
 1

P1.1 GOING NONLINEAR:
TOWARDS AUTOMATED PUFF INTERCEPT

George S. Young * and Sue Ellen Haupt,

The Pennsylvania State University, University Park, PA

1. INTRODUCTION '

Both inadvertent and intentional releases of
airborne contaminants pose a threat to society.
Managing this threat requires realtime prediction of time
evolving contaminant concentration fields from limited
observations. These data assimilation algorithms
perform best when provided with numerous
observations within the advecting contaminant puff
(Allen et al. 2006). Yet, the sensor density required to
achieve this many “hits” early in the puff’s lifetime can
be economically impractical if only fixed sensors are
used. Thus, solution of the contaminant puff prediction
problem requires mobile sensors capable of intercepting
and mapping a puff once it has been detected by a
sparse array of fixed sensors.

Realtime contaminant puff interception becomes
more feasible and less labor intensive if the unmanned
aerial vehicles (UAV, eg., Valero et all 1996, Stephens
et al. 2000) involved are also autonomous, i.e. able to
make their own routing decisions. Designing the routing
controller logic can be done either manually, e.g. as an
expert system (Hall 1992) or by automated training.
The latter offers the potential for finding optimal
solutions that might not have been obvious to the
designer. Thus, many recent studies on robot routing
controllers have focused on automated training, often
basing the controller architecture on neural networks
(e.g. Kuperstein 1991, Walter and Schulten 1993, Lewis
et al., 1995) or related methods (e.g. Selekwa et al.,
2005).

This study examines the utility of the neural net
approach for UAV routing in the puff sampling problem.
Rather than directing an actual UAV in flight, this pilot
study examines the suitability of various neural network
training approaches in a synthetic, noise-free
environment. The study focuses on the initial puff
interception problem because, while it is nonlinear, it
can be solved either analytically or by iterative
optimization. In contrast, the subsequent puff mapping
problem has no analytic solution. Thus, while a neural
network approach can be applied to both the puff
intercept and puff mapping problems, the first can be
handled via supervised learning while the second
requires unsupervised learning (Reed and Marks 1995).
The puff intercept problem can also be solved by
unsupervised learning of course. Therefore it will be
used as the test problem for this study, allowing
comparison of the results of both supervised and

* Corresponding author address: George S. Young, The
Pennsylvania State University, Department of Meteorology,
503 Walker Building, University Park, PA 16802-5013;
email: young@meteo.psu.edu

unsupervised learning algorithms to the analytic
solution.

Neural network training via supervised learning
usually makes use of some form of a back-propagation
algorithm (Reed and Marks 1995) in which the gradient
of error with respect to the network weights is computed
and the trial solution is moved down the gradient to
minimize the error. This method works well in most
applications, although in some situations the trial
solution can become trapped in a local minimum of error
(Reed and Marks 1995). In contrast, neural net training
via unsupervised learning requires that the traditional
back-propagation approach be replaced by a method
that does not require a priori knowledge of the true
solution (i.e. desired network output) for each training
case. One way to achieve this unsupervised training of
a neural network is via a genetic algorithm (GA, Holland
1975, Reed and Marks 1995). Another is the Nelder-
Mead simplex algorithm (Nelder and Mead 1965). Both
of these algorithms use iterative improvement of a first
guess solution. These two approaches differ in several
ways although they are conceptually similar. Genetic
algorithms work on a population of trial solutions, often
updating most or all of them at each iteration (i.e.
generation). In contrast, the simplex algorithm creates
only one new trial solution each iteration. Another
difference is in how the two approaches search the
parameter space for lower-error solutions. Genetic
algorithms do not explicitly compute the error gradient,
but rather breed (i.e. exchange information between) the
more successful solutions in the current population to
create the next generation of trail solutions (Haupt and
Haupt 2004). This approach allows a properly tuned GA
to avoid becoming trapped in local minima (Goldberg
1989). It does not, however, make the most efficient
use of the error gradient information inherent in the
population of trial solutions. The Nelder-Mead simplex
algorithm remedies this shortcoming by estimating the
error gradient from the most recent trial solutions. It
then creates a new trial solution in the down-gradient
direction and repeats the error gradient estimation
process. This approach is potentially faster at improving
the solution, but can become trapped in a local
minimum if started too far from the global minimum.
Thus, hybrid techniques using a GA to roughly locate
the global optimum and simplex to polish the answer
have, for some problems, proven more efficient than
either method working alone (Long et al. 2007).

