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1. INTRODUCTION 

In their study of the impact of various satellite data 
sources on the Eta model Data Assimilation System 
(EDAS), Zapotocny et al (2005) found that the impact of 
polar orbiter satellite data on moisture fields over land 
was very limited.  Moisture fields are historically the most 
difficult fields to forecast for mesoscale models, and this 
remains true today.    

Synoptic analysis of water vapor and clouds from 
satellite would fill an important gap in our 
characterization of the atmosphere.  Better depiction of 
water vapor and clouds, which satellites promise, would 
address needs such as analyzing cloud base, detecting 
aircraft icing regions, and assisting short-term forecasts 
of clouds and moisture.  Moisture profiles and products 
measured from space could propagate into data 
assimilation systems and weather forecast models and 
potentially yield gains on critical forecast needs like 
improved quantitative precipitation forecasts (QPF).  
This is especially true for high-impact moisture events 
such as atmospheric rivers affecting the western U.S> 
and return flow from the Gulf of Mexico. 

The impact of meteorological satellites on moisture 
analysis has been limited due to different physical 
limitations.  Infrared instruments, such as the GOES 
sounder and the NASA Atmospheric Infrared Sounder 
(AIRS) instrument, can measure total precipitable water 
(TPW) and moisture profiles in clear skies, but are 
limited by clouds.  Passive microwave measurements 
from 20 – 200 GHZ are much less affect by clouds, 
especially cirrus, and hold promise for moisture 
retrievals.  The Advanced Microwave Sounding Unit 
(AMSU) instruments onboard the NOAA operational 
satellites and the Special Sensor Microwave Imager / 
Sounder (SSMIS) instrument onboard the Defense 
Meteorological Satellite Program (DMSP) satellites are 
current examples of operational passive microwave 
sounders.   The exploitation of the passive microwave 
data has been hindered by the challenges in using the 
radiance over land.  In the microwave spectrum, a basic 
distinction is between atmospheric remote sensing over 

land and over ocean.  This is due to the higher emissivity 
of land (~ 0.95) versus ocean (~ 0.5) surfaces.  In 
addition, ocean emissivity is more readily modeled and 
is a function of fewer and better understood variables 
(windspeed, viewing angle, temperature) versus land 
(soil moisture, vegetation type, soil type, radiometric 
roughness).  Our lack of knowledge of land emissivity 
has hindered passive microwave atmospheric remote 
sensing applications, except for precipitation detection. 

Progress in extracting the atmospheric signal above 
land surfaces from passive microwave observations 
depends on characterizing the land surface emissivity, 
which determines the radiometric brightness of the 
surface.  This challenge is being approached by using 
combined infrared and microwave measurements 
(Ruston and Vonder Haar, 2004; Prigent et al. 2005; 
Karbou et al. 2005) and by modeling the surface 
emissivity through a Microwave Emissivity Model (Weng 
et al. 2001).  Figure 1 shows a composite emissivity map 
from the summer months during 2000 – 2002 (Ruston 
and Vonder Haar 2004).  Notice the lower emissivity in 
moist, vegetated areas such as the Mississippi River 
Valley.  Deserts also have lower emissivity.  Seasonal 
composites such as in Fig. 1 can help in retrieving 
moisture by accounting for the surface emission.  But 
microwave land surface emissivity is also influenced by 
phenomena which vary on shorter timescales, such as 
wet ground from precipitation and snow cover.   

In this paper we focus on the development of a 
retrieval to obtain water vapor profiles and TPW over 
land from AMSU measurements.  Heritage techniques to 
measure TPW over ocean from AMSU exist (Ferraro et 
a. 2003) and the network of roughly 300 Global 
Positioning System (GPS) sites over the CONUS allows 
an independent comparison of TPW.  The retrieval is 
named the CIRA 1-Dimensional Variational Optimal 
Estimator, or C1DOE. 
 
2. DATA 

AMSU is a set of instruments onboard the NOAA 
series of spacecraft with 20 channels from 23 to 183 



  

GHz.  The frequencies and instrument noise are shown 
in Table 1.  AMSU is a cross-track scanning instrument 
with spatial resolutions of 16 km at nadir for the 183 GHz 
moisture sounding channels and 50 km at nadir for the 
50-60 GHz temperature sounding channels.  The 
Advanced Technology Microwave Sounder (ATMS) in 
the NPOESS system now under development is similar 
to AMSU in a general sense.  Beginning with NOAA-18, 
AMSU-B has been replaced with the Microwave 
Humidity Sounder (MHS), which is quite similar but with 
some small channel placement differences.  This paper 
presents only AMSU-B results.  

To test the performance of the C1DOE retrieval, a 
global matchup dataset of collocated radiosondes and 
AMSU overpasses was created for September, 2003 
from NOAA-16 and NOAA-17.  The dataset was filtered 
so only small (< ~ 5 x 5 km) islands were used, so that 
the retrievals were essentially over ocean only.    

