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1. INTRODUCTION ' 
 

Both inadvertent and intentional releases of 
airborne contaminants pose a threat to society.  
Managing this threat requires realtime prediction of time 
evolving contaminant concentration fields from limited 
observations.  These data assimilation algorithms 
perform best when provided with numerous 
observations within the advecting contaminant puff 
(Allen et al. 2006).  Yet, the sensor density required to 
achieve this many “hits” early in the puff’s lifetime can 
be economically impractical if only fixed sensors are 
used.  Thus, solution of the contaminant puff prediction 
problem requires mobile sensors capable of intercepting 
and mapping a puff once it has been detected by a 
sparse array of fixed sensors. 

Realtime contaminant puff interception becomes 
more feasible and less labor intensive if the unmanned 
aerial vehicles (UAV, eg., Valero et all 1996, Stephens 
et al. 2000) involved are also autonomous, i.e. able to 
make their own routing decisions.  Designing the routing 
controller logic can be done either manually, e.g. as an 
expert system (Hall 1992) or by automated training.  
The latter offers the potential for finding optimal 
solutions that might not have been obvious to the 
designer.  Thus, many recent studies on robot routing 
controllers have focused on automated training, often 
basing the controller architecture on neural networks 
(e.g. Kuperstein 1991, Walter and Schulten 1993, Lewis 
et al., 1995) or related methods (e.g. Selekwa et al., 
2005).   

This study examines the utility of the neural net 
approach for UAV routing in the puff sampling problem.  
Rather than directing an actual UAV in flight, this pilot 
study examines the suitability of various neural network 
training approaches in a synthetic, noise-free 
environment.   The study focuses on the initial puff 
interception problem because, while it is nonlinear, it 
can be solved either analytically or by iterative 
optimization.  In contrast, the subsequent puff mapping 
problem has no analytic solution.  Thus, while a neural 
network approach can be applied to both the puff 
intercept and puff mapping problems, the first can be 
handled via supervised learning while the second 
requires unsupervised learning (Reed and Marks 1995).  
The puff intercept problem can also be solved by 
unsupervised learning of course.  Therefore it will be 
used as the test problem for this study, allowing 
comparison of the results of both supervised and 
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unsupervised learning algorithms to the analytic 
solution. 

Neural network training via supervised learning 
usually makes use of some form of a back-propagation 
algorithm (Reed and Marks 1995) in which the gradient 
of error with respect to the network weights is computed 
and the trial solution is moved down the gradient to 
minimize the error.  This method works well in most 
applications, although in some situations the trial 
solution can become trapped in a local minimum of error 
(Reed and Marks 1995).  In contrast, neural net training 
via unsupervised learning requires that the traditional 
back-propagation approach be replaced by a method 
that does not require a priori knowledge of the true 
solution (i.e. desired network output) for each training 
case.  One way to achieve this unsupervised training of 
a neural network is via a genetic algorithm (GA, Holland 
1975, Reed and Marks 1995).  Another is the Nelder-
Mead simplex algorithm (Nelder and Mead 1965).  Both 
of these algorithms use iterative improvement of a first 
guess solution.  These two approaches differ in several 
ways although they are conceptually similar.  Genetic 
algorithms work on a population of trial solutions, often 
updating most or all of them at each iteration (i.e. 
generation).  In contrast, the simplex algorithm creates 
only one new trial solution each iteration.  Another 
difference is in how the two approaches search the 
parameter space for lower-error solutions.  Genetic 
algorithms do not explicitly compute the error gradient, 
but rather breed (i.e. exchange information between) the 
more successful solutions in the current population to 
create the next generation of trail solutions (Haupt and 
Haupt 2004).  This approach allows a properly tuned GA 
to avoid becoming trapped in local minima (Goldberg 
1989).  It does not, however, make the most efficient 
use of the error gradient information inherent in the 
population of trial solutions.  The Nelder-Mead simplex 
algorithm remedies this shortcoming by estimating the 
error gradient from the most recent trial solutions.   It 
then creates a new trial solution in the down-gradient 
direction and repeats the error gradient estimation 
process.  This approach is potentially faster at improving 
the solution, but can become trapped in a local 
minimum if started too far from the global minimum.  
Thus, hybrid techniques using a GA to roughly locate 
the global optimum and simplex to polish the answer 
have, for some problems, proven more efficient than 
either method working alone (Long et al. 2007). 