There are many other artificial intelligence
algorithms that could be applied to unsupervised
learning problems of this sort, but the best choice is still
an open question. This study will compare a genetic
algorithm using various breeding mechanisms with the

 2

Nelder-Mead simplex. The utility of hybrids and the
myriad of other techniques will be left for future work.

2. DATA

The puff intercept problem consists of determining
the correct course for a UAV to steer in order to reach
the centroid of a moving contaminant puff in the least
possible time. For a puff drifting at a uniform speed this
is the straight course shown in Figure 1. The inputs to
the neural network are the x and y coordinates of the
puff and the UAV, the course and speed of the puff, and
the speed of the UAV. The output is the course-to-steer
for the UAV.

Figure 1. Schematic of the puff intercept problem.

The analytic solution to this problem can be

obtained by equating the times required to eliminate the
puff-UAV differences in the two components of position.
The actual solution is greatly simplified if one first
translates the coordinates to place the UAV at the origin
and then rotates them so that the puff lies along one of
the axes. The following equation for course-to-steer,
a2, results.

() ()()1/ 22 2
1 1 21 1 1

2
2 2

sin()sin()tan ,
u a uu aa

u u
−

 + =  
 
 

 (1)

where a is the course-to-steer angle for intercept (0
being directly towards the puff’s initial location), and u is
the speed. Subscript 1 indicates the puff and subscript
2 indicates the UAV.

This analytic solution is used to create the data
required to train the neural network. For this study,
1000 training cases were generated, enough to
accurately describe the multi-dimensional form of (1).
Each training case consisted of randomly generated
input values with the UAV always being faster than the
puff so that an interception was possible. An
operational system would include a component to
compute the puff-related inputs from the available
sensor “hits” within the evolving three-dimensional
concentration field. Long et al. (2006) demonstrate a
GA approach to building this component. Future work
will need to address the sensitivity of both the centroid
tracking and intercept components to noise in the
observations.

3. PROCEDURES

The standard feed-forward neural network

architecture (Figure 2) is used here. In this architecture
the value of each input parameter is fed to each node in
the first processing layer. The output value for each of
these processing nodes is then fed as input to all of the
nodes in the next processing layer, and so on through
any remaining processing layers. The output value from
each node in the last processing layer is fed into an
output node that produces the final answer.

Figure 2. Feed-forward neural network architecture.

The input parameters are shown as green circles
labeled I, the two hidden layers of processing nodes are
shown as blue circles labeled H1 and H2. The output
node is shown as a red circle labeled O. Data flow
follows the black lines from left to right.

The processing nodes contain linear regression
equations which have been squashed by a sigmoid
function so that the output tends asymptotically to the
limits of some range (typically 0 to 1 or -1 to 1) as the
inputs tend to plus or minus infinity. Equation 2 shows
the formula for a processing node using hyperbolic
tangent as the squashing function.

 3

1

tanh
M

i i
i

y w x c
=

 = + 
 
∑ (2)

where y is the course-to-steer for intercept, xi are the M
input parameters, wi are the corresponding weights, and
c is a threshold or offset. The output node is similar, but
does not include the squashing function if the output is a
real number as is the case in the puff interception
problem.

Training of a feed-forward neural network consists
of finding a set of values for these weights and
thresholds that minimizes the error in the output. This
task can be approached either as a supervised learning
problem in which values of the correct output are
available for each training case or as an unsupervised
learning problem in which these values are not available
but the quality of the answer can be evaluated by the
network’s performance in achieving an intercept.

