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1. ABSTRACT 
A linear mathematical model for accurate 
referencing of satellite data –atmospheric profile 
retrievals – to radiosonde profiles is presented. 
The model provides a theoretical basis and a 
practical tool for the assessment of the accuracy 
and precision of the referencing for a particular 
satellite system and ground site.  

The satellite measurement and the profile used for 
reference are generally taken at a different time 
and space; moreover, they sample the 
atmosphere differently, i. e. they have different 
vertical sensitivity and resolution. All these factors 
cause apparent differences between the 
compared entities. To make the comparison of the 
satellite data accurate, the model accounts for 
those factors allowing one to separate them from 
the possible bias (accuracy) and noise (precision) 
of the satellite system.  

To account for time and space differences the 
model uses statistical characteristics (mean value, 
covariance and correlation) of the ensembles of 
the true atmospheric states on which the satellite 
system and the system used for comparison 
perform the measurements. To reconcile the 
differences in vertical sensitivity and resolution the 
averaging kernel formalism is implemented.  

For the case study the model has been applied to 
a set of radiosonde temperature profiles taken 
over the ARM Southern Great Plain site and 
simulated AIRS retrievals. It has been 
demonstrated how unaccounted temperature 
differences/errors between compared profiles 
depend on the time interval separating them. In 
this particular study, for two sets of profiles (107 
profiles each) separated by less than six hours, 
the mean unaccounted error is within 0.3±0.2 K.  

The model can be used for referencing the 

satellite data from instruments such as CrIMS, 
IASI, and AIRS to other data sets for use as Earth 
System or Climate Data Records (ESDRs or 
CDRs) as well as for assessment and 
interpretation of validation results when the 
previously mentioned sources of discrepancies are 
significant. 

2. INTRODUCTION 
To be suitable for use in Earth System and 
Climate studies, satellite data must be unified and 
coherent. One way to unify and make coherent the 
satellite data sets is to reference accurately all of 
them to the same global continuous set of 
measurements of a known quality and relation to 
the true state of the atmosphere and with proven 
value for climate studies. Data from the global 
radiosonde network have long been used for 
climate studies as well as for calibration and 
validation of retrievals of atmospheric temperature 
and water vapor profiles from satellite radiance 
observations (Kelly et al., 1991; Durre et al., 2005; 
Reale and Thorne, 2004). While some consider 
radiosonde profiles a “gold standard” against 
which to judge satellite products (Clery, 2006), it is 
well known that the temperature and humidity 
soundings contain errors (Nash et al., 2006) that 
are difficult to remove (Wang et al., 2002; 
Miloshevich et al., 2000, 2006; Sherwood et al., 
2005). In many cases bias errors are not constant 
over time (Gaffen, 1994; Lanzante et al., 2003; 
Free et al. 2002). All of these problems with 
radiosonde data diminish the ease with which they 
can be used for calibration of satellite retrievals.   

The issue of time-varying biases presents a 
particular problem for Climate Data Recerds 
(CDRs), where long-term stability of observational 
error is needed to ensure long-term climate 
change is well monitored. Nevertheless, large-
scale features of climate variability (such as 
ENSO, response to volcanic eruptions, and the 
stratospheric quasi biennial oscillation) are well 
captured by radiosonde observations (Seidel et 
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al., 2004). Radiosonde data, therefore, provide a 
good basis for comparison with satellite profile 
observations if proper care is taken to minimize 
data problems.  

Radiosonde data were used for validation of the 
AIRS instrument on EOS AQUA platform, 
temperature and water vapor retrievals (Tobin et 
al, 2006, Divakarla et al., 2006, Miloshevich et al. 
2006) Two different approaches have been used 
for the comparison. Thus, in the work of Tobin et 
al. (2006) the “best estimate” radiosonde data set 
for the Southern Great Plain ARM site has been 
created. In this work the ground-based remote 
sensing and GOES satellite data were used to 
interpolate the original radiosonde measurements 
to correct for time and space differences between 
sondes and AIRS overpasses. In another study 
(Divakarla et al., 2006) no particular site 
adjustments were made, but global averages were 
compared. The first approach gives high accuracy 
data for comparison but is limited to the sites 
equipped by the ground-based remote sensors 
and requires dedicated sonde launches. The 
second approach provides global coverage but is 
not capable of assessing measurement 
uncertainties indicated as a function of time and 
location for all of the data.  

