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1. INTRODUCTION 
 

The release of harmful contaminants is a 
potentially devastating threat to homeland security. 
Accurate identification of the source strength and 
location is essential to minimize the impact. Insufficient 
spatial and temporal resolution as well as inherent 
uncertainty in wind field data makes characterizing the 
source and predicting subsequent transport and 
dispersion extremely difficult. The solution requires a 
robust technique such as a genetic algorithm (GA) in 
order to precisely characterize the source and obtain the 
required wind information. The method uses a GA to 
find the combination of source location, source strength, 
and surface wind direction that best matches the 
monitored receptor data with the forecast pollutant 
dispersion model output. The approach is validated with 
an identical twin experiment that generates the 
observation data using the same model embedded in 
the solution method (Daley 1991). Such an experiment 
allows the validation of the solution methodology in a 
controlled environment. 

Researchers have characterized the source of 
a release using a Bayesian probability density algorithm 
to determine the mass of material released to within an 
order of magnitude as well as the location, type, and 
time of release (Robins, et al. 2005a). Robins, et al. 
(2005b) use a probabilistic dispersion model to better 
simulate the small scale effects of a meandering plume. 
In the current study, we use the Gaussian puff equation 
as the dispersion model and add wind direction to the 
list of parameters sought. 
 
2. EXPERIMENTAL DESIGN  
 

A release of a toxic contaminant is more likely 
to be an instantaneous release rather than a continuous 
emission. Therefore, the Gaussian puff equation is used 
as the forecast pollutant dispersion model rather than 
the Gaussian plume equation as was used in previous 
studies (Allen, et Al 2006).  The Gaussian puff model is 
defined as: 
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where Cr is the concentration at receptor r, (xr, yr, 
zr) are the Cartesian coordinates downwind of the puff, 
Q is the emission rate, ∆t is the length of time of the   
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release itself, t is the time since the release, U is the 
wind speed, He is the height of the puff centerline, and 
(σx, σy, σz) are the standard deviations of the 
concentration distribution in the x-, y-, and z-directions, 
respectively. As the puff traverses a regular gridded 
domain, the concentrations monitored at many 
receptors will be extremely small or zero (Figure 1). This 
analysis determines the receptor density necessary to 
obtain an accurate solution. In order to test the method’s 
robustness, the receptor data is generated by an 
identical twin experiment. 
 
2.1 Data Characteristics 
 

The simulated source release is located at the 
center of a 16,000 m by 16,000 m equally spaced grid. 
The receptors are located at the intersection and 
corners of the grid (Figure 2).  We examine two different 
wind directions, 225º and 180º. In the 225º case, the 
centerline of the puff falls directly over a number of 
receptors. In the 180º case, the centerline of the puff 
falls directly between the receptors. Currently, sensors 
can retrieve data up to once a second but the 
concentrations are likely to be highly correlated (Robins, 
et al. 2005a). The grid size and grid-spacing is 
constructed such that the puff remains on the domain 
for the specified time period. Based on a 16,000 m 
domain size and a wind speed transporting the puff at 5 
ms-1, the best intervals for data retrieval are 6, 12, 18, 
24, and 30 minutes following the release. The spacing 
configurations investigated are listed in table 1. The 
height of release is 10 m above the surface. We assume 
neutral Pasquil stability D. 
 
2.2 Procedures 

 
The GA technique is based on initializing 

solutions using a random number generator. Therefore, 
each run will yield somewhat different results. We run 
each configuration of the model ten times in order to 
gain statistics on the model’s performance. In order to 
keep the same size domain throughout the study, we 
quadrupled the number of receptors and halved the 
grid-spacing with each configuration. As a result, we are 
only examining the effects of increased resolution. The 
puff may not grow appreciably in the first time step and 
may be partially off the domain by the last time step, 
thus leaving an overwhelming number of zero data 
points at those times. For example, figure 2 illustrates 
that the puff does not pass over many of the receptors 
in the first and last time steps. Thus, for those times we 
may not have enough non-zero reporting sensors to 
obtain an accurate solution. Because of this, we expect 
the exclusion of certain time steps may aid in our 
analysis. 
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2.3 Modeling 
 
A GA is used to determine the best 

combination of source strength, source location, and 
wind speed that matches the dispersion model output 
with the receptor data. A chromosome comprised of four 
parameters, wind direction, source strength, and source 
location (x,y) is fed into the GA as a vector. Each 
chromosome is initialized with a different random 
number for each of the four variables sought for a 
population size of 1200 chromosomes. After the initial 
population is generated, the fitness of each 
chromosome is evaluated based on the cost function 
below: 
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where Cr is the concentration as predicted by the 
dispersion model given by (1), Rr is the receptor data 
value at receptor r, TR is the total number of receptors, 
a and ε are constants, and the cost function is summed 
over all five time steps. The value of a depends on the 
maximum values of Cr and Rr and is determined by 
dividing the sum of all the receptor data by one. The 
concentrations given by the puff equations are often 
very small. To avoid taking the logarithm of zero, ε is 
added to aCr and aRr quantities. The value of ε is based 
on the 10% largest concentrations of Cr and Rr. If ε 
approaches one, then it will dwarf the concentration 
values, aCr and aRr , thus rendering the cost function 
meaningless.  