There are many other artificial intelligence 
algorithms that could be applied to unsupervised 
learning problems of this sort, but the best choice is still 
an open question.  This study will compare a genetic 
algorithm using various breeding mechanisms with the 
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Nelder-Mead simplex.  The utility of hybrids and the 
myriad of other techniques will be left for future work. 
 
2. DATA 
 

The puff intercept problem consists of determining 
the correct course for a UAV to steer in order to reach 
the centroid of a moving contaminant puff in the least 
possible time.  For a puff drifting at a uniform speed this 
is the straight course shown in Figure 1.   The inputs to 
the neural network are the x and y coordinates of the 
puff and the UAV, the course and speed of the puff, and 
the speed of the UAV.  The output is the course-to-steer 
for the UAV. 

 

 
Figure 1. Schematic of the puff intercept problem. 

 
The analytic solution to this problem can be 

obtained by equating the times required to eliminate the 
puff-UAV differences in the two components of position.  
The actual solution is greatly simplified if one first 
translates the coordinates to place the UAV at the origin 
and then rotates them so that the puff lies along one of 
the axes.  The following equation for course-to-steer, 
a2, results. 
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where a is the course-to-steer angle for intercept (0 
being directly towards the puff’s initial location), and u is 
the speed.  Subscript 1 indicates the puff and subscript 
2 indicates the UAV. 

This analytic solution is used to create the data 
required to train the neural network.  For this study, 
1000 training cases were generated, enough to 
accurately describe the multi-dimensional form of (1).  
Each training case consisted of randomly generated 
input values with the UAV always being faster than the 
puff so that an interception was possible.  An 
operational system would include a component to 
compute the puff-related inputs from the available 
sensor “hits” within the evolving three-dimensional 
concentration field.  Long et al. (2006) demonstrate a 
GA approach to building this component.  Future work 
will need to address the sensitivity of both the centroid 
tracking and intercept components to noise in the 
observations. 
  
3. PROCEDURES 

 
The standard feed-forward neural network 

architecture (Figure 2) is used here.  In this architecture 
the value of each input parameter is fed to each node in 
the first processing layer.  The output value for each of 
these processing nodes is then fed as input to all of the 
nodes in the next processing layer, and so on through 
any remaining processing layers.  The output value from 
each node in the last processing layer is fed into an 
output node that produces the final answer. 

 

 
Figure 2. Feed-forward neural network architecture.  

The input parameters are shown as green circles 
labeled I, the two hidden layers of processing nodes are 
shown as blue circles labeled H1 and H2.  The output 
node is shown as a red circle labeled O.  Data flow 
follows the black lines from left to right. 
 

The processing nodes contain linear regression 
equations which have been squashed by a sigmoid 
function so that the output tends asymptotically to the 
limits of some range (typically 0 to 1 or -1 to 1) as the 
inputs tend to plus or minus infinity.  Equation 2 shows 
the formula for a processing node using hyperbolic 
tangent as the squashing function. 
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where y is the course-to-steer for intercept, xi are the M 
input parameters, wi are the corresponding weights, and 
c is a threshold or offset.  The output node is similar, but 
does not include the squashing function if the output is a 
real number as is the case in the puff interception 
problem. 

Training of a feed-forward neural network consists 
of finding a set of values for these weights and 
thresholds that minimizes the error in the output.  This 
task can be approached either as a supervised learning 
problem in which values of the correct output are 
available for each training case or as an unsupervised 
learning problem in which these values are not available 
but the quality of the answer can be evaluated by the 
network’s performance in achieving an intercept. 

The standard back-propagation method of neural 
net training is a supervised learning technique (Reed 
and Marks 1995).  The network is initialized with random 
values for the weights and thresholds, and then applied 
to the training data.  The errors are computed by 
comparing the network output to the known solution 
values for each case, and the impact of each weight and 
threshold on that error is calculated.  The weights and 
thresholds are then changed in a direction designed to 
decrease the error, making this a classic down-gradient 
optimization technique.  The run, test, tune, cycle is 
repeated until convergence occurs or network 
performance reaches a satisfactory level.  
Implementation details and refinements can be found in 
Reed and Marks (1995) and Witten and Frank (2005).  
The back-propagation implementation used here is part 
of the freely available data mining software package 
Weka (http://www.cs.waikato.ac.nz/~ml/weka/).  In all of 
the runs described below, 500 epochs (i.e. iterations) 
were used. 