For accurate comparison of any data sets, one 
needs to know the errors of the compared 
quantities. This uncontroversial general statement 
in the case of comparison of atmospheric profiles 
obtained by different techniques raises some 
specific methodological issues to be resolved. 
Some of the problems are related to the physical 
principles of satellite measurement techniques; 
others reflect the spatial nonuniformity and 
temporal variations of the atmosphere. Satellite 
instrument and reference measurements sample 
the atmosphere with different vertical resolution, 
accuracy and noise level. The time and location of 
the compared data do not coincide. All the above 
mentioned factors cause inevitable differences 
between the compared profiles and their statistics. 
The effect of different vertical resolutions was 
addressed by using an averaging kernel formalism 
in application to CO and ozone retrieval validation 
(Pougatchev et al., 1999; Rodgers and Connor, 
2003; Migliorini et al., 2004; Meijer et al., 2003), 
but the error caused by non-collocation was 
beyond the scope of the studies. For accurate 
comparison of remote sensing atmospheric 
profiles, all kind of errors should be taken into 
account, which leads us to two major 
requirements: 

First, all significant Environmental Data Record 
(EDR) sources of error must be identified along 
with error propagation paths through the 
Instrument-Retrieval chain; this constitutes 
application of an End-to-End Error Model (E2EM) 
to evaluate the expected level of error in the EDR. 
Second, actual errors of satellite EDRs must be 
assessed through comparison with some relevant 
data set of known accuracy and precision. The 
comparison is subject to additional error caused 
by the difference between the compared 
measurement systems as well as by non-
collocation of the data sets. To estimate and 
reduce the error, the EDR Assessment Model 
(EDRAM) has been developed. This model 
accounts for specific characteristics of the 
considered satellite instrument as well as a 
particular reference data set. In other words, the 
EDRAM allows individual analysis of a particular 
geographical location and vertical area of the 
atmosphere. The use of the EDRAM will enable 
global coverage, high accuracy and specificity of 
comparison. 

Graphically, the concept of the work is illustrated 
by Figure 1.  
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Figure 1. The Radiosonde Network serves as the 
common reference data set for three satellite 
systems. EDRAM is the unified tool for the 
referencing. 

The EDRAM allows individual error analysis of a 
particular geographical location as well as a 
vertical area of the atmosphere.  

Although in situ sensors provide valuable data for 
analysis of climate variability and change, satellite 
observations are the best source of globally 
complete and spatially consistent observations for 
climate studies. Interest in the vertical profile of 
temperature stems from its singular importance in 
climate change detection and attribution studies 
(Hansen et al., 1997; Santer et al., 1996; CCSP, 
2006)) due to the unique fingerprints that different 



 

 

climate forcings make on the vertical temperature 
profile. Controversy over the interpretation of 
satellite upper air temperature datasets (NRC, 
2000; Wentz and Schabel, 2000; Fu et al., 2004) 
has figured prominently in scientific and policy 
debates, in large part because the true nature of 
the observational errors is not completely 
understood (CCSP, 2006; Thorne et al., 2005).  

3. TECHNICAL APPROACH AND 
METHODOLOGY 

3.1 END-TO-END MODEL FOR 
ATMOSPHERIC RETRIEVALS 

In the context of this work, the E2EM for 
atmospheric profile retrieval is a system of linear 

equations that relates statistical characteristics 
(mean value and covariance) of errors originated 
in the Instrument-Retrieval chain to the statistical 
characteristics of the error in the retrieved profile 
or EDR. The E2EM consists of two different parts: 
(i) error analysis and characterization; and (ii) 
assessment of the actual error of real/proxy EDRs 
with the aid of EDRAM. The overall concept is 
presented in Figure 2. 
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Figure 2. Overall concept of error modeling. The upper dashed block encompasses elements of error 
analysis and characterization; the lower one represents EDR assessment. For an explanation of the 
parameters, see sections 3.1.1 and 3.1.2 

 

In this context, characterization shows how 
retrieval is related to the true state of the 
atmosphere, while error analysis reveals how 
various sources of errors propagate to the final 
product. This part of the E2EM is a mathematical 
representation of how uncertainties/errors of 
various origins starting at the entrance aperture 
(front end) propagate into the final products, in our 
case the vertical profile of atmospheric 
temperature and constituents or EDRs. The E2EM 
allows one to estimate the expected performance 
of the instrument. The EDRAM assesses actual 
performance of the measurement system while on 
orbit. The goal of both activities is the same: 
namely, to asses the system performance, just at 
different stages of development and operation. 

