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1. INTRODUCTION

Adaptive observations strategies aim to improve
the forecasting skill of numerical weather prediction
systems by dynamically identifying optimal loca-
tions where additional (targeted) observational data
must be collected. Despite many advances in the
theoretical formulation and implementation of tar-
geting methods (Palmer et al. 1998, Berliner et al.
1999, Baker and Daley 2000, Bishop et. al 2001,
Bergot and Doerenbecher 2002, Leutbecher 2003,
Langland and Baker 2004, Majumdar et al. 2006)
the problem of the optimal adaptive sampling is a
young, dynamically evolving, discipline and many
open questions remain to be addressed (Langland,
2005). Optimal deployment of targeted observations
requires a systematic assessment of the information
provided by the observational network to a specific
data assimilation and forecast system. The design of
adaptive strategies must account for various factors
such as: the forecast model details, the magnitude
and the dynamical growth of the uncertainty in the
initial conditions, the data assimilation scheme used
to provide the initial conditions, the configuration of
the conventional observational network (Lorenz and
Emanuel 1998, Bergot 2001, Morss et al. 2001).

Targeting methods using total energy singular
vectors and analysis sensitivity search for the regions
where the forecast is sensitive to analysis errors and
provide no guidance on the issues that lie within the
realm of data assimilation and not modeling (Baker
and Daley 2000). In particular, the interaction be-
tween the sampling strategy and other observing sys-
tems in the vicinity, as well as the influence of the
background error, have not been properly investi-
gated.

The characteristics of the data assimilation sys-
tem may be integrated in the adaptive observations
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method by using the sensitivity to observations tech-
nique proposed by Baker and Daley (2000). This ap-
proach was developed in the context of 3D-Var data
assimilation and was later used for targeting obser-
vations by Doerenbecher and Bergot (2001) who em-
phasized that to optimize the efficiency of adaptive
techniques the assimilation of both conventional and
adaptive observations must be considered. Langland
and Baker (2004) describe an adjoint-based proce-
dure for assessing the impact of observations in a
3D-Var data assimilation and forecast system on a
scalar measure of the short-range forecast error.

The issue of data interaction on selecting tar-
geted observations becomes increasingly important
in the context of four dimensional variational data
assimilation (4D-Var) that allows for multiple time
varying targeting areas in the assimilation window
following the flow regime. The interaction between
time and space distributed adaptive observations
and other observing systems in the vicinity is not
properly incorporated into current objective target-
ing methods.

In this work a method to assess the information
provided by the routine observational network and
to account for data interactions within the target-
ing procedure is implemented in the 4D-Var con-
text. The method builds on the work of Daescu and
Carmichael (2003) and Daescu and Navon (2004) to
account for the dynamical interaction between the
forecast sensitivity field, as computed with an objec-
tive targeting method, and a sensitivity field associ-
ated to all additional data available to the assimila-
tion procedure. Numerical results are presented with
a 2D global shallow-water model using the Lin-Rood
flux-form semi-Lagrangian scheme (Lin and Rood,
1997) and its adjoint. Idealized 4D-Var twin experi-
ments are setup with initial conditions specified from
the ECMWF 500mb ERA-40 dataset. A compara-
tive analysis with targeted observations using gradi-
ent sensitivity shows that the method to account for
data interaction is effective in providing improved
forecasts at a low additional computational effort.
Limitations of the current implementation and fu-
ture research directions are also discussed.



2. TARGETED OBSERVATIONS IN THE
4D-VAR CONTEXT

The 4D-Var data assimilation searches for an op-
timal estimate (analysis) to the initial conditions by
solving a large-scale optimization problem

min J(xg); x5 = Arg minJ (1)
X0
The cost functional
J = §(X0 —x5) "B (%0 — xp)

N
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includes the distance to a prior (background) esti-
mate to initial conditions x; and the distance of
the model forecast x; = M(xg) to observations
Yi, k = 1,2,... N time distributed over the anal-
ysis interval [to, ¢x]. The model M is nonlinear and
for simplicity we assume a linear representation of
the observational operator H; that maps the state
space into the observation space at time t;. Statisti-
cal information on the errors in the background and
data is used to define appropriate weights: B is the
covariance matrix of the background errors and Ry
is the covariance matrix of the observational errors.
Recent advances in modeling flow-dependent back-
ground error variances are discussed by Kucukkaraca
and Fisher (2006).