 
Table 1:  AMSU channel characteristics. 

 
A prototype near real-time C1DOE system has been 

developed at CIRA and is functioning with several data 
feeds.  Figure 2 shows the data flow through the system.  
Historical runs of C1DOE are also possible.  In Fig. 2, 
GDAS is the NOAA Global Data Assimilation System, a 
6-hour, 1-degree global analysis used as a first guess.  
AGRMET is a land surface model run at the Air Force 
Weather Agency which provides land boundary condition 
first guesses every three hours. C1DOE is hosted within 
the Data Processing and Error Analysis System 
(DPEAS), a computing environment described in Jones 
and Vonder Haar (2002). 

3. THE C1DOE ALGORITHM  

The C1DOE algorithm uses the method of Engelen 
and Stephens (1999) to simultaneously retrieve profiles 
of temperature and water vapor as well as cloud water 
path and surface emissivity.  It can be considered a 1-
dimensional variational data assimilation retrieval, or 
1DVAR.  The retrieval method is quite general, making it 
flexible in terms of data used and parameters retrieved.  
The retrieval is structured in a modular fashion, so new 
data sources, updates on instrument noise and channel 
failures, and retrieval parameters can be added easily.  
Our primary test data source is AMSU, although the 
SSMIS data from the DMSP satellites can be used in the 
future. 

The retrieval scheme requires a first guess of the 
water vapor and temperature profiles as well as surface 
emissivities at the relevant microwave frequencies.  An a 
priori distribution of the retrieval parameters is used to 
constrain a non-linear iterative optimal-estimation 
scheme which minimizes the cost function  to find the 
optimal solution x, where: 
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(Equation 1) 
 

where x is the vector of parameters to be retrieved, xa is 
the a priori vector, y is the set of observations (Tb’s), 
F(x) is a forward observational operator model used to 
compute radiances given x, and Sa and Sy are the error 
covariance matrixes of the a priori data and the 
observations, respectively.  The vector of retrieval 
parameters consists of the temperature and moisture 
profiles at seven levels, surface temperature, surface 
emissivity in 6 bands from 23 to 183 GHz, and cloud 
liquid water in cloudy cases.  For the initial test of the 
retrieval, we focus on clear cases.  The presence of 
cloud as a constraint would best be added from another 
infrared or visible sensor.   The a priori error covariance 
matrix includes the variances of and correlations 
between the retrieval parameters, thus providing a 
constraint on the solution from a priori knowledge.  The 
formulation of and sensitivity of the results to this matrix 
is currently under research.   

 Channel Frequency (GHz) NEDT 
(K) 

1 23.8 0.3 
2 31.4 0.3 
3 50.3 0.4 
4 52.8 0.25 
5 53.596 . 115 ± 0.25 
6 54.4 0.25 
7 54.94 0.25 
8 55.5 0.25 
9 57.290344 = f0 0.25 
10 f0 . 217 ± 0.4 
11 f0 . 3222 .048 ± ± 0.4 
12 F0 ± . 3222 . 

022 
± 0.6 

13 f0 . 3222 . 010 ± ± 0.8 
14 F0 . 3222 . 

0045 
± ± 1.2 

AMSU-A 

15 89.0 0.5 
1 89.0 0.37 
2 150.0 0.84 
3 183.31 1.0 ± 1.06 
4 183.31 3.0 ± 0.70 

AMSU-B 

5 183.31 7.0 ± 0.60 

For the forward radiative transfer, monochromatic 
microwave brightness temperatures are computed using 
numerical integration of the radiative transfer equation 
for a plane parallel, absorbing atmosphere together with 
Liebe’s MPM92 (Liebe and Hufford 1993) model of 
microwave atmospheric attenuation.  Only liquid clouds 
are currently included.  An analytic Jacobian, which 
calculates the sensitivity of the radiances to state 
variables, is used in the radiative transfer model for 
speed.  The method is modular so that an alternative 
RTM can be added if desired. 

4. RETRIEVAL DEVELOPMENT 

The initial testing of C1DOE has been performed 
with the clear ocean rawinsonde sites from the 

 
 



  

September 2003 matchup dataset (Donofrio, 2006).  
This approach was chosen to examine retrieval 
performance with good knowledge of required model 
parameters.  Among the questions which must be 
addressed before C1DOE can be run are: 

• What is the emissivity first guess and 
standard deviation? 

• What is the surface temperature first guess 
and error? 

• What is the atmospheric temperature 
profile first guess and error? 

• What is the atmospheric moisture profile 
first guess and error? 

• How many levels will be retrieved 
(currently set at 7 levels)? 

• What is the error (random and systematic) 
in the radiances versus the radiative 
transfer model? 