The population is then sorted by the cost 
function value. A lower cost function represents a 
combination of parameter values that most closely 
matches the truth. Haupt (2005) found that large 
populations coupled with smaller mutation rates or small 
populations coupled with high mutation rates allow the 
cost function to converge towards zero in the fewest 
number of function calls. Thus, for a population size of 
1200 the best mutation rate was determined to be 0.015 
(Allen et al. 2006). The GA used here is elitist and 
retains the best solution found while the remainder of 
the population is subject to mating and mutation. The 
GA uses a mating procedure in which all parameters of 
the original two chromosomes, or parents, are blended 
to create two new unique chromosomes, or children. In 
order to encourage a complete search of the solution 
space, a number of the population is subject to 
mutation. This portion of the population is further 
modified by the multiplication of a random number. After 
each iteration the cost function is recalculated for the 
new chromosomes and the population re-sorted. The 
best candidate solution found by the GA after 100 
iterations is used as the first guess for a Nelder-Mead 
simplex algorithm (Nelder and Mead 1965). The GA is 
generally good at finding the correct solution basin and 
the Nelder-Mead simplex performs a local search to find 
the minimum of that basin. 

Skill scores are also used to evaluate the 
closeness of each solution to the exact value. The skill 
score is evaluated based on a linear composite of three 
component equations, one each to quantify the 
accuracy of strength, source location, and wind direction 
as determined by the GA and/or Nelder-Mead simplex 
method. The minimum and most desirable skill score is 
zero; the maximum and least desirable skill score is 
three. If the found source location in either x or y is 
greater than 4000 m, the skill score is assigned a 
maximum value of one for that parameter. If the strength 
is found to be more than five times the actual value, 
then the skill score for the strength parameter is 
assigned a maximum value of one. Finally, if the wind 
direction is determined to be more than 180º off from the 
known value, then it is assigned a maximum value of 
one. A solution that exactly matches the known solution 
is assigned a skill score of zero. All other solutions are 
assigned a skill score based on the equations described 
in Allen (2006). 

 
3. RESULTS 

 
The model is run ten times for each of the four 

receptor configurations for both southerly and 
southwesterly wind directions, yielding the eight total 
configurations. Table 1 displays the averages for each 
of the set-ups both before and after the Nelder-Mead 
simplex optimization. 

The GA solution alone is within 0.01º of the 
wind direction, 0.01 of the strength, and 1 m of the 
location for every configuration for the 180º wind 
direction case. Thus, the GA alone is sufficient for 
accurately identifying the source in all of the θ=180º 
configurations. This is not true, however, for the 225º 
wind direction case. The 4x4, θ=225º configuration 
yielded an average wind direction of 223.58º, a strength 
of 1.09, and a location of (82,-73) for a total skill score of 
0.3768. As the resolution of the grid increases, the 
average solution for the 225º wind direction improves by 
approximately an order of magnitude. The 32x32, 
θ=225º configuration yields solutions as good as 
θ=180º. 

Even for the 225º wind direction where 
accuracy was less than perfect for small grid sizes, the 
GA is very good at finding the deepest trough when 
multiple optima exist. Once in the correct basin, the GA 
solution is used to initialize the Nelder-Mead simplex 
method which then performs a local search to fine tune 
the minimum. Table 2 demonstrates that this hybrid GA 
with a traditional gradient descent method is extremely 
effective at optimizing the solution. In all eight 
configurations, the post-Nelder-Mead search finds the 
solution to within 0.01º of the wind direction, 0.01 of the 
strength, and 1 m of the location. The worst solution 
generated by the GA is the 4x4, θ=225º case discussed 
above and the Nelder-Mead search still finds the correct 
solution. 

When the grid size is reduced to 2x2, the 
model fails (results not shown). With only four receptors, 
the 180º wind direction has only two non-zero data 
points. Lacking sufficient information, the GA is unable 
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to determine the solution to the degree of accuracy 
shown above. However, the Nelder-Mead simplex 
method is still able to optimize the wind direction to 
within 0.2º, the strength to within 11%, and the location 
to within 30m of the actual value. When the wind 
direction is 225º, only one receptor receives data. In this 
case, the average wind direction found is 12º off, the 
strength is 50% off, and the location is on the order of 
1000 m off. Clearly a grid size of 2x2 receptors does not 
provide enough information to produce meaningful 
results and higher resolution configurations are 
necessary. 

In every configuration the cost function is 
reported as zero in Table 1. A closer analysis reveals 
that prior to the application of the Nelder-Mead simplex 
method, the cost function becomes progressively 
smaller as the resolution of the configuration increases. 
For example, the 4x4, θ=225º configuration has an 
average cost function of 4.0e-4, whereas the 32x32, 
θ=225º configuration has an average cost function of 
6.0e-6. 

