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1. INTRODUCTION

The release of harmful contaminants is a
potentially devastating threat to homeland security.
Accurate identification of the source strength and
location is essential to minimize the impact. Insufficient
spatial and temporal resolution as well as inherent
uncertainty in wind field data makes characterizing the
source and predicting subsequent transport and
dispersion extremely difficult. The solution requires a
robust technique such as a genetic algorithm (GA) in
order to precisely characterize the source and obtain the
required wind information. The method uses a GA to
find the combination of source location, source strength,
and surface wind direction that best matches the
monitored receptor data with the forecast pollutant
dispersion model output. The approach is validated with
an identical twin experiment that generates the
observation data using the same model embedded in
the solution method (Daley 1991). Such an experiment
allows the validation of the solution methodology in a
controlled environment.

Researchers have characterized the source of
a release using a Bayesian probability density algorithm
to determine the mass of material released to within an
order of magnitude as well as the location, type, and
time of release (Robins, et al. 2005a). Robins, et al.
(2005b) use a probabilistic dispersion model to better
simulate the small scale effects of a meandering plume.
In the current study, we use the Gaussian puff equation
as the dispersion model and add wind direction to the
list of parameters sought.

2. EXPERIMENTAL DESIGN

A release of a toxic contaminant is more likely
to be an instantaneous release rather than a continuous
emission. Therefore, the Gaussian puff equation is used
as the forecast pollutant dispersion model rather than
the Gaussian plume equation as was used in previous
studies (Allen, et Al 2006). The Gaussian puff model is
defined as:
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where C; is the concentration at receptor r, (x, yr,
z;) are the Cartesian coordinates downwind of the puff,
Q is the emission rate, At is the length of time of the
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release itself, t is the time since the release, U is the
wind speed, H, is the height of the puff centerline, and
(ox, oy, 0z are the standard deviations of the
concentration distribution in the x-, y-, and z-directions,
respectively. As the puff traverses a regular gridded
domain, the concentrations monitored at many
receptors will be extremely small or zero (Figure 1). This
analysis determines the receptor density necessary to
obtain an accurate solution. In order to test the method'’s
robustness, the receptor data is generated by an
identical twin experiment.

2.1 Data Characteristics

The simulated source release is located at the
center of a 16,000 m by 16,000 m equally spaced grid.
The receptors are located at the intersection and
corners of the grid (Figure 2). We examine two different
wind directions, 225° and 180°. In the 225° case, the
centerline of the puff falls directly over a number of
receptors. In the 180° case, the centerline of the puff
falls directly between the receptors. Currently, sensors
can retrieve data up to once a second but the
concentrations are likely to be highly correlated (Robins,
et al. 2005a). The grid size and grid-spacing is
constructed such that the puff remains on the domain
for the specified time period. Based on a 16,000 m
domain size and a wind speed transporting the puff at 5
ms™', the best intervals for data retrieval are 6, 12, 18,
24, and 30 minutes following the release. The spacing
configurations investigated are listed in table 1. The
height of release is 10 m above the surface. We assume
neutral Pasquil stability D.

2.2 Procedures

The GA technique is based on initializing
solutions using a random number generator. Therefore,
each run will yield somewhat different results. We run
each configuration of the model ten times in order to
gain statistics on the model’s performance. In order to
keep the same size domain throughout the study, we
quadrupled the number of receptors and halved the
grid-spacing with each configuration. As a result, we are
only examining the effects of increased resolution. The
puff may not grow appreciably in the first time step and
may be partially off the domain by the last time step,
thus leaving an overwhelming number of zero data
points at those times. For example, figure 2 illustrates
that the puff does not pass over many of the receptors
in the first and last time steps. Thus, for those times we
may not have enough non-zero reporting sensors to
obtain an accurate solution. Because of this, we expect
the exclusion of certain time steps may aid in our
analysis.
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2.3 Modeling

A GA is used to determine the best
combination of source strength, source location, and
wind speed that matches the dispersion model output
with the receptor data. A chromosome comprised of four
parameters, wind direction, source strength, and source
location (x,y) is fed into the GA as a vector. Each
chromosome is initialized with a different random
number for each of the four variables sought for a
population size of 1200 chromosomes. After the initial
population is generated, the fithess of each
chromosome is evaluated based on the cost function
below:
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where C, is the concentration as predicted by the
dispersion model given by (1), R is the receptor data
value at receptor r, TR is the total number of receptors,
a and ¢ are constants, and the cost function is summed
over all five time steps. The value of a depends on the
maximum values of C, and R, and is determined by
dividing the sum of all the receptor data by one. The
concentrations given by the puff equations are often
very small. To avoid taking the logarithm of zero, € is
added to ¢C, and aR, quantities. The value of ¢ is based
on the 10% largest concentrations of C, and R.. If €
approaches one, then it will dwarf the concentration
values, aC, and aR;, thus rendering the cost function
meaningless.