In contrast, genetic algorithms offer a means of 
implementing either supervised or unsupervised training 
of a neural network.  As with back-propagation, many 
variants exist, but all follow roughly the approach used 
here: 
1. A population of trial solutions is created 
2. Each solution is evaluated on the training cases 
3. The better solutions are bred to create new 

members for the population 
4. Less successful solutions are eliminated from the 

population 
5. Remaining solutions are mutated to explore more of 

the solution space 
6. Steps 2 through 5 are repeated until convergence 

or until satisfactory network performance is 
achieved. 
For the puff interception problem, each trial solution 

consists of a list of real-numbered values, one for each 
of the weight and threshold parameters in the network.  
The GA used here uses rank-proportional breeding 
(Haupt and Haupt 2004) where a trial solution’s chances 
of breeding depend on its rank in the sorted list of mean 

squared error in output, i.e. the UAV course-to-steer.  
Breeding is by one of three standard techniques: 
• Blending (Eshelman and Schaffer 1993), in which 

offspring are a weighted average of the parents, 
with the weight randomly selected so that the 
offspring can lie anywhere along the line between 
the two parents or the extension of that line in either 
direction by one-half the distance between the 
parents.  This extension prevents the breeding 
mechanism from reducing the variance of the 
solutions and thus forcing premature convergence 
of the population of trial solutions. 

• Uniform crossover (Haupt and Haupt 2004) in 
which parameter values are taken at random from 
one or the other of the parents. 

• Single-point crossover (Haupt and Haupt 2004) in 
which all parameters before a randomly selected 
element come from one parent and the remainder 
comes from the other. 
The mutation mechanism used here is simply the 

addition of a small amount of Gaussian noise to each 
parameter value.  Many other mechanisms are 
discussed in the literature (Haupt and Haupt 2004).  For 
this implementation, the noise amplitude decays to zero 
over the course of the iterations to prevent jostling of the 
converged solution. 

The number of trial solutions and generations (i.e. 
iterations) can be varied depending on the needs of the 
problem.  For the results presented here 100 trial 
solutions and 200 generations were used.  Thus, each 
GA run evaluated 20,000 trial networks compared with 
500 for the back-propagation runs. 

The success of each neural network training 
approach will be evaluated by the number of network 
evaluations required, the correlation between the true 
course-to-steer and the resulting neural network output, 
and the Mean Absolute Error (MAE) of this course-to-
steer output.  Linear regression will serve as a baseline 
for these comparisons, not because it is expected to 
work well on this non-linear problem, but because its 
failure demonstrates just how non-linear this problem is. 

 
4. RESULTS 
 

Table 1 shows the results obtained without the 
coordinate transformation described in Section 2.  
Linear regression is clearly inadequate for the task of 
selecting a course-to-steer for puff interception, with a 
correlation coefficient of less then 0.65 and an MAE of 
more than a radian.  Considering that the maximum 
possible error is π radians, this is not good.  The 
simplest neural network, with a single hidden layer of 
seven processing nodes yields results that are only 
slightly better than that for linear regression.  This 
suggests that more complex neural network 
architectures are required to solve this problem.  
Indeed, the results improve when a second hidden layer 
of three processing nodes is added.  The improvement 
is more modest, however, when the network complexity 
is improved still further to include three hidden layers 
with seven, five, and three processing nodes.  Thus, the 
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7,3 architecture appears to reach the skill plateau for 
this problem. 