The observational data set O = {y} available
over the assimilation window has two components
O = 0O°U 0% where O° is the set of routine ob-
servations provided by the conventional observing
network whose location in the time-space domain is
assumed to be a priori known and O% is the set of
additional (targeted) observations to be included in
the 4D-Var procedure. Identification of the targeted
observations aims to reduce the error of a forecast
aspect at the verification time ¢, > ¢t over the ver-
ification domain D,

1
To(x0) = 5 (P(x] = xT), P(x] = x[))p (3)
where x{ = M(xp), x7¢/ is the verifying analysis at

t,, and P is a diagonal projection operator on D,
satisfying P*P = P2 = P. The inner product (-, )p
is defined as (y,z)r = (y,Ez) where E is a sym-
metric positive definite matrix. In practice a total
energy norm is often used to measure the forecast er-
ror (3). To fully account for the temporal dimension
of the 4D-Var scheme multiple targeting instances
to < t; < ty,t = 1,...,1 may be considered in

the assimilation window. The targeted observations
problem searches for an adaptive observational path

={0f,04,...,0%} such that the solution xg of
the corresponding 4D-Var data assimilation (2) min-
imizes the forecast error expressed by the functional
(3). For practical applications (e.g. flight planning)
the functional J, must be based on the forecast
alone since the forecast error at t, is not known at
the planning time (Langland et al. 1999). ”A pos-
teriori” (”after-the-fact”) studies provide valuable
insight on the benefits and shortcomings of targeted
observations and in this case J, is taken to be the
forecast error at t, measured by the functional (3).

2.1 Adjoint-based sensitivity methods

Singular vectors and gradient sensitivity are tar-
geting methods that rely on the linearization of the
nonlinear forecast model and tangent linear and ad-
joint model integrations. To first order approxima-
tion, a perturbation ¢x; in the model state at ¢;
evolves to optimization time ¢, into

- M(x;)

0Ty = (Vx, Tv, 0xy) = (M*(ty, 1) Vx, To, 0%;) (5)

where M(#;,t,) is the resolvent of the tangent lin-
ear model in the optimization interval t, — t; and
M*(t,,t;) its adjoint model. For the discrete dy-
namics, the adjoint M* is simply the transpose ma-
trix MZ. A sensitivity function F, ;(\,0) is used
to identify regions where errors in the analysis at
the targeting time ¢; will have most impact on the
forecast at t, over D,.

In the adjoint sensitivity approach targeted ob-
servations are selected using the gradient of the func-
tional 7, defined in terms of the forecast at the ver-
ification time. Ideally, we would like to evaluate the
sensitivity of the forecast error (3) with respect to
the model state at the targeting time. A large sen-
sitivity value indicates that small variations in the
model state will have a significant impact on the
forecast at the verification time. The sensitivity field
at longitude-latitude grid location (A, #) is defined as

Fyi(A0) = [MF (0, £) Vi, Toll (x.0) (6)

(SXU = M(Xl + (SXl) ~ M(ti, tv)(SXi (4)

(vertically integrated gradient norm) and targeted
observations at ¢; are deployed at locations (\,6)
where F, ;(), 0) has largest values. Identification of
the target area at distinct instants in time proceeds
backward from ¢; to t; and an efficient evaluation
of all VJ,(x;),i = 1,2,...1 is obtained through a
single adjoint model integration. The adjoint sen-
sitivity method may be therefore implemented at a



reduced computational cost even in the case when
multiple targeting instants are considered.

The singular vectors approach to targeting ob-
servations (Palmer et al. 1998, Buizza and Montani
1999) is computationally intensive since the leading
eigenvectors are obtained by solving the generalized
eigenvalue problem

(PM)"E (PM)v = c*A" v (7)
in the optimization interval t, — t;. The specifica-
tion of the metrics E and A~! at time ¢, and t;,
respectively is discussed by Palmer et al. (1998).
An optimal choice for A is the analysis error co-
variance matrix that may be approximated by the
inverse Hessian matrix of the cost functional in the
4D-Var. The use of Hessian singular vectors (HSV)
in a 3D-Var context is discussed by Barkmeijer et al.
(1999). The total energy singular vectors (TESV)
are obtained by selecting the total energy metric at
the targeting time ¢; and at the verification time t,,,
A~1! = E. The computational burden of (7) is thus
reduced since E is a diagonal matrix. The sensitivity
function is defined using the first m-leading TESV
v; with unit E-norm

m

> (03/0%) £i(1.0) (8)

j=1
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where f;(\,6) denotes the (vertically integrated)
total energy of v; at grid point (A, §) and targeted
observations are taken at the locations (A, ) where
F, (), 0) takes the largest values. The computa-
tional cost of implementing targeting methods using
singular vectors is significantly increased when mul-
tiple targeting instants are considered since for each
ti,i = 1,2,...1 a new set of singular vectors must
be computed.