The population is then sorted by the cost
function value. A lower cost function represents a
combination of parameter values that most closely
matches the truth. Haupt (2005) found that large
populations coupled with smaller mutation rates or small
populations coupled with high mutation rates allow the
cost function to converge towards zero in the fewest
number of function calls. Thus, for a population size of
1200 the best mutation rate was determined to be 0.015
(Allen et al. 2006). The GA used here is elitist and
retains the best solution found while the remainder of
the population is subject to mating and mutation. The
GA uses a mating procedure in which all parameters of
the original two chromosomes, or parents, are blended
to create two new unique chromosomes, or children. In
order to encourage a complete search of the solution
space, a number of the population is subject to
mutation. This portion of the population is further
modified by the multiplication of a random number. After
each iteration the cost function is recalculated for the
new chromosomes and the population re-sorted. The
best candidate solution found by the GA after 100
iterations is used as the first guess for a Nelder-Mead
simplex algorithm (Nelder and Mead 1965). The GA is
generally good at finding the correct solution basin and
the Nelder-Mead simplex performs a local search to find
the minimum of that basin.

Skill scores are also used to evaluate the
closeness of each solution to the exact value. The skill
score is evaluated based on a linear composite of three
component equations, one each to quantify the
accuracy of strength, source location, and wind direction
as determined by the GA and/or Nelder-Mead simplex
method. The minimum and most desirable skill score is
zero; the maximum and least desirable skill score is
three. If the found source location in either x or y is
greater than 4000 m, the skill score is assigned a
maximum value of one for that parameter. If the strength
is found to be more than five times the actual value,
then the skill score for the strength parameter is
assigned a maximum value of one. Finally, if the wind
direction is determined to be more than 180° off from the
known value, then it is assigned a maximum value of
one. A solution that exactly matches the known solution
is assigned a skill score of zero. All other solutions are
assigned a skill score based on the equations described
in Allen (2006).

3. RESULTS

The model is run ten times for each of the four
receptor configurations for both southerly and
southwesterly wind directions, yielding the eight total
configurations. Table 1 displays the averages for each
of the set-ups both before and after the Nelder-Mead
simplex optimization.

The GA solution alone is within 0.01° of the
wind direction, 0.01 of the strength, and 1 m of the
location for every configuration for the 180° wind
direction case. Thus, the GA alone is sufficient for
accurately identifying the source in all of the 6=180°
configurations. This is not true, however, for the 225°
wind direction case. The 4x4, ©6=225° configuration
yielded an average wind direction of 223.58°, a strength
of 1.09, and a location of (82,-73) for a total skill score of
0.3768. As the resolution of the grid increases, the
average solution for the 225° wind direction improves by
approximately an order of magnitude. The 32x32,
0=225° configuration yields solutions as good as
6=180°.

Even for the 225° wind direction where
accuracy was less than perfect for small grid sizes, the
GA is very good at finding the deepest trough when
multiple optima exist. Once in the correct basin, the GA
solution is used to initialize the Nelder-Mead simplex
method which then performs a local search to fine tune
the minimum. Table 2 demonstrates that this hybrid GA
with a traditional gradient descent method is extremely
effective at optimizing the solution. In all eight
configurations, the post-Nelder-Mead search finds the
solution to within 0.01° of the wind direction, 0.01 of the
strength, and 1 m of the location. The worst solution
generated by the GA is the 4x4, 6=225° case discussed
above and the Nelder-Mead search still finds the correct
solution.

When the grid size is reduced to 2x2, the
model fails (results not shown). With only four receptors,
the 180° wind direction has only two non-zero data
points. Lacking sufficient information, the GA is unable
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to determine the solution to the degree of accuracy
shown above. However, the Nelder-Mead simplex
method is still able to optimize the wind direction to
within 0.2°, the strength to within 11%, and the location
to within 30m of the actual value. When the wind
direction is 225°, only one receptor receives data. In this
case, the average wind direction found is 12° off, the
strength is 50% off, and the location is on the order of
1000 m off. Clearly a grid size of 2x2 receptors does not
provide enough information to produce meaningful
results and higher resolution configurations are
necessary.

In every configuration the cost function is
reported as zero in Table 1. A closer analysis reveals
that prior to the application of the Nelder-Mead simplex
method, the cost function becomes progressively
smaller as the resolution of the configuration increases.
For example, the 4x4, ©6=225° configuration has an
average cost function of 4.0e-4, whereas the 32x32,
0=225° configuration has an average cost function of
6.0e-6.

A second method for evaluating the accuracy
of each solution is the skill score which measures how
close the solution comes to the correct known solution.
In Table 1, the skill score prior to applying the Nelder-
Mead simplex method for all grid sizes when 6 =180° is
zero. Because every solution the GA found for these
configurations was correct, 8=180°, strength=1.0, and
location (0,0), it makes sense that the skill score would
also be zero. The GA did not find perfect solutions for
the 8=225° configurations and thus the skill scores start
relatively high, 0.3768 for a 4x4 grid, but progressively
improve towards 0.0004 for the 32x32 grid. In all cases
when the best candidate chromosome is fed into the
Nelder-Mead simplex algorithm, the model is able to find
the optimal solution and this is corroborated by a zero
skill score.