 
Table 1. Success statistics for linear regression and 
three neural network architectures trained by back-
propagation.  All four methods are tested with 10-fold 
cross validation. 
Method Correlation 

Coefficient 
MAE 

Linear Regression 0.6468 1.0796 
Neural Network 7 0.6998 1.0502 
Neural Network 7,3 0.7974 0.6744 
Neural Network 7,5,3 0.8053 0.6631 

 
While it is clear from the results above that tuning 

network complexity can improve the results, even the 
best network design did not perform particularly well.  
The challenge, as is so often the case in artificial 
intelligence problems involving angles, is the 
discontinuity that occurs in the definition of course-to-
steer as the solution changes from just above 0 to just 
below 2π.  Transforming the coordinate system as 
described in Section 2 eliminates this discontinuity from 
the problem because an intercept never takes place in 
the half-circle away from the UAV-to-puff vector so long 
as the UAV is faster than the puff. 

The results shown in Table 2 illustrate the impact of 
this coordinate transformation on the success of the 
neural network. 

 
 

Table 2. Success statistics for linear regression and 
three neural network architectures trained by back-
propagation.  All four methods are tested with 10-fold 
cross-validation.  Raw correlations (CC) are taken from 
Table 1, while those labeled as rotated were obtained 
using training data that had undergone the coordinate 
transformation.  The final column shows the percent 
improvement in the correlation coefficient that resulted 
from this coordinate transformation. 
Method Raw CC Rotated 

CC 
% 

Linear Regression 0.6468 0.6697 3.5 
Neural Network 7 0.6998 0.9679 37.5 
Neural Network 7,3 0.7974 0.9917 24.4 
Neural Network 7,5,3 0.8053 0.9908 23.0 

 
The coordinate transformation yielded only a 

modest improvement in the linear regression results, as 
expected given the non-linearity of the problem to be 
solved.  In contrast it resulted in near perfect solutions 
for the two best neural network architectures.  Thus, the 
7,3 network is sufficient for high accuracy emulation of 
the analytic solution to the puff interception problem, but 
only if the coordinate system is shifted to take the 0-2π 
discontinuity out of play. 

Having demonstrated that a 7,3 neural network is 
sufficient to solve the puff interception problem, it will be 
used as benchmark architecture to explore the ability of 
GA and Nelder-Mead simplex methods in unsupervised 
training.  Table 3 presents the results for a range of 

neural network training techniques.  The correlation 
coefficient between neural net output and true course-
to-steer is computed here on the training data rather 
than using 10-fold cross-validation as was done for 
Table 2.  The correlation values for these two tests are 
very similar for the GA trained via back-propagation, 
0.9943 versus 0.9917.  The same comparison for linear 
regression was 0.6717 versus 0.6697, suggesting that 
the similarity of skill between developmental and 
independent data is not a result of near perfection of the 
neural network results, but rather of having sufficient 
training data available to avoid overfitting the neural 
network.  Thus, the true skill on independent data is 
probably only slightly less than the values shown in 
Table 3.   

Each GA or Nelder-Mead simplex result is the best 
of a three-run set.  The Nelder-Mead simplex algorithm 
is run from a randomly selected trial solution, rather than 
from a GA-produced best-guess solution. For the GA-
trained neural networks the skill varied little from run to 
run, probably because the large population of trial 
solutions made the final result independent of the 
randomly selected starting points.  In contrast, the 
Nelder-Mead-simplex-trained neural-networks exhibited 
large run-to-run variations in performance.  Therefore 
these three-run experiments were themselves repeated 
four times and the winners from the best and worst 
three-run sets presented in Table 3.  The run-to-run 
variability in the Nelder-Mead simplex results is probably 
due to its use of a single first guess rather than a 100-
member population as in the GA. 

 
 

Table 3. Success statistics for various methods of 
training the 7,3 neural network on the coordinate 
transformed puff interception problem.  All methods are 
tested on the developmental data.   
Method Correlation 

Coefficient 
Back-propagation 0.9943 
GA / blending 0.7013 
GA / uniform crossover 0.6674 
GA / single-point crossover 0.6618 
Nelder-Mead simplex (best of 3) 0.8623 
Nelder-Mead simplex (worst of 3) 0.7989 
 

The wide difference in correlation values shown in 
Table 3 demonstrates that the choice of training method 
matters greatly in the success of a neural network at 
solving the puff interception problem.  Back-propagation 
achieves near perfect results with only 500 trial 
solutions while the various genetic algorithms yield 
results that are not much better than linear regression.  
Of the three breeding techniques, blending appears to 
be the best for this problem.  Nelder-Mead simplex 
training yields somewhat better skill than was achieved 
with genetic algorithm training, but the results varied 
greatly from run to run, depending on the randomly 
selected starting point. 

