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1.  INTRODUCTION

Recent research results by Greenwald et al, (2004) 
and  Vukicevic  et  al,  (2005,  2006)  show  that  it  is 
possible  to  obtain  skilled  three  dimensional  cloudy 
atmosphere   analysis  by  four-dimensional  variational 
(4DVAR)  assimilation  of  infrared  (IR)  satellite 
radiances  into  a  cloud  resolving  model.  In  these 
assimilation studies the analysis and model simulation 
errors  are  evaluated   against  the  observations.  The 
observations  used  were  the  IR  geostationary  satellite 
radiances  and  ground  based  cloud  radar  reflectivity. 
The  errors  associated  with  the  individual  cloud  state 
parameters  were  not  estimated  because  direct 
observations of these quantities are not available, and 
the  standard  application  of  the  variational  data 
assimilation technique only produces the analysis but 
not the error estimates.  In order to improve the error 
analysis to include an explicit estimate of errors in the 
quantities that are analyzed, it is necessary to perform 
additional  computations  which  account  for  error 
sources in the inputs to the variational  algorithm and 
produce estimates of the associated errors in the output 
(i.e. the analysis state quantities).    

In  this  study,  the  focus  is  first  on  testing  several 
approaches  for  the  error  estimates  using  a  1DVAR 
cloudy radiance assimilation algorithm. This algorithm 
is  based on cloudy radiance  observational  models  by 
Evans  (2006)  which  are  a  revised  and  improved 
version of the equivalent models used in the 4DVAR 
retrievals  in  Vukicevic  et  al  (2004,  2005).  The  error 
estimation  techniques  tested  are:   1)  background 
perturbations  by  Bauer  et  al  (2005)  where  the 
perturbations  are  derived  from  a  known  background 
error covariance matrix, 2) perturbations added to the 
observation vector to produce an ensemble of retrievals 
from  which  the  deviation  is  evaluated  and  3)  linear 
error  analysis at  the retrieved state.  These techniques 
were tested in  assimilation of  cloudy radiances with 
simulated  GOES  (Geostationary  Operational 
Environmental Satellites) observations. 
  
2.  MODEL AND ALGORITHM

Simulated radiances of GOES channels one, two, 
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and four  (0.63  μm,  3.92  μm,  and  10.7  μm) are  first 
produced  by the  spherical  harmonic  discrete  ordinate 
plane  parallel  data  assimilation  (SHDOMPPDA) 
(Evans, 2006) forward model.  This model uses profiles 
of  pressure,  temperature,  water  vapor,  mass  mixing 
ratio,  and  number  concentration  for  a  number  of 
hydrometeor  species  to  calculate  the  upwelling 
radiances  (in  reflectance  units  or  brightness 
temperature) for each GOES channel.  

For these tests, columns from an X-Z slice of a 3D 
cloud  model  simulation  are  used  as  the  input  to  the 
radiative transfer model.  The 3D cloud model used to 
generate the cloud fields is the Regional Atmospheric 
Modeling  System  (RAMS)  using  the  two  moment 
liquid cloud scheme (Saleeby and Cotton, 2004).  The 
simulation  is  centered  on  the  Atmospheric  Radiation 
Measurement program central facility in Oklahoma on 
March 16, 2001.  The clouds used here are from the end 
of a 6 hour run.  

The  parameters  retrieved  in  the  RAMS simulation 
are  taken  to  be  truth  in  these  experiments.   These 
parameters  (pressure,  temperature,  water  vapor,  mass 
mixing  ratio,  and  number  concentration)  are  initially 
used in the forward radiative transfer model to calculate 
the true liquid water path and the upwelling radiances 
for each GOES channel. 

The control vector is log cloud mixing ratio and log 
cloud  concentration:  x=ln(q)  (q represents  the  vector 
containing  both  cloud  mixing  ratio  and  number 
concentration).  The first 50 of the 84 RAMS levels are 
included  in  this  vector,  so  the  parameters  are 
represented from the surface up to about 5 km.  The 
pressure and temperature profiles are fixed to their true 
values for the specified column during the integration 
of the model.

The  background  mean  xb and  variance  σb are 
calculated  using  the  10,000  RAMS  columns  in  the 
RAMS slice used in these simulations.  The distribution 
is assumed to be multivariate Gaussian and the mean 
(M) and  variance  (V)  of  the  cloud  mixing  ratio  and 
number  concentration  when  averaged  over  these 
columns  is  used  in  the  calculation  of  the  lognormal 
parameters:

b=log 1 V
M 2

 ,

x b=log [M exp−b
2 /2 ]  (1)

The  off-diagonal  elements  of  the  background 
covariance  matrix  are  calculated  assuming  an 
exponential  decrease  in  correlation  with  distance 
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between two levels:
Bij= b ,i b , j exp −∣z i− z j∣/ Lcorr ,        (2)

where  zi is  the  height  of  the ith  level  and  Lcorr is  a 
specified  correlation  length.   The  background 
covariance matrix B, like the control vector,  contains 
values  from both the cloud mixing ratio  and number 
concentration.  The sections of the matrix where there is 
cross-correlation  between  these  two  parameters  are 
further multiplied by a constant cross-correlation  Cr,N. 
Analysis  of  the  vertical  correlation  function  of  log 
mixing  ratio  and  log  concentration  for  cloudy  levels 
from the 10,000 RAMS columns led to the choice of 
Lcorr = 0.25 km and Cr,N = 0.92 (Evans, 2006).

