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1.  INTRODUCTION  
 
 Transport and dispersion models are 
important tools for addressing the issue of a 
chemical, biological, radiological, or nuclear 
(CBRN) release. Since the 1950’s transport and 
dispersion modeling with application to CBRN 
emergencies is a topic of intense research (Fast et 
al. 1995). The Chernobyl nuclear accident, for 
example, promoted the development of new long-
range transport models and applications of 
existing air quality models to radioactivity in many 
research facilities (Ishikawa 1994). A number of 
field experiments have been conducted in the last 
40 years, for example the 1980 Great Plains 
Mesoscale Tracer Field experiment (Moran and 
Pielke 1995) and the Dipole Pride experiments 
(Watson et al. 1998). 
 The dispersion of hazardous puffs or 
plumes is the result of three factors: the transport 
by the wind field, dispersion by turbulence, and 
chemical reactions.  The basic data requirements 
for a dispersion modeling system are hazard 
source characterization, surface topography, and 
meteorological data.  Using these three elements, 
and the equations of transport, dispersion, and 
chemical reaction, it becomes possible to 
accurately forecast the spread and evolution of 
hazardous materials. Currently available modeling 
systems range from relatively simple to highly 
complex (Arya 1999). A simple example is the 
Gaussian plume model, which has been used for 
almost a century to predict dispersion from 
continuous point sources in air quality applications 
(Weil et al. 1992). 
 
2.  DATA  
 
 Observations play a key role in numerical 
weather prediction (NWP) as well as in transport 
and dispersion modeling. In operational NWP over 
11,000 land surface observations, over 7,000 
marine surface observations and approximately 
900 upper air soundings are available each day 
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(WMO 2005). This conventional observational 
network is augmented by satellites, radar and 
aircraft. With the average scale of synoptic eddies 
being approximately 2000 km and their evolution 
measured in days, the data coverage and the time 
resolution for NWP forecasts is generally 
sufficient.  
 In contrast; the characteristic length scale 
of a fatal hazardous release is much smaller than 
that of a synoptic disturbance: instead it will 
interact most strongly with the boundary layer 
eddies.  These eddies scale with the boundary 
layer depth (Kaimal et al. 1976) so their typical 
length scales range from 1 to 5 km and their 
evolution takes less than an hour.  Thus, much 
higher spatial and temporal sampling rates are 
required to map a hazardous release and its 
interaction with the dominant eddies.  As with 
NWP, it is expected that several sensors will be 
needed per eddy to successfully initialize a model 
of the transport and dispersion of a plume. 
Unfortunately, the current State and Local 
Monitoring Network for air quality in the USA 
contains only approximately 4,000 fixed monitoring 
stations that measure criteria pollutants 
(particulate matter, sulfur dioxide, carbon 
monoxide, nitrogen dioxide, ozone, and lead) 
(EPA). An additional 500 air-sampling devices 
have been deployed in 31 US cities in the 
framework of BioWatch, a program of the 
Department of Homeland Security (Bridis 2003). 
The BioWatch sensor network detects biological 
agents by combining state-of-the-art laboratory 
testing and traditional filter sampling methods 
(Bridis 2003). But, even with multiple mobile 
instruments being rapidly deployed to the site of 
events there is no guaranteeing that all relevant 
turbulent eddies are observed. Also, the traditional 
types of data collection used in the EPA and 
BioWatch network have the disadvantage of a 
long sampling time. In an immediate emergency 
situation real-time data is needed. 
 An alternative to gridded ground based 
measurements are Unmanned Aerial Vehicles 
(UAVs).  UAVs share the advantage of an aircraft 
in rapid deployment to arbitrary locations and 
heights, but reduce the cost and safety restrictions 
a piloted plane would present (Watai et al. 2006).  
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Moreover, the UAV can ‘spaghetti-sample’ a four 
dimensional volume efficiently.  
 Remote sensing provides another option 
to gather observational data for dispersion 
applications. The radar can measure wind 
velocities and differentiate the precipitation type 
(Serafin and Wilson 2000), enabling the user to 
infer the transport and deposition of pollutants. 
Lidar systems can estimate the turbulent mixing 
depth, by using particulate matter and 
hydrometeors as tracers (Beran and Hall 1974).   
 An advantage of many remote sensing 
devices is their ability to rapidly scan large regions 
in three dimensions (Beran and Hal 1974). But the 
difference in the output data of remote sensors 
and UAVs compared to the classical gridded 
surface observations must be considered in the 
design of a data assimilation system. The 
assimilation method applied to the transport and 
dispersion problem should be able to continuously 
incorporate observational data into the model. 
 