Therefore, both activities should be considered in 
the same methodological manner. 

3.2 ERROR ANALYSIS AND 
CHARACTERIZATION 

We will, for the most part, follow the methodology 
and notation developed by C. D. Rodgers 
(Rodgers, 1976, 1990, and 2000; Rodgers and 
Connor, 2003). Measured signal, states of the 
atmosphere, both true and retrieved, and 
instrument and model parameters will be 
presented by column vectors (bold lower case 
symbols) with corresponding covariance matrices 
(bold upper case symbols).  



 

 

The equations and formulas we present below will 
be used in the practical error analysis, 
characterization, and assessment of the EDR 
retrievals.  

The measured signal (in our case a set of 
spectrally and radiometrically calibrated radiances 
- a spectrum, {yi} i=1, 2,..., m) can be written in a 
form  

y F(x,b) ε= +                        (1) 

where forward model F describes the physics of 
the measurements; x is the unknown state (in our 
case, it can be the true state of the atmosphere) 
{xi} i=1, 2, ... , n; b is a vector of some other set of 
parameters that influence the measurements but 
are not included in x (e.g., instrument parameters 
etc., which we call forward model parameters). 

In linear approximation the difference between the 
actually measured signal y and its expected value 
ya, in other words error in the measured signal, 

aδy y - y≡  can be expressed as follows: 

state error
model parameter error

(instrument and atmosphere)
forward model error
measurement noise

x a

ab

δy K (x x )
K (b b )

ΔF(x,b)
ε

= −

+ −

+
+

  (2) 

Rows of the K-matrices contain the weights with 
which variations (errors) of corresponding 
elements of state and forward model parameters 
contribute to the variation of signal (signal error). 
In atmospheric sounding, when x is the state of 
the atmosphere (vertical profile), the rows of the 
Kx matrix are called the weighting function or 
Jacobians.  

Forward model error ΔF(x,b)  usually accounts 
for simplification of the radiative transfer for the 
sake of computational efficiency and is likely to be 
systematic. 

In equation (2) the second and the fourth terms 
represent the contribution of errors associated with 
the instrument (instrument model parameter error 
and measurement noise) into the signal error. The 
instrument error model for the signal can be 
written as 

 binδy = K δb + ε                        (3) 

where in in
ˆδb = (b - b )  and inb̂  is our best 

knowledge of the instrument parameters (their 
nominal value). In other words, error in the 
instrument parameterδb  propagates toδy  being 

amplified by weighting function matrix binK . The 
covariance of the error associated with the 
instrument is  

T
δy δb δb δb εS = K S K S+                  (4). 

Actual values of K-matrices, εS , and δbS are 
determined during the pre-launch error analysis 
and laboratory tests of the instrument. An example 
of real δyS for the Short Wavelength IR (SWIR) 
band for the CrIS instrument is presented in Figure 
3.  
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Figure 3. Covariance matrix for the CrIS SWIR 
signal. Detector shot noise and radiometric 
calibration error are taken into account. Non-zero 
off-diagonal elements are due to spectrally 
correlated radiometric calibration error. 

A retrieval r(y) is a way of finding a state x̂  such 
that F( x̂ ) is consistent with y. This leads us to a 
transfer function r 

ax̂ r(F(x,b) ε,b, x ,c)= +
)

.             (5) 

Equation (5) describes the operation of the entire 
observing system, including both the instrument 
and retrievals. The a priori state xa and the set of 
parameters c are not included in the forward 
function but affect the retrieval and are subjects of 
uncertainty. Linearization with respect to y allows 
us to write a linear model for the error in 
retrieval x̂ , i.e. the difference between the 
retrieved and true states (simplified Equation 
(3.16) in Rodgers (2000)). 