The obvious result from Table 3 is that those neural 
network training methods suitable for unsupervised 
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learning are doing worse on the puff interception 
problem than is back-propagation.  This raises the 
question of whether similarly poor performance can be 
expected when applying unsupervised learning to other 
non-linear problems, such as routing a UAV during the 
mapping of a previously intercepted puff.  Table 4 
presents the results of a preliminary examination of this 
issue.  The training data for the analyses above is used 
to compute two new non-linear functions to serve as 
predictands, thereby replacing the puff interception 
problem with two different ad hoc non-linear problems 
taking the same inputs.  

 

( ) ( )0.3
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where x is the initial puff position in the rotated 
coordinate system where both the UAF and the Puff lie 
on the x axis, and the other variables are defined as in 
equation 1. 
 
Table 4. Success statistics for various methods of 
unsupervised training the 7,3 neural network on two 
alternative non-linear problems  All methods are tested 
on the training data.  As in Table 3, correlation 
coefficient (CC) is used to measure success. 
Method Eqn (2) - CC Eqn (3) - CC 
GA / blending 0.9760 0.9967 
Nelder-Mead Simplex 0.9969 0.9978 

 
The results shown in Table 4 indicate that the ability 

of the GA and Nelder-Mead simplex is highly problem 
dependent.  While both did poorly on the puff 
interception problem, both did well on (2) and (3) with 
the GA and with the Nelder-Mead simplex method. 
Thus, there must be something about equation 1 that 
makes it much more challenging for these two training 
methods than are equations 2 and 3.  Given the wide 
range of results obtained in training a neural network to 
solve these three non-linear problems, it is apparent that 
the puff mapping problem could lie anywhere in the 
range from easy to challenging for the methods tested 
here.   

If the puff mapping problem turns out to be 
challenging, as indicated by our initial calculations, there 
are two possible routes to its solution.  First, 
reformulation of the cost function to be minimized by the 
GA and Nelder-Mead simplex may solve this problem 
(Long et al. 2007).  Second, one could try any of several 
other unsupervised learning techniques that have been 
developed for network-based robot controllers (e.g. 
Guadiano et al., 1996).  
 
5. CONCLUSIONS 
 

A simple neural network with two hidden layers is 
shown to be able to emulate the analytic solution for the 

contaminant puff interception problem.  This network 
architecture performs equally well on two other non-
linear problems taking the same set of inputs.  
Supervised learning via back-propagation works well on 
all three problems.  In contrast, unsupervised learning 
via genetic algorithm or Nelder-Mead simplex works well 
on the two alternative problems but not on the puff 
interception problem.  Further work will be required to 
determine if training a neural network UAV controller for 
the post-interception puff mapping problem can be 
handled by one of these unsupervised learning methods 
or will require different techniques. 

Success and efficiency vary considerably between 
methods.  Both of the unsupervised learning techniques 
require at least an order of magnitude more trial 
solutions to train the neural network than does 
supervised back-propagation.  On the “hard” puff 
interception problem discussed at the beginning of 
section 4, Nelder-Mead simplex yields results midway 
between those for back-propagation and the genetic 
algorithm.  On the “easier” alternative problems ((2) and 
(3)) the Nelder-Mead simplex method performs quite 
well with the genetic algorithm close behind.  For the 
“hard problem,” genetic algorithm results vary somewhat 
with the breeding techniques used.  Blending yields the 
best results.  For all of the neural network training 
methods tested, results on the puff interception problem 
were markedly worse until a coordinate transformation 
was used to remove the discontinuity in the function to 
be emulated. 

Future work should focus on development of a 
network-based UAV controller for the post-interception 
puff mapping problem.  Questions to be answered 
include: 
• Is the mapping problem GA-hard or GA-easy? 
• Is the Nelder-Mead simplex method a viable 

alternative? 
• If neither of these methods perform well, do others 

taken from the robot navigation literature perform 
better? 

Once a suitable unsupervised training method has been 
developed, the resulting network should be coupled to a 
puff-centroid tracking algorithm to yield a control system 
capable of using the UAV’s own observations to guide 
its routing decisions. 
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