The cost  function to be minimized in this 1DVAR 
retrieval is:

J=
1
2
x−xb

T
B
−1 x−xb

1
2
[ y0−H  q]T R

−1[ y 0−H q]  (3)

where  yo represents  the  simulated  observations  (the 
truth in  these experiments) and the forward model  is 
H(q).   The vector  q is  used with the  forward model 
rather  than  x because  the  control  vector  must  be 
exponentiated  to  obtain  the  cloud  mixing  ratio  and 
number concentration in real space that is input into this 
model  (Evans,  2006).  The  observation  covariance 
matrix R is diagonal, with channel uncertainties  σj of 
0.02 for 0.63 μm reflectance and 2.0 K for 3.92 μm and 
10.73 μm brightness temperatures.  The gradient of the 
cost function is
  J=B−1x−x b−q H q T R−1 [ y 0−H q] ,  (4)
where  H(q)T represents  the  adjoint  to  the  forward 
model.

The a priori used in these simulations, unless stated 
otherwise,  is  the background mean vector.  The  cost 
function  is  minimized  with  a  conjugate-gradient 
algorithm.  A  line  minimization  is  done  at  each 
conjugate-gradient iteration by bracketing the minimum 
and then performing a golden section search using only 

the forward model.  

3.  DESCRIPTION OF EXPERIMENTS

Four different error analysis techniques are used with 
this 1DVAR model.

3.1  Experiment One
     

Random Gaussian noise  is  added to  the  simulated 
radiances, and then a retrieval is performed.   This is 
done sixty times each for several columns. The retrieval 
error is defined as 

e a=x t−x a  (5)
where  ea is  the  retrieval  error,  xt is  the  “true” 
atmosphere  and  xa is  the  retrieved  atmosphere.  Error 
statistics such as the mean and median retrieval error, 
standard deviation of the error, and root mean square 
are computed for each column.     

3.2  Experiment Two

The  method  used  in  this  experiment  uses  the 
simulated  radiances  of  neighboring  columns,  adding 
errors  to  the  atmospheric  profiles  rather  than  to  the 
radiance  vector  directly  as  is  done  in  the  previous 
experiment.  A random number between -10 and 10 is 
generated  at  the  start  of  each  retrieval  to  determine 
from  which  neighboring  column  the  simulated 
radiances will be calculated.  The retrievals are again 
repeated  60  times  for  each  column  and  the  error 
statistics computed as in experiment one.  

 3.3  Experiment Three

The theoretical error is calculated from the results of 
experiment one.  This is done by finding estimates of 

   Figure 1:  The error statistics for experiment one at 
the column ix=55, iy=65

   Figure 2:  Error statistics for experiment one (thin 
solid line) and experiment two (heavy solid line) at the 
column   ix=30, iy=61



the retrieval error covariance matrix (Pa) as defined by 
least square retrieval theory using the equation:

Pa=H T R−1 HB−1−1  (6)
where H is the observation model, R is the observation 
error covariance matrix, and B is the background error 
covariance matrix.  This equation is derived assuming 
that the model is linear.  The diagonal elements of the 
resulting matrix represent the theoretical variance of the 
column. This calculation is done independently for each 
of  the  60  retrievals  performed  for  each  column,  and 
then an average over the retrievals is computed.  

3.4  Experiment Four

The ensemble approach is used to add error to the 
first guess state vector as in Bauer et al (2005).  The 
eigenvalues  are  multiplied  by  their  corresponding 
eigenvectors as well as a random Gaussian number.  A 
sum is taken over all the eigenvalues and the resulting 
vector is added to the mean background state.  This is 
then converted into real space and taken as the initial 
guess  for  the  cloud  mixing  ratio  and  number 
concentration rather than having the mean background 
as the initial guess.  As in experiments one and two, the 
retrievals were repeated 60 times for each column and 
the error statistics computed as in those experiments.  

4. ANALYSIS OF RESULTS

4.1  Experiment One

The error statistics for the retrieval of one column 
are  shown in  figure  1.   These  statistics  represent  an 
average, median, etc over 60 retrievals.  To test if 60 
retrievals is sufficient to get a good representation of 
the statistics,  these same statistics are also computed 
over  200 retrievals.   The  results  of  the two tests  are 

nearly identical, indicating that the calculation of error 
statistics  with  60  retrievals  is  a  fairly  accurate 
representation.  

