2B.10 A NEW METHOD FOR TIME SERIES FILTERING NEAR ENDPOINTS

Anthony Arguez *
NOAA National Climatic Data Center, Asheville, North Carolina

Peng Yu and James J. O’'Brien
Center for Ocean-Atmospheric Prediction Studies, Tallahassee, Florida

1. INTRODUCTION

Time series filtering can be done in the
spectral domain without loss of endpoints.
However, filtering is commonly performed in the
time domain using convolutions, resulting in lost
points near the series termini. Multiple
incarnations of a least squares minimization
approach are developed that retain the endpoint
intervals that are normally discarded due to
filtering with convolutions in the time domain.
The techniques minimize the errors between the
pre-determined frequency response function
(FRF) of interior points with FRF’s that are to be
determined for each position in the endpoint
zone. The least squares techniques are
differentiated by their  constraints: (1)
unconstrained, (2) equal-mean constraint, and
(3) an equal-variance constraint. The equal-
mean constraint forces the new weights to sum
up to the same value as the pre-determined
weights. The equal-variance constraint forces
the new weights to be such that, after
convolution with the input values, the expected
variance is identical to the expected variance of
the interior points.

2. TYPICAL FILTERING METHOD AND THE
NEW LEAST SQUARES APPROACH TO
RETAINING ENDPOINTS

Consider an input time series, x(t), that is to be
filtered to produce y(t), the output time series.
Filtering in frequency space is accomplished by
applying a Fourier Transform to the time series
(X), multiplying by the frequency response
function (FRF; H), and back- transforming into
time space. The FRF is defined, using filter
weights denoted as h(z), as follows:
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Typically, however, time series filtering is
computed in time space. This requires a
convolution between the input time series and
the filter weights:
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The filter weights are determined a priori by
the user based on the spectral characteristics
one wants to transfer to the output. The
parameters a and b are integers that are usually
chosen such that a is the negative of b. The
parameter t represents a time lag. Filtering in
the time domain results in lost points in the left
and right endpoint intervals; this is a
consequence of the convolution. Specifically, the
convolution cannot be defined at the first b
points and the last b points of the time series. In
these regions, at least one of the lags is
associated with an unavailable point in the time
series (points beyond the terminal values).
These points where the full convolution cannot
be computed are customarily dropped from
consideration. For example, if a monthly ENSO
time series is defined using a five-month running
average, and SST data are available through
December 2006, the last filtered value that can
be computed with full convolutions is Oct. 2006
(in this case b=2); Dec. 2006 value cannot be
computed until Feb. 2007 value is available.

This dilemma leads to the following
question: can variable-length filter weights be
determined in the endpoint intervals such that
the signal extraction replicates that observed in
the interior points? For this project, a penalty
function is constructed to minimize the squared
error between the FRF in the interior and a new
FRF in each point of the endpoint intervals.
Following (1) the FRF of interior points are
denoted as follows:
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where @ represents the new filter weights to be
determined. The value of b is incrementally
decreased to force a symmetric filter at each
point (i.e. the number of filter weights for a
particular point in the time series will always
equal twice the distance to the terminal end plus
one). The result is a set of filter weights for each
point in the endpoint interval. Without constraints,
this minimization technique truncates the interior
filter weights (see Bloomfield 2000).

A practical constraint is to force the new
weights to sum to 1 (see Arguez et al. 2005),
thereby preserving the expectation of the mean
of the output series. The cost function for a
given point L in the endpoint interval is a
function of @ and A (the Lagrange multiplier that
imposes the constraint):
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An alternative, albeit more complicating,
constraint is to force the total variance to be
preserved. Variance is related to the spectrum
via the following relation:
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where S,y is the raw power spectrum of y(t). The
following equality will be imposed to insure that
total variance in the interior will match the total
variance of each point in the endpoint interval:
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The asterisks indicate complex conjugates. Note
that the constraint is dependent on the input
time series, unlike all other methods employed
in the present study. Modifying (4) to impose the
new constraint, and incorporating the definition
in (6), results in the new cost function:
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where T is the variance of interior points and is
proportional to the left hand side of (6). The
equations are solved using the Newton method
available in the IDL programming language. We
term this method the equal-variance method.

3. PRELIMINARY RESULTS

The 3 least squares methods are each
tested under three separate filtering scenarios
involving time series of well-known climate
modes: the Arctic Oscillation (AO), the Madden
Julian Oscillation (MJO), and the EI Nifio
Southern Oscillation (ENSO). For each case, the
least squares methods are compared to each
other as well as to the spectral filtering method —
the standard of comparison. This s
accomplished by using several thousand
simulated time series of each climate mode,
which are computed by imposing the FRF of
each climate series onto white noise time series
and back-transforming into the time domain.
These artificially-created time series are
intentionally truncated to utilize the above
methods to compute the estimations near the
endpoints (termed the estimation zone), but the
discarded points are used to compute the true
filtered endpoints (using full convolutions). RMS
errors and the variance of estimates for each
endpoint position are calculated to measure the
viability of all endpoint techniques.

The results indicate that all 4 methods
(including the spectral method) possess skill at
determining suitable endpoints estimates.
However, both the unconstrained and equal-
mean schemes exhibit bias toward zero near the
terminal ends due to problems with
appropriating variance. The equal-variance
method does not show evidence of this attribute
and was never the worst performer. The equal-
variance method showed great promise in the
ENSO project involving a 5-month running mean
filter, with regard to both RMSE (Fig. 1) and
appropriating variance (Fig. 2).
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Figure 1: ENSO RMS Errors. Root mean square errors as a
function of filter position for the unconstrained, equal-mean,
equal-variance, norm, slope, roughness, and spectral
methods for the ENSO project (top). A liberal skill threshold

based on random filter output is an RMSE value of about 0.4.
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Figure 2: ENSO Endpoint Variances. Variance of
estimated endpoint values as a function of endpoint location.

The equal-variance method performed at
least on par with the other methods for almost all
time series positions in all three filtering
scenarios. Results were also compared to the 3
boundary constraints (norm, slope, and
roughness) utilized in Mann (2004) for
smoothing non-stationary time series. Although
these three constraints occasionally exhibited
the least RMS errors, the outputs were plagued
by misappropriated variances.
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