4. SUMMARY & DISCUSSION

The Gaussian puff equation was used as the
dispersion model in conjunction with a genetic algorithm
to best characterize a pollutant emission and the
transport wind direction from receptor observations of
the time-evolving concentration field. The approach was
validated by using an identical twin experiment to create
receptor data. The GA successfully identified the source
location, strength, and wind direction for the higher
resolution grid sizes at both a southerly and
southwesterly wind direction. Using a Nelder-Mead
simplex algorithm initialized with the best candidate
chromosome generated by the GA, the model was able
to correctly identify source location, strength, and wind
direction in every case evaluated here.

One motivation for using the Gaussian puff
equation is to be able to identify wind speed; something
we were unable to do with the time-independent
Gaussian plume equation (Allen, et al. 2006). When the
Gaussian plume equation was used (Allen, et al. 2006)
the source strength and wind speed are to first
approximation inversely proportional. In contrast, with a
puff for a given concentration field we have information

as the puff evolves in time so that speed can be inferred
independent. Thus, it should be possible to identify wind
speed in addition to the wind direction found here,
thereby providing the basic weather data required by a
transport and dispersion model. Adding this additional
parameter to the model may increase the data
requirements beyond those documented in table 1. It
will also increase CPU time.

The model used here assumes neutral stability
atmospheric conditions and completely accurate
sensors. In reality, sensors monitoring pollution are
fraught with error and uncertainty. In order to simulate
the inherent uncertainty associated with the data
collection process and the turbulent nature of the
atmosphere, we will add noise to the model’s input data.
We will incorporate both additive and multiplicative
noise as was done in Allen, et al. (2006). As part of this
study, we will determine where the model fails and how
much information is necessary to obtain good solutions.

The model works extremely well when given
sufficient information. For this study we had receptor
data for five different time steps which amounts to 5120
pieces of data for the 32x32 grid. Clearly, this
configuration provides enough information to yield good
results. In real world applications it may not be feasible
to have sensors in place to monitor pollutant every six
minutes. We will consider what happens to the model if
we feed in only the last two or three sets of data. Using
the last several sets of information allows the puff time
to expand, and in doing so, more receptors are able to
pick up information. Three sets of data may be enough
information to yield an accurate solution while saving
CPU time. In future studies, we will examine how much
information is necessary to produce accurate solutions
in a realistic scenario, particularly when observational
noise is introduced.
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Figure 1. The evolution of the Gaussian puff over a 32x32 grid with a wind direction of 6=225°.
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Figure 2. A 180° wind direction release on a 16x16 grid with a grid-spacing of 1000 m. The source is located at
(8.5,8.5) and receptors are located at all intersections.



TABLE

Table 1. The average values over ten runs for each of the parameters are listed below. The actual wind direction,
0, is given below, the actual strength is 1.00, the actual source location is (0,0). The cost function value as well as
the skill score should be close to zero.

Grid Grid Actual 6 (°) Found 6 (°) Strength (x,y) (m,m) Cost Skill

Size Spacing (m) Function Score
post-Nelder-Mead 4x4 4000 180.00 180.00 1.00 (0,0) 0.000 0.0000
GA Alone 4x4 4000 225.00 223.58 1.09 (82,-73) 0.000 0.3768
post-Nelder-Mead 4x4 4000 225.00 225.00 1.00 (0,0) 0.000 0.0000
GA Alone 8x8 2000 180.00 180.00 1.00 (0,0) 0.000 0.0000
post-Nelder-Mead 8x8 2000 180.00 180.00 1.00 (0,0) 0.000 0.0000
GA Alone 8x8 2000 225.00 224.89 1.00 (10,-10) 0.000 0.0499
post-Nelder-Mead 8x8 2000 225.00 225.00 1.00 (0,0) 0.000 0.0000
GA Alone 16x16 1000 180.00 180.00 1.00 (0,0) 0.000 0.0000
post-Nelder-Mead 16x16 1000 180.00 180.00 1.00 (0,0) 0.000 0.0000
GA Alone 16x16 1000 225.00 224.99 1.00 (1,-1) 0.000 0.0032
post-Nelder-Mead 16x16 1000 225.00 225.00 1.00 (0,0) 0.000 0.0000
GA Alone 32x32 500 180.00 180.00 1.00 (0,0) 0.000 0.0000
post-Nelder-Mead ~ 32x32 500 180.00 180.00 1.00 (0,0) 0.000 0.0000
GA Alone 32x32 500 225.00 225.00 1.00 (0,0) 0.000 0.0004
post-Nelder-Mead ~ 32x32 500 225.00 225.00 1.00 (0,0) 0.000 0.0000



