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1. Introduction

It is well known that the foundations of 3-dimensional
variational data assimilation (3D VAR DA) is based upon
an assumption made about the variables, observations
and therefore the errors being Normal, Gaussian, dis-
tributed, (Lorenc, 1986). However, we do not live in a
Normal world and actually there are several variables that
are positive definite especially as we enter meso-scale
and cloud resolving data assimilation regimes, (Mielke
et al.,, 1977; Miles et al., 2000; Sengupta et al., 2004).
This problem of non-Gaussian variables is not solely re-
stricted to the geosciences and a good review of where
positive definite variables which are often approximated
with a lognormal distribution can be found in (Limpert
etal., 2001) and also in the medical sciences (Townsend,
2004).

This problem of non-Normal variables may appear
just as a concern for the smaller dimensional modelling
and assimilation fields but we have a similar problem
with moisture variables in the synoptic scale data as-
similation. As pointed out in (Dee and Da Silva, 2003)
there are many different options to chose from. The
one that we are concerned with is the logarithm of the
specific humidity which is used in the Canadian Meteo-
rological Service’s mid-atmosphere model and assimila-
tion (Polavarapu et al., 2005). Another reason for an
interest in this variable is that is the variable that is re-
trieved in a 1-D VAR humidity retrieval, (Poli et al., 2002;
Deblonde and English, 2003).

Although it may appear easier to take the logarithm
of the humidity, i.e. if humidity is lognormal then log of
humidity is Normal, this transform between distributions is
not a 1 to 1 invertible relationship and hence information
is lost.

On the observational side, with the advances in
satellites we have cloud variable observations that
are showing signs of being lognormally distributed,
(Stephens and Coauthors, 2002), along with climatolo-
gies from radiosondes also showing the non-Normal
structure, (Soden and Lanzante, 1996).

Given these motivations the aim of this paper is to
highlight the bias which is introduced with two methods
currently used to deal with approximately lognormal vari-
ables and observations. The two techniques that we
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investigate are transforming the lognormal variable to a
Normal variable and the second technique is to assume
a Normal distribution for the variables and observations.
The first technique is used in humidity retrievals, (Poli
etal., 2002; Deblonde and English, 2003), whilst the sec-
ond if used for direct radiance assimilation, (Derber and
Wu, 1998). We present these two techniques in the next
section.

For us to be able to quantify this bias we introduce
the theory from (Fletcher and Zupanski, 2006a) where
lognormal observations assimilation is address through
using the maximum likelihood estimator for the lognormal
distribution. The reason for this choice is that the max-
imum likelihood estimator for the lognormal distribution
is the only bounded and unique of the three estimators
for this distribution, (Heyde, 1963; Evans et al., 2000;
Fletcher and Zupanski, 2006a).

In Section 3 we briefly summarise the results from
(Fletcher and Zupanski, 2006a) which are the associated
cost function for lognormal observations and the exten-
sion to lognormal backgrounds. We also present the non-
linear solution to the maximum likelihood framework to
compare to the results for the two current methods.

In Section 4 we present the difference in the solu-
tions between assuming a transform of the variable and
assimilating with the modal model present in Section 3.
We also show the difference in the solution when a Nor-
mal distribution is used for a lognormal variable and show
the difference in the solutions again in Section 5. We fin-
ish with some brief remarks.

2. Retrievals and Direct Radiances Assimilation

The importance of the moisture field is well known and
there has been a review in (Dee and Da Silva, 2003)
which looks at the pros and cons of the different methods
used at the operational centres. The method to obtain a
humidity field from a brightness temperature field can be
derived from considering the following 1-D cost function,
i.e defined in the z coordinate,

J(x) = % (x—xp) B!

+ (y-hx))' R (y-hx), @

where x is our analysis state vector, xy, is our background
or first guess state, B is the background covariance ma-
trix comprising of the correlations and standard devia-
tions. Note: Correlations are only representing the linear
relationship between the random variables. The vector y
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contains the brightness temperature observations, h (x)
is the non-linear forward operator which transforms the
state vectors to the observations and R is the observation
covariance matrix contain defined as R = E + F where
E is the instrument error covariance matrix and F is the
representativeness error covariance matrix, (Deblonde
and English, 2003).