3.  PROCEDURES  
 
 Data Assimilation provides a methodology 
to deal with under-resolved phenomena for which 
a model is to be run. Data assimilation techniques 
allow combining all available information, with 
observations possibly sampled at different times 
and intervals and different locations into a unified 
description of the system consistent with the 
model physics (Kalnay 2003).  This analysis can 
then be used to initialize forecast models. In the 
last three decades the field has evolved to where 
complex statistical and constrained optimization 
techniques are used for the initialization of 
operational NWP forecast models (Ide et al. 1997; 
Houtekamer and Mitchell 1998). These and other 
assimilation methods now have to be tested and 
evaluated in the context of transport and 
dispersion models. 
 The need for these tests becomes clear 
looking at Figure 1. Barnes successive corrections 
algorithm* has been used to assimilate a 500 hPa 
geopotential height field and a Gaussian plume 
based on the same number of true data points and 
the same number of random observations. A 
comparison suggests that a basic function fitting 
assimilation method such as the successive 
corrections algorithm attuned for NWP does not 
perform as well for the dispersion problem. 

                                                 
* Barnes successive corrections algorithm is a basic 
fitting technique with a priori weights decreasing with 
each successive iteration cycle and with distance 
between observation and analysis (Daley, 1991). 

 Some of the more advanced, frequently 
used data assimilation techniques in NWP 
applications include optimal interpolation (Gandin 
1963), three dimensional (Sasaki 1970) and four 
dimensional variational analysis (3D- and 4D-Var) 
(Lewis and Derber 1985), extended Kalman 
filtering (Kalman and Bucy 1961), ensemble 
Kalman filtering (Houtekamer and Mitchell 1998), 
and Newtonian relaxation (data nudging) (Hoke 
and Anthes 1976). For our purposes, i.e. the 
prediction of transport and dispersion of a CBRN 
release, a flexible assimilation method is needed, 
not just to improve the accuracy of a forecast with 
observational data, but to use the CBRN 
concentration data to modify and correct the 
predicted wind field and vice versa. 
 As mentioned before, time dependent 
observational data requires an assimilation 
method that is able to assimilate continuously. 
Both of the Kalman filter techniques, 4D-Var, and 
Nudging seem to fit our needs. For further 
evaluation, Table 1 outlines the methodology, 
possibilities for dispersion modeling applications, 
advantages, and disadvantages of these three 
data assimilation techniques.  
 Four dimensional variational analysis is an 
extension of the 3D-Var that allows use of 
observations distributed within a time interval 
(Kalnay 2003). In NWP applications the prediction 
model is used as a strong constraint, but 
numerous other constraints are possible, for 
example, temporal smoothing (Daley 1991). The 
cost function is evaluated by integrating the full 
nonlinear model forward in time. Then the adjoint 
model is integrated backwards in time to 
determine the variation in the cost function. This 
information is used iteratively in a descent 
algorithm. 4D-Var can assimilate modeled and 
non-modeled variables, but is computationally 
expensive. It requires the derivation of the adjoint 
model and a priori knowledge of the forecast error 
covariance, which is the most difficult error 
covariance to estimate and has a crucial impact on 
the accuracy of the forecast.    
 Unlike 4D-Var, the Kalman Filter 
technique assimilates the observations 
sequentially each time step (Caya et al. 2005). 
The Extended Kalman Filter is a variant of the 
Kalman Filter that can be used for nonlinear 
problems (Miller et al. 1994) and is hence suitable 
for transport and dispersion applications. The 
forecast error covariance is advanced in time 
using the model itself rather than estimating it prior 