The standard back-propagation method of neural
net training is a supervised learning technique (Reed
and Marks 1995). The network is initialized with random
values for the weights and thresholds, and then applied
to the training data. The errors are computed by
comparing the network output to the known solution
values for each case, and the impact of each weight and
threshold on that error is calculated. The weights and
thresholds are then changed in a direction designed to
decrease the error, making this a classic down-gradient
optimization technique. The run, test, tune, cycle is
repeated until convergence occurs or network
performance reaches a satisfactory level.
Implementation details and refinements can be found in
Reed and Marks (1995) and Witten and Frank (2005).
The back-propagation implementation used here is part
of the freely available data mining software package
Weka (http://www.cs.waikato.ac.nz/~ml/weka/). In all of
the runs described below, 500 epochs (i.e. iterations)
were used.

In contrast, genetic algorithms offer a means of
implementing either supervised or unsupervised training
of a neural network. As with back-propagation, many
variants exist, but all follow roughly the approach used
here:
1. A population of trial solutions is created
2. Each solution is evaluated on the training cases
3. The better solutions are bred to create new

members for the population
4. Less successful solutions are eliminated from the

population
5. Remaining solutions are mutated to explore more of

the solution space
6. Steps 2 through 5 are repeated until convergence

or until satisfactory network performance is
achieved.
For the puff interception problem, each trial solution

consists of a list of real-numbered values, one for each
of the weight and threshold parameters in the network.
The GA used here uses rank-proportional breeding
(Haupt and Haupt 2004) where a trial solution’s chances
of breeding depend on its rank in the sorted list of mean

squared error in output, i.e. the UAV course-to-steer.
Breeding is by one of three standard techniques:
• Blending (Eshelman and Schaffer 1993), in which

offspring are a weighted average of the parents,
with the weight randomly selected so that the
offspring can lie anywhere along the line between
the two parents or the extension of that line in either
direction by one-half the distance between the
parents. This extension prevents the breeding
mechanism from reducing the variance of the
solutions and thus forcing premature convergence
of the population of trial solutions.

• Uniform crossover (Haupt and Haupt 2004) in
which parameter values are taken at random from
one or the other of the parents.

• Single-point crossover (Haupt and Haupt 2004) in
which all parameters before a randomly selected
element come from one parent and the remainder
comes from the other.
The mutation mechanism used here is simply the

addition of a small amount of Gaussian noise to each
parameter value. Many other mechanisms are
discussed in the literature (Haupt and Haupt 2004). For
this implementation, the noise amplitude decays to zero
over the course of the iterations to prevent jostling of the
converged solution.

The number of trial solutions and generations (i.e.
iterations) can be varied depending on the needs of the
problem. For the results presented here 100 trial
solutions and 200 generations were used. Thus, each
GA run evaluated 20,000 trial networks compared with
500 for the back-propagation runs.

The success of each neural network training
approach will be evaluated by the number of network
evaluations required, the correlation between the true
course-to-steer and the resulting neural network output,
and the Mean Absolute Error (MAE) of this course-to-
steer output. Linear regression will serve as a baseline
for these comparisons, not because it is expected to
work well on this non-linear problem, but because its
failure demonstrates just how non-linear this problem is.

4. RESULTS

Table 1 shows the results obtained without the
coordinate transformation described in Section 2.
Linear regression is clearly inadequate for the task of
selecting a course-to-steer for puff interception, with a
correlation coefficient of less then 0.65 and an MAE of
more than a radian. Considering that the maximum
possible error is π radians, this is not good. The
simplest neural network, with a single hidden layer of
seven processing nodes yields results that are only
slightly better than that for linear regression. This
suggests that more complex neural network
architectures are required to solve this problem.
Indeed, the results improve when a second hidden layer
of three processing nodes is added. The improvement
is more modest, however, when the network complexity
is improved still further to include three hidden layers
with seven, five, and three processing nodes. Thus, the

 4

7,3 architecture appears to reach the skill plateau for
this problem.