 

 

smoothing error
instrument error

forward model error
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y

y

x̂ x (A I)(x x )
G K δb

G ΔF(x,b)

G ε

− = − −

+

+
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    (6) 

where y
rG
y

∂
=

∂
 is the so-called gain matrix that 

shows sensitivity of the retrieval to measurement 
or, equivalently,what is the same, to measurement 
error. The averaging kernel matrix A characterizes 

the sensitivity of the retrieval to the true state 

y x
x̂A G K
x

∂
= =

∂
                       (7) 

For illustration, Figure 4 presents averaging 
kernels for temperature retrievals as they would be 
made by the AIRS instrument .The width of the 
peaks can be used as a measure of the vertical 
resolution.  
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Figure 4. Selected averaging kernels for 
temperature retrievals in 1 km thick layers. 

 

The practical value of Equation (6) is that it is 
applicable to any retrieval technique, not just 
optimal estimation as it is often misperceived.  

The first term in (6) allows us to estimate the 
smoothing error of the retrieval, in other words 
error caused by finite vertical resolution of the 
observing system. For retrieval assessment, 

averaging kernels are absolutely necessary 
because they provide the means for comparison of 
measurements performed by systems with 
different vertical resolution. 

Comparing (2) and (6) one can see that the error 
in the signal is “amplified” by the gain matrix yG  
in the retrieval. Hence, the corresponding 
covariance matrices are:  

 T T
b y b b b yŜ = G K S K G                 (8) 

 for instrument parameters error and 

 T
ε y ε yŜ = G S G                       (9) 

for retrieval noise. 

The model described above constitutes the basis 
for practical error analysis and characterization of 
a satellite-based measurement system. Equations 
(2) and (6) and associated formulas allow one to 
estimate expected errors in the retrieved profiles 
and their statistical characteristics.  

3.3 EDR ASSESSMENT MODEL - EDRAM 

The satellite system performs a set of 
measurements x̂  on an ensemble of true states 
x   

 x̂ = r(x) + e                         (10) 

where r(x) is a nominal retrieval without any errors 
in the measured signal or in the forward model 
and e represents retrieval errors caused by these 
factors. The error term can be characterized by its 
mean value {e} = ΔE  (bias) and covariance eS  
(retrieval noise). From the error analysis and 
characterization, we know the nominal retrieval r 
and a priori retrieval noise eSa , and we presume 

that for a nominally performing system Δ 0= . The 
assessment activity yields an estimate of the 
actual values of and eΔ  S : ˆ ˆΔ {x - r(x)}E=  and 

e
ˆ ˆ ˆˆ ˆS {(Δ - (x - r(x))(Δ - (x - r(x)) }TE= .  

Schematically, the EDR assessment process is 
illustrated by Figure 5. 



 

 

1x̂

Statistical Characteristics
of true states

Satellite Retrieval
Characterization 

Reference Data
Characterization

1 21 x 2 x 12{x S }; {x S }; S

1

a
1 εA ; S

Estimation of

Bias                     

Noise

1ˆΔx Err±

1ε
S

2x̂
2ε

S

INPUT OUTPUT

 
Figure 5. EDRAM Input and Output data. 

 

The input of an assessment activity is a set of 
profiles of a known quality and known relation to 
the nominal retrieval r and the true state of the 
atmosphere x; in our case it is radiosonde data. 
The reference system samples the true state x2 of 
the atmosphere characterized by its mean value 
and covariance 

22 x{x S }  at a time and location 

different from when and where the satellite system 
makes its own observation of x1 with 

11 x{x S } , 

respectively. The true states are correlated with 
cross-covariance S12. The satellite and reference 
systems have different characteristics, i.e., vertical 
resolution (averaging kernel A) and noise level 
(  and

2 2ε εS  S , respectively). All these factors 

cause an apparent difference between the data to 
be compared. The EDRAM makes the comparison 
accurate by estimating this difference. In its 
general form, the EDRAM provides the tool for 
accurate comparison of atmospheric profiles of 
any origin. Here we consider a particular case 
when satellite retrievals are referenced to 
radiosonde measurements. Because of the 
novelty of the approach we will derive the basic 
formulas that we will use for the practical data 
analysis. 

