.  No 
samples fall in sector I either, and only one sample 
falls in Sector II.  Thus, in contrast to Fig. 7, 9 of 
the 10 cases for which t and F are simultaneously 
outside their 99% confidence bands fall in sector 
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III.  Here, both the mean and the variance 
increase significantly between adjacent samples. 
 For the other 16 hours on 22 April, from 0800 
to 2400 hours (see Figs. 3 and 4), only 2.1% of the 
t statistics and only 3.4% of the F statistics are 
outside their respective 99% confidence bands.  
Again, since these are 1% significance tests, we 
would still be concerned about nonstationarity in 
the water vapor signal.  But as with air 
temperature, the excursions outside the 99% 
confidence bands for 0800 to 2400 hours, 
especially for t, occur in clusters.  Furthermore, 
during this 16-hour period, only in 0.3% of the total 
samples do the extremes in t and F occur 
simultaneously. 
 
5.  CONCLUSIONS 
 
 Our original hypothesis was that changes in 
cloud forcing immediately affect the surface 
temperature and, thus, the temperature of the 
near-surface atmosphere and, perhaps, other 
near-surface meteorological variables.  Our two 
examples of day-long traces of the radiative 
forcing and the responses in surface temperature 
and in near-surface air temperature and humidity 
(Figs. 2 and 3) confirm this scenario.  The surface 
temperature responds almost immediately and 
significantly to rapid changes in the incoming 
shortwave and longwave radiation that are 
associated with changing cloud conditions.  The 
near-surface air temperature also quickly follows 
suit because it is closely coupled to the surface 
through the sensible heat flux.  We also see cases 
when the near-surface water vapor density also 
responds to this cloud forcing—presumably 
through changes in the latent heat flux from the 
surface or because of changes in boundary layer 
mixing. 
 The second part of our hypothesis was that 
changes in cloud forcing lead to nonstationarity in 
the turbulent properties of the near-surface 
atmosphere.  We looked for such nonstationarity 
in the air temperature and the water vapor density 
by introducing new analysis techniques.  We first 
used the Time Dependent Memory Method 
(Treviño and Andreas 2000) to separate mean and 
fluctuating parts of the air temperature and 
humidity signals.  TDMM is designed specifically 
to pull means and variances out of a signal that is 
presumed to be nonstationary. 
 With the means and variances from TDMM, 
we computed two familiar statistics, t and F, every 
30 s but applied them for the first time to the 

problem of identifying first-order and second-order 
nonstationarity.  Testing at the 1% significance 
level, we found in both our examples that the 
midnight-to-sunrise temperature and water vapor 
signals were severely nonstationary.  
Micrometeorologists have said for a long time that 
nighttime conditions are often nonstationary; our 
statistics quantify that maxim. 
 The daylight data, however, are less 
conspicuously nonstationary according to our t 
and F tests despite examples selected with 
frequent changes in cloud forcing.  We see short 
clusters of nonstationarity associated with the 
most extreme changes in cloud forcing.  But the 
rapid, small changes in incoming shortwave 
radiation in Fig. 3 that we associated with varying 
cirrus clouds do not produce severe 
nonstationarity. 
 Perhaps Monin-Obukhov similarity functions 
measured during the day under conditions of 
variable cloudiness have not been seriously 
degraded by nonstationarity.  On the other hand, 
our analysis suggests that any similarity functions 
measured at night over terrestrial surface 
experiencing diurnal forcing likely suffer severely 
from nonstationarity.  In other words, 
nonstationarity may explain the wide range in 
Monin-Obukhov similarity functions that apply to 
stable stratification (e.g., Andreas 2002). 
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