The basis of a specific humidity retrieval is to trans-
form the state variable, specific humidity, q, to the new
transformed variable

Q=Ia (2

If we assume that Q is now Normally distributed then
the original variable, specific humidity is lognormally dis-
tributed. The main advantage of the lognormal distribu-
tion is that is defined in terms of the statistical parameters
ofInq, i.e.

q~ LN (I'L?GQ) ’ (3)

where
w=E(nq) and ¢°=E ((lnq)2) —E(lnq)*. (4)

The importance of (4) is that it highlights the fact that
the statistics that are calculated for the Normal variable,
Q, are consistent with the distribution of the lognormal
variable, q. This fact is important when we consider the
analysis due to transforming from Normal to lognormal
variables in Section 4.

The advantage of transforming is that the variable
Q fits into the current Normal frameworks and therefore
no changes are needed to the minimization algorithms
to minimize the cost function. After the analysis is per-
formed we simple invert (2) which then gives us a value
for the model state of specific humidity. However, this in-
troduces a bias in the analysis and we quantify this in
Section 4.

Let us now consider direct radiance assimilation us-
ing the Normal variational cost function. This process is
non-linear causing and hence raises doubts about the as-
sumption that y and h(x) are Normally distributed. A
more detailed explanation of direct radiance assimilation
algorithm can be found in (Derber and Wu, 1998). The
reason to look at the direct radiance assimilation method
is that a form of bias correction has to be applied to the
analysis state from the minimization of the cost function
defined in (1). Therefore, by assuming a Normal frame-
work for non-Normal variables we have introduced an er-
ror which we try to correct through some form of bias
analysis. We investigate this bias in Section 5.

3. Maximum likelihood approach for Lognormal data
assimilation

In this section we summarise the maximum likelihood
framework derived in Fletcher and Zupanski (2006a). As
we have mentioned before the mode of a multivariate
lognormal distribution is the only unique and bounded
estimator of this distribution, see Fletcher and Zupanski
(20064a) for a full detailed discussion of the three estima-
tors. Another advantage of this method is that we do not

assume any linearity of the observation operator there-
fore allow for more realistic cases.

We start with the definition of the relative observa-
tion error. This come from (Cohn, 1997) as the ratio of
two lognormal variables is itself lognormal, (Townsend,
2004). The definition of the errors is given by

Yi .
62:/%7(;)’ i=1,2,...,N,. (5)
To derive the maximum likelihood approach we start
from the Bayesian model in (Lorenc, 1986) and use the
definition of the multivariate lognormal distribution given
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where f is the proability density function, pdf, n is the di-
mensional of x, u, = E (Inx;), ¥ is the covariance matrix
of Inx and |X| is the determinant of X. Note: That if a bias
is known then p can be different from zero to compensate
in the minimization for this.

The important term in (6) is the product of the z;’s.
This is the term that enables us to transform between the
lognormal and the Normal distribution but also, as shown
in (Fletcher and Zupanski, 2006a), this terms enables us
to obtain the mode of the analysis distribution.

From the definition of the observational errors which
we are going to assume are lognormally distributed, (5),
and the definition of the lognormal pdf (6) we obtain the
following conditional pdf as set out in (Lorenc, 1986) and
(Fletcher and Zupanski, 2006a) which is

: (ﬁ = (x)> x Q)
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exp {—% (Iny — 1nh(x))T R (Iny — lnh(X))}7

where we have assumed that ¢ = 0 so that the obser-
vations are unbiased, R is the standard Normal obser-
vational covariance matrix and N, is the total number of
observations.

To form the maximum likelihood approach we take
th negative logarithm of (7). This then results in the cost
function of the form

Jo(x) = %(my—mh(x))Tfr1 (Iny — Inh (x))

—+ (lny—lnh(x))T 1n,, (8)

where J, (x) represents the observational component of
the full 3D VAR type cost function and 1,, is a vector of 1's
of dimension n x 1. The reason for writing the summation
that appears in the second line of (8) as the product of
vectors is because this helps in highlighting the difference
between transforming and not transforming in Section 5.