Table 1. Success statistics for linear regression and
three neural network architectures trained by back-
propagation. All four methods are tested with 10-fold
cross validation.
Method Correlation

Coefficient
MAE

Linear Regression 0.6468 1.0796
Neural Network 7 0.6998 1.0502
Neural Network 7,3 0.7974 0.6744
Neural Network 7,5,3 0.8053 0.6631

While it is clear from the results above that tuning

network complexity can improve the results, even the
best network design did not perform particularly well.
The challenge, as is so often the case in artificial
intelligence problems involving angles, is the
discontinuity that occurs in the definition of course-to-
steer as the solution changes from just above 0 to just
below 2π. Transforming the coordinate system as
described in Section 2 eliminates this discontinuity from
the problem because an intercept never takes place in
the half-circle away from the UAV-to-puff vector so long
as the UAV is faster than the puff.

The results shown in Table 2 illustrate the impact of
this coordinate transformation on the success of the
neural network.

Table 2. Success statistics for linear regression and
three neural network architectures trained by back-
propagation. All four methods are tested with 10-fold
cross-validation. Raw correlations (CC) are taken from
Table 1, while those labeled as rotated were obtained
using training data that had undergone the coordinate
transformation. The final column shows the percent
improvement in the correlation coefficient that resulted
from this coordinate transformation.
Method Raw CC Rotated

CC
%

Linear Regression 0.6468 0.6697 3.5
Neural Network 7 0.6998 0.9679 37.5
Neural Network 7,3 0.7974 0.9917 24.4
Neural Network 7,5,3 0.8053 0.9908 23.0

The coordinate transformation yielded only a

modest improvement in the linear regression results, as
expected given the non-linearity of the problem to be
solved. In contrast it resulted in near perfect solutions
for the two best neural network architectures. Thus, the
7,3 network is sufficient for high accuracy emulation of
the analytic solution to the puff interception problem, but
only if the coordinate system is shifted to take the 0-2π
discontinuity out of play.

Having demonstrated that a 7,3 neural network is
sufficient to solve the puff interception problem, it will be
used as benchmark architecture to explore the ability of
GA and Nelder-Mead simplex methods in unsupervised
training. Table 3 presents the results for a range of

neural network training techniques. The correlation
coefficient between neural net output and true course-
to-steer is computed here on the training data rather
than using 10-fold cross-validation as was done for
Table 2. The correlation values for these two tests are
very similar for the GA trained via back-propagation,
0.9943 versus 0.9917. The same comparison for linear
regression was 0.6717 versus 0.6697, suggesting that
the similarity of skill between developmental and
independent data is not a result of near perfection of the
neural network results, but rather of having sufficient
training data available to avoid overfitting the neural
network. Thus, the true skill on independent data is
probably only slightly less than the values shown in
Table 3.

Each GA or Nelder-Mead simplex result is the best
of a three-run set. The Nelder-Mead simplex algorithm
is run from a randomly selected trial solution, rather than
from a GA-produced best-guess solution. For the GA-
trained neural networks the skill varied little from run to
run, probably because the large population of trial
solutions made the final result independent of the
randomly selected starting points. In contrast, the
Nelder-Mead-simplex-trained neural-networks exhibited
large run-to-run variations in performance. Therefore
these three-run experiments were themselves repeated
four times and the winners from the best and worst
three-run sets presented in Table 3. The run-to-run
variability in the Nelder-Mead simplex results is probably
due to its use of a single first guess rather than a 100-
member population as in the GA.

Table 3. Success statistics for various methods of
training the 7,3 neural network on the coordinate
transformed puff interception problem. All methods are
tested on the developmental data.
Method Correlation

Coefficient
Back-propagation 0.9943
GA / blending 0.7013
GA / uniform crossover 0.6674
GA / single-point crossover 0.6618
Nelder-Mead simplex (best of 3) 0.8623
Nelder-Mead simplex (worst of 3) 0.7989

The wide difference in correlation values shown in
Table 3 demonstrates that the choice of training method
matters greatly in the success of a neural network at
solving the puff interception problem. Back-propagation
achieves near perfect results with only 500 trial
solutions while the various genetic algorithms yield
results that are not much better than linear regression.
Of the three breeding techniques, blending appears to
be the best for this problem. Nelder-Mead simplex
training yields somewhat better skill than was achieved
with genetic algorithm training, but the results varied
greatly from run to run, depending on the randomly
selected starting point.