By choosing an ocean case, we have more control 
over the specification of the surface.  In particular, the 
emissivity at the 6 bands from 23 to 183 GHZ can be 
estimated using the ocean emissivity model from the 
NOAA Community Radiative Transfer Model (CRTM).  
Sea surface temperature is also a more uniform field 
over ocean as compared to land.  And by using AMSU 
radiances which are collocated with the radiosonde, the 
temperature and moisture profiles can be considered 
closer to truth.  By specifying the error of the retrieved 
variables, C1DOE adjusts them more or less depending 
on the error specification.  In this case, the temperature 
profile error is specified at 1 K (very good knowledge), 
so the retrieval essentially keeps the initial guess 
temperature profile.  The emissivity error is specified at 
0.01.  For land profiling, similar knowledge of emissivity 
to ~ 0.01 will be required.  The moisture error is set to a 
large value of 50 %.  This gives C1DOE the freedom to 
adjust the moisture profile to match the measured 
radiances, while only small adjustments to the other 
fields are possible. 

Figure 3 shows a comparison of C1DOE TPW to 
TPW calculated by integration of the adjacent sounding.  
It should be noted that the TPW calculated by the 
C1DOE is arrived at in a fundamentally different manner 
than the NOAA operational product described in Ferraro 
et al. 2003.  The C1DOE TPW is calculated by an 
integration of a sounding which is iteratively retrieved, 
versus by a total column-only retrieval.  In Fig. 3, the 
C1DOE and radiosonde TPW are well correlated, but the 
C1DOE results have a positive bias.  Fig. 3 was created 
without a bias correction term for the radiances, which 
accounts for differences between the radiative transfer 
model and the measurements.  With AMSU, this can be 
a complex function since the zenith angle varies across 
the scene.  A simple, non-zenith dependent bias 
correction was applied which reduced the TPW bias 
(Donofrio, 2006).  Further study of the bias correction is 
in progress.  All of the results presented here have no 
bias correction applied.  

An attractive feature of C1DOE is the numerous 
diagnostics generated automatically from the optimal 
estimation framework.  In particular, C1DOE reports how 
much impact the observations and a priori constraint had 

on the solution.  For each retrieval, C1DOE stores over 
500 fields.  These fields are being evaluated and show 
the innovation provided from AMSU data.    

Since the ultimate goal of passive microwave water 
vapor profiling is to yield information on the vertical 
structure of moisture over both land and ocean in clear 
skies and clouds, the impact of clouds on the retrieval 
must be considered.  One approach is to show the 
sensitivity of AMSU radiances to moisture in the 
presence of clouds.  Figure 4 presents the change in 
brightness temperature for a 1 g / kg change in mixing 
ratio at 700 hPa with a cloud from 700 to 850 hPa.  This 
is for a nadir view in a midlatitude atmosphere.  The 
sensitivity varies with atmospheric type and viewing 
geometry.  Results are presented for “ocean” (emissivity 
= 0.5) and “land” (emissivity = 0.95).  Notice that the 
ocean sensitivities are greater than the sensitivity over 
land.  This is another way to indicate the challenge of 
retrieving water vapor over land from AMSU.  Notice 
also that the sensitivities asymptote towards zero at high 
integrated cloud liguid water.  In practice, most 
microwave retrievals use a threshold greater than ~ 0.4 
mm as a cutoff to indicate precipitating cloud.  In spite of 
the challenge posed by clouds, there should still be a 
radiometric response to moisture in AMSU given the low 
noise (Table 1) of this sensor. 

5. LAND RETRIEVAL EXAMPLE 

Using the dataflow in Fig. 2, C1DOE has been 
exercised over the CONUS from a NOAA-16 overpass 
on June 8, 2006 at 2030 UTC.   An example of the first 
guess land emissivity at 89 GHz for this case from the 
NOAA MEM model is show in Figure 5.  The results are 
only shown within the AMSU swath, since the MEM 
requires AMSU radiances as input.    

Infrared cloud imagery and independent TPW 
calculations are shown in Figure 6.  TPW is shown from 
the GDAS analysis, which is represents the integration 
of the moisture profile first guess used by C1DOE, and 
from an experimental CIRA blended AMSU / SSM/I 
product (Kidder and Jones, 2006).  GPS TPW data from 
roughly 300 stations over CONUS has also been 
blended in to the satellite TPW product to provide 
information over land.  GPS TPW measurements are 
highly accurate and provide an excellent validation 
source.  Note the missing values outside of CONUS due 
to lack of GPS TPW data and the fact that the AMSU 
and SSM/I products are ocean only. 

The GOES imagery shows mostly clear skies over 
the Gulf of Mexico and southern U.S.  This is important 
since C1DOE is not yet ingesting infrared data for cloud 
information and cloud physics are not activated in this 
version of the retrieval.  So a correct C1DOE retrieval in 
a cloudy region is non-convergence and no retrieval. 