to the assimilation step. Lacking a reasonable 
assumption for linking the error covariance matrix 
to eddy size and mixing length, this fact might 
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come in handy for dealing with transport and 
dispersion models. But, like 4D-Var, the Extended 
Kalman Filter is computationally expensive. A 
promising simplification is the Ensemble Kalman 
Filter (Kalnay 2003). In this approach an ensemble 
of data assimilation cycles is carried out 
simultaneously. The Ensemble Kalman Filter does 
not specifically integrate the forecast error 
covariance, but instead computes it diagnostically 
from the spread of the model states across the 
ensemble. 
 Nudging is a computationally efficient 
technique, which relaxes the model state toward 
the observations by directly adding artificial 
tendency terms to the prognostic equations 
(Stauffer and Seaman 1993). The relaxation time 
scale, which acts as a proportionality constant in 
the tendency terms is always positive and has to 
be chosen based on scaling arguments so that the 
nudging tendencies are relatively small compared 
to the other terms in the prognostic equations 
(Stauffer and Seaman 1993). Nudging requires a 
priori knowledge of the forecast error covariance 
to correctly estimate the relaxation timescale and 
assimilates only those variables that are explicitly 
modeled. 
 A hybrid data assimilation technique may 
help reduce the computational cost without a 
drastic impact on the quality of the forecast, by 
using the advantages of certain methods, but 
avoiding the disadvantages. Hamill and Snyder 
(2000) demonstrated how to construct an 
Ensemble Kalman Filter and 3D-Var hybrid 
analysis scheme. Lili Lei (personal 
communication) suggested an Ensemble Kalman 
filter – Nudging hybrid technique, which uses the 
diagonal of the error covariance matrix computed 
with the Ensemble Kalman Filter to estimate the 
relaxation timescale, then used to nudge the 
forecast towards the observations.  
 Given the unresolved nature of puffs or 
plumes in transport with expected fixed sensor 
densities a data assimilation strategy has to be 
developed for transport and dispersion models.  
While remote sensors and UAVs can provide 
greater observation densities, their asynchronous 
sampling strategy imposes further requirements 
on the assimilation strategy.  The methods 
outlined above can handle both low sensor density 
and asynchronous observations.  What remains is 
to develop a methodology for testing and tuning 
them in the dispersion and transport model 
initialization problem.  The choice of method and 
tuning is expected to vary with the sophistication 
of the transport and diffusion model.  A Gaussian 
Plume model (Arya 1999), for example, is steady 

state and so cannot make use of the time 
dependence of 4D-Var or Kalman Filtering.  In 
contrast, a Gaussian Puff (Arya 1999) or eddy-
resolving particle tracking model (Böning and Cox 
1988) can assimilate time-varying observations via 
either of these techniques. 

The Gaussian Puff model for an 
instantaneous release suggests itself for initial 
testing as it is the simplest time-dependent 
transport and dispersion model. Being the oldest 
and simplest example of time dependent 
ensemble-averaged models, it requires a minimum 
of input information and is easily implemented. 
Keeping in mind that computational resources are 
limited in real-time CBRN situations, Nudging or 
the Ensemble Kalman Filter-Nudging-Hybrid seem 
likely to be the best assimilation techniques. The 
testing approach will be to measure the accuracy 
of the analysis at the end of the observation 
interval as a function of observation density in 
space and time.  Comparison will be facilitated by 
normalizing the time and space scales by the puff 
half-width and half-width transit time (past an 
observation site) at the end of the observation 
interval.  Subsequent work will involve more 
sophisticated time-dependent models such as 
SCIPUFF (Sykes et al. 1998). 