A second method for evaluating the accuracy 
of each solution is the skill score which measures how 
close the solution comes to the correct known solution. 
In Table 1, the skill score prior to applying the Nelder-
Mead simplex method for all grid sizes when θ =180º is 
zero. Because every solution the GA found for these 
configurations was correct, θ=180º, strength=1.0, and 
location (0,0), it makes sense that the skill score would 
also be zero. The GA did not find perfect solutions for 
the θ=225º configurations and thus the skill scores start 
relatively high, 0.3768 for a 4x4 grid, but progressively 
improve towards 0.0004 for the 32x32 grid. In all cases 
when the best candidate chromosome is fed into the 
Nelder-Mead simplex algorithm, the model is able to find 
the optimal solution and this is corroborated by a zero 
skill score. 

 
4. SUMMARY & DISCUSSION 

 
The Gaussian puff equation was used as the 

dispersion model in conjunction with a genetic algorithm 
to best characterize a pollutant emission and the 
transport wind direction from receptor observations of 
the time-evolving concentration field. The approach was 
validated by using an identical twin experiment to create 
receptor data. The GA successfully identified the source 
location, strength, and wind direction for the higher 
resolution grid sizes at both a southerly and 
southwesterly wind direction. Using a Nelder-Mead 
simplex algorithm initialized with the best candidate 
chromosome generated by the GA, the model was able 
to correctly identify source location, strength, and wind 
direction in every case evaluated here. 

One motivation for using the Gaussian puff 
equation is to be able to identify wind speed; something 
we were unable to do with the time-independent 
Gaussian plume equation (Allen, et al. 2006). When the 
Gaussian plume equation was used (Allen, et al. 2006) 
the source strength and wind speed are to first 
approximation inversely proportional. In contrast, with a 
puff for a given concentration field we have information 

as the puff evolves in time so that speed can be inferred 
independent. Thus, it should be possible to identify wind 
speed in addition to the wind direction found here, 
thereby providing the basic weather data required by a 
transport and dispersion model. Adding this additional 
parameter to the model may increase the data 
requirements beyond those documented in table 1. It 
will also increase CPU time. 

The model used here assumes neutral stability 
atmospheric conditions and completely accurate 
sensors. In reality, sensors monitoring pollution are 
fraught with error and uncertainty. In order to simulate 
the inherent uncertainty associated with the data 
collection process and the turbulent nature of the 
atmosphere, we will add noise to the model’s input data. 
We will incorporate both additive and multiplicative 
noise as was done in Allen, et al. (2006). As part of this 
study, we will determine where the model fails and how 
much information is necessary to obtain good solutions. 

The model works extremely well when given 
sufficient information. For this study we had receptor 
data for five different time steps which amounts to 5120 
pieces of data for the 32x32 grid. Clearly, this 
configuration provides enough information to yield good 
results. In real world applications it may not be feasible 
to have sensors in place to monitor pollutant every six 
minutes. We will consider what happens to the model if 
we feed in only the last two or three sets of data. Using 
the last several sets of information allows the puff time 
to expand, and in doing so, more receptors are able to 
pick up information. Three sets of data may be enough 
information to yield an accurate solution while saving 
CPU time. In future studies, we will examine how much 
information is necessary to produce accurate solutions 
in a realistic scenario, particularly when observational 
noise is introduced. 
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FIGURES 
 
 

 

 

 

Figure 1. The evolution of the Gaussian puff over a 32x32 grid with a wind direction of θ=225º.  

 

 

Figure 2. A 180º wind direction release on a 16x16 grid with a grid-spacing of 1000 m. The source is located at 
(8.5,8.5) and receptors are located at all intersections. 
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TABLE 

 
 
Table 1. The average values over ten runs for each of the parameters are listed below. The actual wind direction, 
θ, is given below, the actual strength is 1.00, the actual source location is (0,0). The cost function value as well as 

the skill score should be close to zero. 
 

 Grid 
Size 

Grid 
Spacing (m) 

Actual θ (º) Found θ (º) Strength (x,y) (m,m) Cost 
Function 

Skill 
Score 

         

GA Alone 4x4 4000 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
post-Nelder-Mead 4x4 4000 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 4x4 4000 225.00 223.58 1.09 (82,-73) 0.000 0.3768 
         
post-Nelder-Mead 4x4 4000 225.00 225.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 8x8 2000 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
post-Nelder-Mead 8x8 2000 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 8x8 2000 225.00 224.89 1.00 (10,-10) 0.000 0.0499 
         
post-Nelder-Mead 8x8 2000 225.00 225.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 16x16 1000 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
post-Nelder-Mead 16x16 1000 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 16x16 1000 225.00 224.99 1.00 (1,-1) 0.000 0.0032 
         
post-Nelder-Mead 16x16 1000 225.00 225.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 32x32 500 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
post-Nelder-Mead 32x32 500 180.00 180.00 1.00 (0,0) 0.000 0.0000 
         
GA Alone 32x32 500 225.00 225.00 1.00 (0,0) 0.000 0.0004 
         
post-Nelder-Mead 32x32 500 225.00 225.00 1.00 (0,0) 0.000 0.0000 
         

 
 


