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1. INTRODUCTION 
 
Time series filtering can be done in the 

spectral domain without loss of endpoints. 
However, filtering is commonly performed in the 
time domain using convolutions, resulting in lost 
points near the series termini. Multiple 
incarnations of a least squares minimization 
approach are developed that retain the endpoint 
intervals that are normally discarded due to 
filtering with convolutions in the time domain. 
The techniques minimize the errors between the 
pre-determined frequency response function 
(FRF) of interior points with FRF’s that are to be 
determined for each position in the endpoint 
zone. The least squares techniques are 
differentiated by their constraints: (1) 
unconstrained, (2) equal-mean constraint, and 
(3) an equal-variance constraint. The equal-
mean constraint forces the new weights to sum 
up to the same value as the pre-determined 
weights. The equal-variance constraint forces 
the new weights to be such that, after 
convolution with the input values, the expected 
variance is identical to the expected variance of 
the interior points. 

 
2. TYPICAL FILTERING METHOD AND THE 

NEW LEAST SQUARES APPROACH TO 
RETAINING ENDPOINTS 
 

Consider an input time series, x(t), that is to be 
filtered to produce y(t), the output time series. 
Filtering in frequency space is accomplished by 
applying a Fourier Transform to the time series 
(X), multiplying by the frequency response 
function (FRF; H), and back- transforming into 
time space. The FRF is defined, using filter 
weights denoted as h(τ), as follows: 
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Typically, however, time series filtering is 
computed in time space. This requires a 
convolution between the input time series and 
the filter weights: 
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The filter weights are determined a priori by 

the user based on the spectral characteristics 
one wants to transfer to the output. The 
parameters a and b are integers that are usually 
chosen such that a is the negative of b. The 
parameter τ represents a time lag. Filtering in 
the time domain results in lost points in the left 
and right endpoint intervals; this is a 
consequence of the convolution. Specifically, the 
convolution cannot be defined at the first b 
points and the last b points of the time series. In 
these regions, at least one of the lags is 
associated with an unavailable point in the time 
series (points beyond the terminal values). 
These points where the full convolution cannot 
be computed are customarily dropped from 
consideration. For example, if a monthly ENSO 
time series is defined using a five-month running 
average, and SST data are available through 
December 2006, the last filtered value that can 
be computed with full convolutions is Oct. 2006 
(in this case b=2); Dec. 2006 value cannot be 
computed until Feb. 2007 value is available. 

This dilemma leads to the following 
question: can variable-length filter weights be 
determined in the endpoint intervals such that 
the signal extraction replicates that observed in 
the interior points? For this project, a penalty 
function is constructed to minimize the squared 
error between the FRF in the interior and a new 
FRF in each point of the endpoint intervals. 
Following (1) the FRF of interior points are 
denoted as follows: 
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whereα

r
 represents the new filter weights to be 

determined. The value of b is incrementally 
decreased to force a symmetric filter at each 
point (i.e. the number of filter weights for a 
particular point in the time series will always 
equal twice the distance to the terminal end plus 
one). The result is a set of filter weights for each 
point in the endpoint interval. Without constraints, 
this minimization technique truncates the interior 
filter weights (see Bloomfield 2000). 

A practical constraint is to force the new 
weights to sum to 1 (see Arguez et al. 2005), 
thereby preserving the expectation of the mean 
of the output series. The cost function for a 
given point L in the endpoint interval is a 
function of α

r
 and λ (the Lagrange multiplier that 

imposes the constraint): 
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An alternative, albeit more complicating, 
constraint is to force the total variance to be 
preserved. Variance is related to the spectrum 
via the following relation: 
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where Syy is the raw power spectrum of y(t). The 
following equality will be imposed to insure that 
total variance in the interior will match the total 
variance of each point in the endpoint interval: 
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The asterisks indicate complex conjugates. Note 
that the constraint is dependent on the input 
time series, unlike all other methods employed 
in the present study. Modifying (4) to impose the 
new constraint, and incorporating the definition 
in (6), results in the new cost function: 

      +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

−=

22 ])([),( fki
L

Lk
k

f
efHJ παλα

r  

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−∑ ∑∑ −

−=−=f

mjfi
mj

L

Lm

L

Lj
xx efST )(2)( πααλ   (7) 

 
where T is the variance of interior points and is 
proportional to the left hand side of (6). The 
equations are solved using the Newton method 
available in the IDL programming language. We 
term this method the equal-variance method. 
 
3. PRELIMINARY RESULTS 
 

The 3 least squares methods are each 
tested under three separate filtering scenarios 
involving time series of well-known climate 
modes: the Arctic Oscillation (AO), the Madden 
Julian Oscillation (MJO), and the El Niño 
Southern Oscillation (ENSO). For each case, the 
least squares methods are compared to each 
other as well as to the spectral filtering method – 
the standard of comparison. This is 
accomplished by using several thousand 
simulated time series of each climate mode, 
which are computed by imposing the FRF of 
each climate series onto white noise time series 
and back-transforming into the time domain. 
These artificially-created time series are 
intentionally truncated to utilize the above 
methods to compute the estimations near the 
endpoints (termed the estimation zone), but the 
discarded points are used to compute the true 
filtered endpoints (using full convolutions). RMS 
errors and the variance of estimates for each 
endpoint position are calculated to measure the 
viability of all endpoint techniques. 

The results indicate that all 4 methods 
(including the spectral method) possess skill at 
determining suitable endpoints estimates. 
However, both the unconstrained and equal-
mean schemes exhibit bias toward zero near the 
terminal ends due to problems with 
appropriating variance. The equal-variance 
method does not show evidence of this attribute 
and was never the worst performer. The equal-
variance method showed great promise in the 
ENSO project involving a 5-month running mean 
filter, with regard to both RMSE (Fig. 1) and 
appropriating variance (Fig. 2). 

 
 



 
 
Figure 1: ENSO RMS Errors. Root mean square errors as a 
function of filter position for the unconstrained, equal-mean, 
equal-variance, norm, slope, roughness, and spectral 
methods for the ENSO project (top). A liberal skill threshold 
based on random filter output is an RMSE value of about 0.4. 
 
 
 

 
 
Figure 2: ENSO Endpoint Variances. Variance of 
estimated endpoint values as a function of endpoint location. 

The equal-variance method performed at 
least on par with the other methods for almost all 
time series positions in all three filtering 
scenarios. Results were also compared to the 3 
boundary constraints (norm, slope, and 
roughness) utilized in Mann (2004) for 
smoothing non-stationary time series. Although 
these three constraints occasionally exhibited 
the least RMS errors, the outputs were plagued 
by misappropriated variances. 
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