 
4.  CONCLUSIONS  
 
 To evaluate emergency response 
measures in the case of a CBRN release, the 
prediction of the transport and dispersion of these 
hazardous materials is necessary. In situ 
observations are most likely to be sparse, so 
optimum use must be made of available data. 
Three data assimilation techniques have been 
proposed to be suitable for dealing with the under 
resolved observational data. The advantages and 
disadvantages of the assimilation methods have 
been discussed and Nudging or a Hybrid 
technique are most likely to be most adequate for 
a CBRN scenario. Although the Kalman Filter and 
4D-Var are more complex and advanced methods, 
for immediate emergency response computational 
time is crucial. 
 For further assessment of the proposed 
techniques, a series of tests has to be conducted.  
Identical twin experiments provide an ideal first 
level of testing, allowing the methodologies to be 
tested and compared in a tightly controlled 
situation. In this type of experiment the test data is 
created using the same dynamical model used for 
the simulation, eliminating one source of 
uncertainty. In particular, the amount and 
character of noise in the observational data can be 
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controlled in an identical twin experiment, whereas 
it cannot in real-world testing.  Thus, identical twin 
experiments will allow the robustness of each 
method to be computed in the face of varying 
amounts of observational data and varying 
degrees of noise in that data.  Once the best 
system for the expected data environment has 
been selected and tuned, its performance can be 
further evaluated in second-level tests involving 
real-world observations from experimental 
releases of non-hazardous tracers. 
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6.  FIGURES AND TABLES 
 

 
Figure 1: Barnes successive corrections algorithm was used to compute the analysis with 110 random observations 

taken from the 22,000 true data points. Right hand side: 500 hPa geopotential height field in dm; left hand side: 
Gaussian plume of pollutant. First characteristic length scale is 50 data points, γ= 0.99 and 4 iterations where used. 
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Table 1: Comparison between data assimilation methods. 

 

  4D VAR Kalman Filter Nudging 

 
How It  
Works 

 
• Approaches the data filtering 

problem by updating a time 
dependent background field 

• Model produced background 
field 

• Model is run forward and 
backward, gradually 
adjusting the initial condition 

• until the model run fits the 
observations 

 
• Approaches the data filtering 

problem by updating a time 
dependent  background field

• Model produced background 
field 

• Subtract an optimized 
fraction of the model error at 
each time step 

• Many variations proposed for 
improving generality and 
efficiency 

 

 
• Approaches the data filtering 

problem using the model 
itself 

• Add term to the model’s time 
dependent budget equations

• Subtract a fixed fraction of 
model error at each time step

• Modeled fields gradually 
adjust to observations 

Dispersion 
Modeling 
Application 

• Can jointly assimilate 
observations of 
meteorological and 
concentration variables 

• Can assimilate observations 
which are sparse in space 
and time 

• Can assimilate 
meteorological and 
concentration data  

• Suitable for long range 
forecasting 

• Maintains the quality of a 
forecast over time 

• Can assimilate 
meteorological and 
concentration data  

• Suitable for long range 
forecasting 

• Maintains the quality of a 
forecast over time 

 
Advantages • Assimilates modeled and 

non-modeled variables 
• The complete model is used 

as a constraint 
• Other constraints can be 

applied 
• Older observations retain 

value to the analysis 

• Actual model dynamics used 
to constrain analysis 

• Able to assimilate 
asynchronous observations 
of multiple variables 

• Computes time dependant 
background error covariance 
using model itself 

• Actual model dynamics used 
to constrain analysis 

• Able to assimilate 
asynchronous observations 
of multiple variables 

• Does not require knowledge 
of error covariances 

• Simple to implement 
• Computationally efficient 
 

Disadvantages • Requires derivation of the 
model’s adjoint 

• Background error covariance 
must be known 

• Computationally expensive 

• Requires cleverness to 
compute error covariance 
accurately 

• Computationally expensive 
even when elegant 
mathematics are applied to 
improve efficiency 

• Assimilates only those 
variables which are explicitly 
modeled 

• Requires reasonable 
background field or long 
integration to produce a good 
analysis 

 

 