The obvious result from Table 3 is that those neural
network training methods suitable for unsupervised

 5

learning are doing worse on the puff interception
problem than is back-propagation. This raises the
question of whether similarly poor performance can be
expected when applying unsupervised learning to other
non-linear problems, such as routing a UAV during the
mapping of a previously intercepted puff. Table 4
presents the results of a preliminary examination of this
issue. The training data for the analyses above is used
to compute two new non-linear functions to serve as
predictands, thereby replacing the puff interception
problem with two different ad hoc non-linear problems
taking the same inputs.

() ()0.3
2 1 1 2 1 3.2a x u u a= + + + (2)

()
()

1 2
2 1 0.3

1

3.2
u u

a x
a

= + + (3)

where x is the initial puff position in the rotated
coordinate system where both the UAF and the Puff lie
on the x axis, and the other variables are defined as in
equation 1.

Table 4. Success statistics for various methods of
unsupervised training the 7,3 neural network on two
alternative non-linear problems All methods are tested
on the training data. As in Table 3, correlation
coefficient (CC) is used to measure success.
Method Eqn (2) - CC Eqn (3) - CC
GA / blending 0.9760 0.9967
Nelder-Mead Simplex 0.9969 0.9978

The results shown in Table 4 indicate that the ability

of the GA and Nelder-Mead simplex is highly problem
dependent. While both did poorly on the puff
interception problem, both did well on (2) and (3) with
the GA and with the Nelder-Mead simplex method.
Thus, there must be something about equation 1 that
makes it much more challenging for these two training
methods than are equations 2 and 3. Given the wide
range of results obtained in training a neural network to
solve these three non-linear problems, it is apparent that
the puff mapping problem could lie anywhere in the
range from easy to challenging for the methods tested
here.

If the puff mapping problem turns out to be
challenging, as indicated by our initial calculations, there
are two possible routes to its solution. First,
reformulation of the cost function to be minimized by the
GA and Nelder-Mead simplex may solve this problem
(Long et al. 2007). Second, one could try any of several
other unsupervised learning techniques that have been
developed for network-based robot controllers (e.g.
Guadiano et al., 1996).

5. CONCLUSIONS

A simple neural network with two hidden layers is
shown to be able to emulate the analytic solution for the

contaminant puff interception problem. This network
architecture performs equally well on two other non-
linear problems taking the same set of inputs.
Supervised learning via back-propagation works well on
all three problems. In contrast, unsupervised learning
via genetic algorithm or Nelder-Mead simplex works well
on the two alternative problems but not on the puff
interception problem. Further work will be required to
determine if training a neural network UAV controller for
the post-interception puff mapping problem can be
handled by one of these unsupervised learning methods
or will require different techniques.

Success and efficiency vary considerably between
methods. Both of the unsupervised learning techniques
require at least an order of magnitude more trial
solutions to train the neural network than does
supervised back-propagation. On the “hard” puff
interception problem discussed at the beginning of
section 4, Nelder-Mead simplex yields results midway
between those for back-propagation and the genetic
algorithm. On the “easier” alternative problems ((2) and
(3)) the Nelder-Mead simplex method performs quite
well with the genetic algorithm close behind. For the
“hard problem,” genetic algorithm results vary somewhat
with the breeding techniques used. Blending yields the
best results. For all of the neural network training
methods tested, results on the puff interception problem
were markedly worse until a coordinate transformation
was used to remove the discontinuity in the function to
be emulated.

Future work should focus on development of a
network-based UAV controller for the post-interception
puff mapping problem. Questions to be answered
include:
• Is the mapping problem GA-hard or GA-easy?
• Is the Nelder-Mead simplex method a viable

alternative?
• If neither of these methods perform well, do others

taken from the robot navigation literature perform
better?

Once a suitable unsupervised training method has been
developed, the resulting network should be coupled to a
puff-centroid tracking algorithm to yield a control system
capable of using the UAV’s own observations to guide
its routing decisions.

ACKNOWLEDGEMENTS

This work was supported by DTRA project
number W911NF-06-C-0162.