2.2 The wmpact of data interaction

Baker and Daley (2000) noticed that the opti-
mality criteria of objective targeting methods based
on TESV and adjoint sensitivity does not properly
account for the characteristics of the data assimila-
tion system (DAS). Targeted observations at instant
t; are selected assuming that these are the only avail-
able observations and the impact of other observing
systems in the vicinity is neglected. Since the 4D-
Var data assimilation takes into consideration all ob-
servations available in the assimilation window, the
impact of data interaction must be considered by
the targeting procedure. Sensitivity to observations
techniques have been considered in the 3D-Var con-
text to assess the impact of targeted observations in

the presence of data from the routine observational
network (Doerenbecher and Bergot 2001, Bergot and
Doerenbecher 2002, Langland and Baker 2004) and
an extension to the 4D-Var data assimilation scheme
is yet to be implemented.

The use of influence functions associated to
the observations was considered by Daescu and
Carmichael (2003) and Daescu and Navon (2004) as
a cost-effective approach to assess the interaction be-
tween targeted and routine observations. The influ-
ence function associated to observations yj at time
ty is defined for ¢; < ¢ as the gradient norm

Fiei(A, 0) = [MF(tr, ) Vi, T (%0) [ (20) - (9)

of the 4D-Var cost functional J restricted to the
observational set yi. A large value of the influence
function Fy, ; indicates that information provided by
observational data y; has a significant impact in de-
termining the analysis at ¢;. To account for data
interaction, the forecast error sensitivity field £, ; is
updated at t; according to
Fi(\60)\

F,;(\0)=F,;(\0) (1 osz)i()He))

The updated sensitivity field is inversely propor-
tional to the relative value of the influence func-
tion associated to the set of observations that have
been already located such as routine observations.
Targeted observations at t; are located in regions
where the forecast sensitivity Fj; to analysis er-
rors is large and little additional information may
be extracted from all other observational resources.
The interaction between observations is controlled
by the weight coefficient a@ > 0 which reflects the
confidence in the previously selected observations
(e.g. observational errors). Using this procedure the
redundancy between time distributed targeted and
routine observations is minimized. The computa-
tional overhead required by the updating procedure
(10) is roughly given by the computational cost of a
adjoint model integration in the 4D-Var assimilation
window [tg,tn]. The additional computational ef-
fort is thus low and numerical experiments indicate
that the procedure is effective in selecting targeted
observations that provide improved forecasts.

(10)

3. NUMERICAL EXPERIMENTS

The numerical experiments are performed with
a two-dimensional global shallow-water (SW) model
using the explicit flux-form semi-Lagrangian (FFSL)
scheme of Lin and Rood (1997) at a 2.5° x 2.5° res-
olution and a constant time step At = 450s. As



a reference initial state x{°/ we consider the 500mb

ECMWF ERA-40 data valid for March 15, 2002 06h.
4D-Var data assimilation experiments are setup in
a twin experiments framework using as background
estimate x; to the initial conditions the 500mb
ECMWF ERA-40 data valid for March 15, 2002 00h,
six hours prior to the reference state x"¢/. The 24h
forecast error x7¢ — xf = M(x;*) — M(x;) in a
total energy metric exhibits a large magnitude over
the region D, = [55°W, 35°W] x [62° N, 65°N| that
is defined as the verification domain at ¢, = 24h.
The configuration of the geopotential height for the
reference initial state and the 24h forecast error over
the verification domain are displayed in Figure 1.

500mb geopotential height at initial time (ECMWF ERA-40)
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Figure 1: Reference geopotential height at the initial
time and the error over the verification domain of a
24h forecast initiated from the background estimate.

For the 4D-Var experiments a six hours 0-6h data
assimilation time interval is considered. Model gen-
erated data from a reference run is used to simulate
a routine observational network that provides ”ob-
servational data” O¢ at every 4" grid point on the
longitudinal and latitudinal directions at ¢t = 6h
(~ 6% of the state is "observed”). The data as-

similation system that incorporates only the routine
observations is hereafter referred to as DAS-I. The
targeting instant is taken at t=0h, where a number
of 20 targeted observations must be selected. For
a total energy forecast aspect J,, the target area
identified by the gradient sensitivity method (6) was
found to be nearly identical to the target area iden-
tified by 20 leading total energy singular vectors (8),
as shown in Figure 2.