 

In linear approximation the retrieved and 
radiosonde profiles can be presented as follows: 

 1 a 1 a 1

2 2 2

ˆ ˆx = x + A(x - x ) +Δx ε
x̂ = x + ε

+
           (11) 

where  and 1 2 1 2ˆ ˆx , x , x , x  are retrieved, 

radiosonde, and true profiles; and A , ax , ˆΔx , 

and 1 2ε ε  are the corresponding averaging 
kernel, a priori profile, retrieval bias, and retrieval 
and measurement noise, respectively. Index 1 is 
assigned to the terms related to the satellite 
system and index 2 to the radiosondes.  

The true states x1 and 2x  are functions of 
coordinate z and time t 

1 21 1 2 2x x(z , ) x = x(z , )t t= . True mean value of 

the ensemble of states is 11 1 1x {x (z , )}E t=  

and 22 2 2x {x (z , )}E t= . The variations of the 

states about their means and1 2x x are 
characterized by their auto-covariances  

1x 1 1 1 1S {(x - x )(x - x ) }TE=  

and
2x 2 2 2 2S {(x - x )(x - x ) }TE= . Correlation 

between the true states x1 and 2x  can be 
characterized by cross-covariances 

12 1 1 2 2S {(x - x )(x - x ) }TE=  and 

21 2 2 1 1S {(x - x )(x - x ) }TE=  for the covariances 
T

12 21S = S  and 
1 212 21 x xS S S S= = =  

when 1 2  and 1 2z zt t≡ ≡ .  

 



 

 

Because correlation only measures linear 
relationships, in the following consideration we 
assume that the variation of the true states about 
their means and1 2x x  - and1 2δx δx  are 
correlated so that 

1 2δx Bδx + ξ=                      (12) 

where ξ is random with 0ξ = , auto-

covariance ξS , and cross-covariance 

0
1

T
x ξ 1 1S {(x -ξ)(x - ξ) } .E= =  In other words, 

the variation 1δx at the satellite site can be 

decomposed in two parts: correlated 2Bδx  that 
can be derived from the measurement of x2, and 
uncorrelated - error -ξ . Given matrices 

and 
1 2x x 12S , S , S  we can calculate 

matrices  and ξB S  

2

-1
12 xB = S S

              (13) 

2 1

T
ξ x xS = BS B - S

                 (14) 

Because of the finite vertical resolution of the 
satellite retrievals and their nonuniform vertical 
sensitivity it makes sense to degrade vertical 
resolution of the radiosonde profiles to the satellite 
level and perform comparison only in those 
vertical areas of the atmosphere where the 
satellite instrument has sensitivity. Following the 
approach from Rodgers and Connor (2003) and 
Equations (11) and (12), we simulate retrieval 

1x̂ with 2x̂  

12 2 2 2ˆ ˆx = ABx = ABx + ABε        (15) 

For estimation of the bias 1ˆΔx , consider the 

difference ˆδx  

1

2

1 2

a 1 2

2

1 2

1

ˆ ˆ ˆδx x - x
(I - A)x + Ax - ABx

+ A(Bδx + ξ) - ABδx
+ (ε - ABε )

ˆΔx

≡

=

+

        (16) 

and its mean ˆδx   

 

(17)

Then consider 
e

1ˆ ˆ ˆΔx δx δx= −                    (18) 

where e ˆδx  is the expected difference. 

1 2
e

aˆδx (I - A)x + Ax ABx= −      (19) 

The covariance of ˆδx about its mean - ˆδxS  is 

1 2

T T
ˆδx ξ ε εS = AS A + S + (AB)S (AB)    (20) 

where 
1ε

S and 
2ε

S are characteristics of the 

retrieval and radiosonde noise.  

 

It is important to notice in this context that e ˆδx is 
not the error but instead represents the expected 
difference between nominally performing 
measurement systems. The purpose of the EDR 
assessment is to determine the deviation from the 
expected difference and the statistical significance 
of the deviation.  
 