REFERENCES

Allen, C. T., S. E. Haupt, and G. S. Young, 2006:

Source characterization with a receptor-dispersion
model coupled with a genetic algorithm, In press, J.
Appl. Meteor. Climate.

Eshelman, L. J. & J.D. Schaffer, 1993: Real-coded
Genetic Algorithms and Interval-Schemata, in Proc.
FOGA '93, 187-202.

 6

Gaudiano, P., E. Zalama, and J. L. Coronado, 1996: An
unsupervised neural network for low-level control of
a wheeled mobile robot: noise resistance, stability,
and hardware implementation. IEEE Trans.
Systems, Man, Cybernetics, 26, 485-496.

Goldberg, D.E., 1989: Genetic Algorithms in Search,
Optimization, and Machine Learning, New York:
Addison-Wesley.

Hall, D. L., 1992: Mathematical Techniques in
Multisensor Data Fusion, Artech House, Norwood,
MA, 301 pp.

Haupt, R. L. and S. E. Haupt, 2004: Practical Genetic
Algorithms, 2nd edition with CD. John Wiley & Sons,
New York, NY, 255 pp.

Haupt, S. E., G. S. Young, and C. T. Allen, 2006:
Validation of a receptor/dispersion model coupled
with a genetic algorithm using synthetic data, J.
Appl. Meteor., 45, 476-490.

Holland, J.H., 1975: Adaptation in Natural and Artificial
Systems, Ann Arbor: The University of Michigan
Press.

Kuperstein, M, 1991: INFANT neural controller for
adaptive sensory-motor coordination, Neural
Networks, 4, 131–145.

Long, K. J., C. T. Allen, S. E. Haupt, and G. S. Young,
2007: Characterizing contaminant source and
meteorological forcing using data assimilation with
a genetic algorithm. Extended Abstract, Fifth
Conference on Artificial Intelligence and its
Applications to Environmental Sciences, San
Antonio, TX, Amer. Meteor. Soc.

Nelder, J. A., and R. Mead, 1965: A simplex method for
function minimization, Computer Journal, 7, 308-
313.

Reed, R. D. and R. J. Marks, 1995: Neural Smithing –
Supervised Learning in Feed Forward Artificial
Neural Networks, MIT Press, Cambridge, MA. 346
pp.

Selekwa, M. F., D. D. Dunlap, and E. G. Collins, Jr.,
2005: Implementation of multi-valued fuzzy
behavior control for robot navigation in cluttered
environments, in Proc. IEEE Conf. on Robotics and
Automation, Barcelona, Spain, 3699-3706.

Stephens, G. L., R. G. Ellingson, J. Vitko Jr., W.
Bolton, T. P. Tooman, F. P. J. Valero, P. Minnis,
P. Pilewskie, G. S. Phipps, S. Sekelsky, J. R.
Carswell, S. D. Miller, A. Benedetti, R. B. McCoy,
R. F. McCoy Jr., A. Lederbuhr, and R. Bambha,
2000: The Department of Energy's Atmospheric
Radiation Measurement (ARM) Unmanned
Aerospace Vehicle (UAV) Program, Bull. Amer.
Meteor. Soc., 81, 2915–2938.

Valero, F. P. J., S. K. Pope, R. G. Ellingson, A. W.
Strawa, and J. Vitko Jr., 1996: Determination of
clear-sky radiative flux profiles, heating rates, and
optical depths using unmanned aerospace vehicles
as a platform, J. Atmos. and Ocean. Tech., 13,
1024-1030.

Witten, I. H. and E. Frank, 2005: Data Mining: Practical
machine learning tools and techniques, 2nd Edition,
Morgan Kaufmann, San Francisco, CA, 525 pp.

Walter, J. A., and K. Schulten, 1993: Implementation of
a self-organizing neural network for visuo-motor
control of an industrial robot. IEEE Transactions on
Neural Networks, 4, 86–95, 1993.

Lewis, E. L., K. Liu. and A. Yesildirek, 1995: Neural Net
Robot Controller with Guaranteed Tracking
Performance, IEEE Trans. on Neural Networks, 6,
703-715.