We also have to allow for lognormal background vari-
ables as this is the situation in the humidity retrievals



case. We start with the definition of the lognormal back-
ground error given by
Xi

Ebi = . (9)

Xb;

Using the definition of the lognormal distribution, (6),
and taking the negative logarithm of the pdf gives us the
lognormal background cost function as

Jy = (Inx —Inxp)" B~ (Inx — Inxp)

1

2

+ (lnxflnxb)T 1n, (10)

where N is the total number of state variables.
Combining (10) and (8) we obtain the full 3D lognor-

mal VAR cost function, J (x), defined as

J(x) =

%(lnxflnxb)TBfl(lnxflnxb)
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i(lnyflnh(x)) R (Iny —Inh(x))

(Inx —Inxp)" 1y + (Iny —Inh (x))" 1x,.
(11)

For us to be able to identify the bias introduced
through transforming or using the wrong distribution we
require the solution to (11). It may be obvious at this
point that the solution is non-linear but it is the structure of
the solution that we are interested in. To obtain the state
which minimizes (11) we need to differentiate (11), set to
zero and rearrange which gives

x = xpexp{—Bln} % (12)
exp {BW, "WJH'R™" (Iny — Inh (x) + Rlx,)},

where
Wb(i,i)Zw%, i = 1,2,...,N,
Wo(j,j):ﬁ, i = 1,2,...,N,,
h

where these two matrices arise from the differentiation of
the logarithms in (11).

NOTE 1: We can not find the solution to (12) explicitly
as the right hand side of the equation is a function of x.
We can, however, use an iterative solver like the quasi-
Newton or a conjugate gradient method to iterate to find
a solution.

NOTE 2: In the formulation used above we do not
use the logarithm of the state variable in the observation
operator. The reason for this is that the lognormal frame-
work does not allow us to interchange the logarithm and
the non-linear observation operator. Therefore it is the
variable h (x) that is lognormal as this is the component
that is compared to the observations.

4. Differences between current and new approach for
humidity retrievals

In the last section we derived the non-linear solution to
(11) given by (12). It is with this solution we can compare
how the other two techniques differ from the true solution
given by (12).

In this section we are consider the technique where
we transform the observations and the state variable to be
defined for x = In x which has the following cost function
(% —%,)" B (x — %)

J®) = (13)
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This then makes (13) a Normal cost function and hence
the solution is given by

X = Xp €Xp {B\f\’ZI:ITR_1 (lny —Inh (lnx))} , (14)
where
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We can see from (12) that this solution has the ap-
pearance of being similar to a lognormal mode as it con-
tains the covariance terms in the solution in both the
background and the observational component of the so-
lution. However, if we compare this with (14) we see that
this solution has no structure of the mode present. It is
actually representing the median of the analysis space
which over estimates the most likely state for a multivari-
ate lognormal. The other fact is that the median which
(14) represents is the one associated with the transform
between the Normal and the lognormal distributions but
is not unique.

5. Differences between current and new approach for
direct radiance assimilation

We now consider the case where the wrong distribution
is used to represent the variables and the observations.
The assumption made in direct radiance assimilation is
that the observations are Normal. Therefore the cost
function that is used is (1) in the full 3D form. Therefore
the standard non-linear solution is

x=xp+BH'R™ (y —h(x)), (15)
where here we have the tildes above the covariance ma-
trix as these are the best Normal approximation to the
data and not the correct lognormal or any other distribu-
tion statistics.

If we now compare the solutions (15) and (12) we
see that there is a major discrepency between the two
and as such there is bias being introduce through both
the solution only representing a form of a Taylor series
expansion of the exponential but also the wrong statistics
are being used for the covariance matrices.



6. Conclusions

In this paper we have try to warn about using transforms
for lognormal variables so that they are compatible with
the current Normal frameworks in 3D VAR. We have also
shown that the assumption that a variable is Normal when
it is not can lead to a major bias away from the true so-
lution. The advantage of a full lognormal data assim-
ilation scheme derived from a maximum likelihood ap-
proach is that the solution to the cost function is the only
unique and bounded estimator of the lognormal distribu-
tion, (Fletcher and Zupanski, 2006a). Another advantage
of the framework presented in Section 3 is that we have
made no assumption about the observation operator be-
ing linear.

The plans for this work is to extend the applicabil-
ity of this method for the operational weather and ocean
prediction centers. Another plan is to see the impact on
both humidity retrievals and humidity assimilation in gen-
eral through using a more skewed distribution than the
Normal.

This work has been partially extended in (Fletcher
and Zupanski, 2006b) where we have derived a hybrid as-
similation scheme where both Normal and lognormal ob-
servations can be assimilated simultaneously. This would
be the more practical approach for the humidity retrievals
as the state vector contains the temperature, which is as-
sumed Normal, and the specific humidity which is possi-
ble better approximated with a lognormal.
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