Sensitivity to analysis (gradient) of 24h forecast aspect (TE)

determined by the adjoint model integration
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Sensitivity region of 24h forecast aspect (total energy)
determined by 20 leading singular vectors (TE)
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Figure 2: Target area at t=0h identified by the gra-
dient of the total energy forecast (top) and by the
total energy singular vectors (bottom).

3.1 Observation targeting experiments

The twin experiments setup allows for ”a pos-
teriori” targeting experiments with the functional
J, defined to be the forecast error at t,. The
corresponding sensitivity field (6) identified by the
adjoint sensitivity method and the location of tar-
geted observations (leading 5) is displayed in Figure
3. In this case the selection of targeted observations
does not account for the impact of routine data, and



the corresponding DAS is hereafter referred to as
DAS-II.

Sensitivity to analysis of the 24h forecast error

over the verification domain and location of targeted observations
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Figure 3: Targeted observations at t=0h identified
by the gradient of the total energy forecast error,
without taking into account interaction with data
at t=~6h.

To assess the impact of the routine observations
at the targeting time, the influence field (9) associ-
ated to the routine observations is computed using
an additional adjoint model integration from t=6h
to t=0h as displayed in Figure 4.

Influence field at Oh of the routine observations taken at 6h

Figure 4: The influence function at ¢ = Oh associated
to the routine observations taken at t = 6h.

The interaction between the forecast error sen-
sitivity field and the observation influence field is
illustrated in Figure 5 and is taken into account in
the observation targeting procedure by performing
the update (10). The updated sensitivity field (10)
and the new location of the targeted observations
(leading 5) are also displayed in Figure 5 for a weight

coefficient @ = 1. The corresponding DAS includes
targeted observations that account for the impact of
routine data and is hereafter referred to as DAS-III.

Interaction between the 24h forecast error sensitivity field

and the influence field of the simulated routine observational network
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Figure 5: Top: Interaction between the forecast er-
ror sensitivity field and influence field associated to
the routine observations. Bottom: Updated sensi-
tivity field and location of targeted observations to
account for data at t = 6h.

3.2 Data assimilation results

Data assimilation experiments that differ only in
the selection of the observational data set included
in the optimization cost functional are performed
for each of the DAS-I, DAS-II, and DAS-IIT config-
urations. The error in the forecast x/ = M(xg)
provided by each DAS is displayed in Figure 6 and
Figure 7 as mean values of the grid point energy er-
rors averaged over the longitudinal and latitudinal



directions, respectively.

24h forecast error — zonal average
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Figure 6: Zonal-average forecast error over the veri-
fication domain provided by the 4D-Var data assim-
ilation with each of DAS-I, DAS-II, DAS-III.
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Figure 7: Meridional-average forecast error over the
verification domain provided by the 4D-Var data as-
similation with each of DAS-I, DAS-IT, DAS-III.

The DAS-I forecast is based on the assimilation
of routine observations only and it is noticed that the
insertion of the targeted observations in DAS-II pro-
vided a significantly improved forecast. Accounting
for data interaction between routine and targeted
observations in DAS-IIT provided further improve-
ment and in certain regions a reduction by as much
as ~ 25% in the forecast error versus DAS-II. In Fig-
ure 7 one notice that accounting for data interaction
in DAS-III is of particular benefit to the forecast in
the verification region 42°W — 36°W where DAS-II

provides little or no benefit over DAS-I.
3.3 Conclusions

In this study it is shown that the interaction
between targeted observations and the routine ob-
servational network has a significant impact on the
efficiency of the adaptive strategies. A cost-effective
data interaction mechanism based on adjoint sen-
sitivities is implemented to identify regions where
the sensitivity of the forecast to the analysis errors
is large and little additional information may be
obtained from other observational resources. A rig-
orous theoretical framework to account for multiple
targeting instants and the interaction between time
distributed targeted observations remains to be for-
mulated. A formal extension of the 3D-Var sensitiv-
ity to observations to the 4D-Var data assimilation
is necessary to analyze the interaction between the
existing observational network, the background esti-
mate of the model state, and adaptive observations.
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