Attainable accuracy of 1ˆΔx  in (18) is limited by the 

accuracy of our a priori knowledge of e ˆδx  and the 
bias of reference system 2

a ˆΔx . In practice, we 

know the mean of the states and1 2x x  with some 
uncertainties characterized by the covariances 

and 0
1 2 1 2x x x xS , S S =% % % . The uncertainty 

associated with the assumption that 2
a ˆΔx = 0  is 

characterized by covariance 
2ˆΔxS . That results in 

additional error of e ˆδx  with covariance S%  

1 2 2

T T
ˆx x ΔxS = AS A + (AB)(S S )(AB)+% % %    (21) 

In the assessment process, a set of 
1 2i ˆ{δ x} , , ...,i N=  is measured. We assume that 

the measurements are made such that all iˆδx  are 
statistically independent. The mean of the sample 
s ˆδx  relates to the mean of the ensemble ˆδx  as 
s

sˆ ˆδx = δx + ε  where sε represents the error due 
to the difference between the mean of the sample 

1

1 2

1

1 2

a

ˆ ˆ ˆδx x - x
(I - A)x + Ax ABx

ˆΔx

≡

= −

+



 

 

and the mean of the ensemble. It is a random 
vector with covariance 1

s ˆε δxS SN −= .  

Then the estimation of the bias of the satellite 
system is  

s s e
1ˆ ˆ ˆΔx = δx - δx                 (22), 

and the covariance of the estimate is  

s
sεˆΔx

S = S + S%                  (23). 

The retrieval noise 
1ε

S  of the satellite system can 

be estimated based on analysis of the 
measurements by the satellite system on the 
ensemble of states x1 with 

1xS  such that 

1 1

T a
x εAS A S� .  

For evaluating a particular reference data 
source/site, one can use the following relations: 

1 2

a T a T
ˆδx ξ ε εS = AS A + S + (AB)S (AB)     (24) 

s

a
ˆε δxS S / N≈                        (25) 

s
a

ˆδxˆΔx
S = S / + SN %                 (26) 

Equations (24) to (26) give us an estimate of the 
attainable assessment accuracy given the 
accuracy of our knowledge of the characteristics of 
the measurement systems and the true states, 
and the size of data sample used for the 
assessment.  

4. RESULTS OF CASE STUDY 
This section demonstrates the practicability of the 
theoretical basis presented in previous section. 
We applied the VAM to a set of radiosonde 
profiles taken at the ARM Southern Great Plains 
site from July to December of 2002. These are the 
same data that have been used to build the “best 
estimate data set” in (Tobin et al. 2006). In 

particular, we analyzed the impact of the time 
difference between satellite and radiosonde 
measurements on the assessment of accuracy of 
the AVTP retrieval. In the following case study we 
take the radiosonde profiles for accurate 
representation of the true states of the 
atmosphere. 

To remove seasonal cycle variation from the 
analyzed data, we de-seasonalized the whole set; 
for each month we calculated the monthly mean 
profile and extracted it from each particular profile 
pertaining to the month. Then out of the full set of 
424 de-seasonalized profiles, we constructed two 
ensembles so that each sonde in the first 
ensemble (x1) had at least one reciprocal sonde in 
the second ensemble (x2) with a launch time 
difference less than or equal to τ  hours, where 
τ =3, 6, 12, 24, 48, and 72 hours. For every τ ≥ 6 
hours the size of the ensemble was greater than 
100. Then we calculated auto-covariances 

1 2x xS ,S  and cross-covariance S12. The results are 

presented in Figure 6. As one can see, there is 
noticeable decreasing with the τ  correlation 
between the ensembles. Given  and 

2x 12S S  using 

Equations (13) and (14) we calculated ξS , which 
characterizes the uncorrelated temperature 
difference between x1 and x2. For the comparison 
of two radiosonde profiles, the square root of the 
diagonal elements of ξS  can be interpreted as 
rms error caused by non-coincidence of launch 
times. Plots for error are displayed in Figure 7.  

One of the interpretations of the results in Figure 7 
is that given a particular temperature profile x2 with 
associated statistical characteristics 

,   and 
2x 12 2 1S S , x , x , we can estimate profile x1 

separated in time by less than τ  with rms error 
indicated by the corresponding curve in Figure 7. 
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Figure. 6. Auto-covariance and selected cross-covariance matrices. 