4.2  Experiment Two

As  can  be  seen  in  figure  2,  the  method  used  in 
experiment two causes a greater error on average than 
the method used in experiment one.  In particular, the 
standard deviation of the errors is greater in experiment 
two than in experiment one, as expected.

4.3  Experiment Three

When  the  theoretical  error  as  calculated  in 
experiment three is compared to the root mean square 
error as calculated in experiment one (see figure 3), it is 
seen  that  the  root  mean  square  of  the  error  is 
significantly  more  than  the  theoretical  standard 
deviation.   This  is  in  part  due  to  the  assumption  of 
linearity  made  in  this  experiment.  In  addition,  the 
background  error   covariance  is  poorly  known, 
contributing  to  this  discrepancy.   The  theoretical 
variances  are  also  examined  with  no  measurements. 
The variances in this case do not change much from the 
case  with  measurements,  indicating  that  the  mixing 
ratio and number concentration profiles depend mostly 
on  the  background  rather  than  the  simulated  GOES 
channels.  

4.4  Experiment Four
     

The  results  of  this  experiment  and  those  of 
experiment one match fairly closely, as can be seen in 
figure 4. However, the standard deviation of the error in 
this retrieval is not negligible.  The perturbations added 
to the initial guess have the shape of the background 
error covariance matrix, which reflects model errors in 

   Figure 3:  The comparison of  the theoretical  error 
(heavy solid line) with the root mean square error found 
in experiment one (thin solid line)

   Figure 4:  The comparison of the error statistics in 
experiments four (heavy solid line) and one (thin solid 
line)



RAMS since the background data were taken from the 
output  of  that  model.   This  could  bias  the  results 
towards the background and by so doing, contribute to 
the error observed in this experiment.      

In  theory,  one  needs  to  use  only  the  set  of 
eigenvalues and eigenvectors that represent about 90% 
of the total energy to save on computation time.  In this 
case,  it  was  found  that  the  sum  of  the  largest  30 
eigenvalues (out of 100) represents about 90% of the 
total.  When tested and compared to the results given 
when  all  of  the  eigenvectors  are  used  to  form  the 
perturbation,  the  results  are  very  similar,  confirming 
that not all of the eigenvectors need to be used.  

Figure 5 shows the eigenvectors that correspond to 
the  ten  largest  eigenvalues  of  the  background  error 
covariance  matrix.   Since  this  model  produces  two 
moments,  the  cloud  mixing  ratio  and  number 
concentration, the pattern of each eigenvector repeats in 
the upper portion of the plot.  Because the background 
decorrelation length is small, even the most dominant 
eigenvectors are still quite wiggly.  When Lcorr is set to 
be  even  smaller  (0.05  km),  the  fine  structure  of  the 
atmospheric  state  can be easily observed in the most 
dominant eigenvectors.  On the other hand, when Lcorr is 
large  (2.5  km),  the  dominant  eigenvectors  become 
much smoother.  
   
5. CONCLUSIONS AND FUTURE RESEARCH

The  major  conclusions  from  the  preliminary 
1DVAR experiments are: 

• The errors in the background state cause larger 
errors  in  the  retrieval  than  the  observation 
errors, as expected.  

• The results of experiment three show that the 
variance  calculated  by  the  linear  theory  is 
much smaller than the “true” variance caused 
by the observation errors only.  This is due to 
the  assumption  of  having a  linear  model,  as 
well  as  using  a  poorly  known  background 
covariance matrix in the computation.

• The  results  of  experiment  four  with  the 
perturbations  from  the  eigenvectors  of  the 
background covariance matrix also show that 
poor  knowledge  of  the  background  error 
matrix  could  have  a  strong  influence  on  the 
standard  deviation  of  the  resulting  retrieval 
errors.  In the case of a cloudy retrieval, these 
factors  make  the  standard  deviation  of  the 
retrieval  error  much  larger  than  observed  in 
experiment  one,  where  random  Gaussian 
perturbations  are  added  to  the  simulated 
radiances.

In order to improve these calculations, a better model 
for  the  background  error  covariance  should  be 
developed.  This could be achieved by using ensemble 
simulations  with  the  cloud  resolving  model,  or  by  a 
systematic  comparison  of  the  model  forecast  to 
available  observations.  The  latter  method  will  be 
applied first  in future studies with both  the 1DVAR 
and  4DVAR data  assimilation  experiments  using  the 
Atmospheric  Radiation  Measurements  (ARM) project 
observations. 

   Figure 5: Ten eigenvectors corresponding to the 10 largest eigenvalues of the background covariance matrix. 
The eigenvalue appears on the top of the plot of its corresponding eigenvector.
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