Figure 7 shows the C1DOE retrievals of TPW for 
this case for a variety of experimental configurations.  In 
particular, results are shown for various choices of 
emissivity variance (error) and instrument noise.  The 
instrument noise is set at either 3.5 or 7 K, and the 
emissivity variance is set at either 0.5 or 0.01.  In 
practice for a debiased perfect radiative transfer model, 

 
 



  

the instrument noise would be set at the values shown in 
Table 1.  The bias is larger than this because of 
approximations in the radiative transfer model, such as 
the number of vertical levels.  There are several 
noteworthy features in Fig. 7.  First, by setting the 
emissivity variance to 0.5, a solution is obtained over 
most of the domain.  There are some non-retrieved 
areas within the swath (across Cuba and adjacent 
waters, Mexico into New Mexico, Mid-Atlantic States) 
where no retrieval is performed, this is due to 
precipitation masking.  The fact that a solution is 
obtained when the emissivity error is set to be very large 
is important.  It means that, unless the emissivity can be 
specified with low error, the retrieval can deposit 
atmospheric errors into the emissivity and not provide 
new atmospheric information.  Comparison of Fig. 7a 
with the GDAS TPW in Fig. 6 shows that they are 
essentially the same fields.  In other words, without 
adequate emissivity constraints, C1DOE can perform a 
moisture retrieval but provide no new moisture 
information.  In Fig. 7b, the instrument noise is halved to 
3.5 K, and a large number of land retrievals become 
non-convergent.  In Fig. 7c, the emissivity variance is 
reduced to 0.01 while the noise is left at 3.5 K.  It is 
promising that C1DOE maintains a number of retrievals 
over the Gulf of Mexico, and also retrieves the spatial 
structure seen in the blended product in Fig. 6. 

6. CONCLUSIONS 

The CIRA 1-Dimensional Variational Optimal 
Estimator (C1DOE) retrieval is being used to explore 
passive microwave retrievals of water vapor and clouds 
over land.  All of the necessary data is flowing into the 
system, and a near real-time demonstration has been 
completed. 

Initial results suggest that C1DOE is behaving as 
expected.  A study of the biases in the radiative model 
transfer set up is underway and should enable greater 
impact of the AMSU radiances on the moisture solution.  
Progress is needed to provide first guess fields with low 
error, particularly for land emissivity and land surface 
temperature.  The GPS TPW fields provide an excellent 
new comparison source for the retrieval.  Future work 
will focus on: 

• Testing the performance of various land 
emissivity formulations compared to the MEM. 

• Analyzing the bias in the radiative transfer 
model 

• Adding infrared data as a cloud constraint and 
to provide a cloud mask 

• Adding dynamic creation of cloud liquid water in 
the retrieval. 

• Validation using new datasets such as the 
NASA CloudSat sensor and GPS occultation 
soundings. 

  
The C1DOE system is a step towards analyzing 

atmospheric moisture globally and eventually having a 
positive impact on forecast models.  
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Figure 1:  Composite SSM/I emissivity 37 GHz (V-pol) 
for summer months (2000-2002) (Ruston and 
Vonder Haar, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1DOE Data Flow at CIRA

C1DOE Retrieval 
hosted within 
DPEAS*

AMSU-A
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available)

GDAS 
First Guess

Global 
Raobs

DPEAS = Data Processing and Error Analysis System (J. Atm. Ocean Tech, 19, pp. 1307-1317; 2002)

Figure 2:  C1DOE data flow at CIRA. 

 
 



  

 

 

Figure 3:  Retrieved TPW calculated using the 7 
C1DOE pressure levels versus radiosonde TPW 
calculated using all available levels (73 clear cases, 
island rawinsondes, no debiasing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  

 

Figure 4:  Sensitivity to 1 g/kg of water vapor at 700 hPa 
as cloud liquid water (mm) is added to the retrieval at 
700 hPa over ocean (emissivity = 0.5), top and land 
(emissivity = 0.95), bottom. 

 

 

 

 

 

 

 

 

 

 

 
 



  

 
 

0.85 1.00.85 1.00.85 1.00.85 1.0
Figure 5:  Microwave Emissivity Model (MEM) land 
emissivity at 89 GHz  over CONUS for NOAA-16 AMSU.  
June 8, 2006, 2030 UTC.  

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Figure 6:  CIRA experimental blended GPS / AMSU / 
SSMI TPW product over CONUS, compared with GDAS 
TPW analysis.  June 8, 2006, 2030 UTC GOES channel 
4 infrared image also shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  

 

 

igure 7:  C1DOE retrieved TPW over land and ocean, 
June 8, 2006, 2030 UTC for a variety of emissivity 

 

 

F

variances and assumed AMSU-A/B instrument noise.  
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