 

 

rms error (K)
0 1 2 3 4 5 6 7

Lo
g 

P

20

30

40
50
60
70
80
90

200

300

400
500
600
700
800
900

100

1000

 

Figure. 7. The square root of ξS  diagonal elements 
(rms error for comparison of a single pair of 
radiosondes) for differentτ . The solid line is 
for 3 h;τ =  the dotted line is for 6 h;τ =  the 

dashed line is for 12 h;τ =  the dash-dot-dot line is 

for 24 h;τ =  and the solid-with-crosses is for 
τ = ∞ , i.e. no correlation at all, validation against 
historical records. 

To simulate the smoothing error of the satellite 
retrieval, we applied AIRS-like averaging kernels 
(see Figure 4) to Equation (20). Each averaging 
kernel is for the temperature profile retrieval in a 1-
km thick layer; spectral resolution and noise level 
are those for the AIRS instrument. Certainly, 
averaging kernels depend on the state of the 
atmosphere for a particular retrieval, but they are 
not critical to the error analysis. Thus, we 
calculated ˆδxS , the covariances of the single pair 
comparison error caused by the time difference in 
sonde launch and satellite overpass only. Finally, 
using Equation (19) with the assumption xa=0, we 
estimated the mean expected difference e ˆδx  with 
the associated error (see Equation (25)). The 
results are presented in Figure 8. 

Square Root of Diagonals
Sδx ,  Sξ, and Sx1 
Single pair comparison

Temperature (K)
0 1 2 3 4 5 6 7

Lo
g 

P 
(m

b)

20

30

40
50
60
70
80
90

200

300

400
500
600
700
800
900

100

1000

a)

 Mean Expected Difference 

Temperature (K)
-0.4 -0.2 0.0 0.2 0.4

Lo
g 

P 
(m

b)

20

30

40
50
60
70
80
90

200

300

400
500
600
700
800
900

100

1000

b)

 
Figure. 8. a) Square root of diagonal elements of the 
covariance matrices: the solid line is a single pair 
satellite-radiosonde comparison error ( ˆδxS  matrix); 
the dashed line is a single pair radiosonde-
radiosonde comparison error ( ξS  matrix); the dash-
dot-dot line is the rms temperature variation of the 
analyzed ensembles (

2xS matrix). b) The solid line is 

the estimation of the mean expected difference 
between the ensembles of satellite and radiosonde 
observations; the length of the error bars is the 
solid curve from a) divided by the square root of the 
ensemble sample size (107 profiles).  

Looking at the plots in Figure 8 a), we see that in 
the presented case the effect of the averaging 
kernels is two fold: (i) smoothing per se removes 
structures of high frequency but small amplitude 
from the error pattern; (ii) above approximately 
300 mb the estimated error of the satellite-



 

 

radiosonde comparison is smaller than the error 
for the radiosonde-radiosonde. This is because we 
compare the satellite retrieval 1x̂  with its 

simulation 12x̂  (see Equation (8)). In other words, 

the corresponding true profiles and 1 2x x  
contribute to the comparison with weights 
determined by the averaging kernels. Since the 
sensitivity of the retrievals (the peak amplitude of 
the averaging kernels) drops with altitude (see 
Figure 4), so does the difference ˆδx . 

The plot of non-coincidence error averaged 
between 800 and 800 mb is presented in Figure 9.  
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Figure 9. Non-coincidence temperature rms error 
averaged between 800 – 400 mb. 

Initial part of the curve ( 6hτ ≤ ) demonstrates 
good linear behavior with the slope approximately 
0.2 K h-1. Chahine et al, 2006 estimated global 
non-coincidence surface air temperature error 
based on analysis of the AIRS retrievals for 
the 3 and  100 kmh± ± vicinity as 0.8 K. As one 
can see that the estimates obtained by completely 
different techniques are in a good agreement. 

5. CONCLUSIONS AND DISCUSSION 
From the results of the presented case study, we 
deduce the following conclusions: (i) A six-hour 
maximum time difference between satellite and 
radiosonde measurements corresponds to twelve-
hour periods in radiosonde launches, a realistic 

scenario for many stations. (ii) The matrix ξS  can 
be stably inferred from real radiosonde profiles. 
(iii) For a single comparison, rms error caused by 
non-coincidence in time varies from 0.5 K at the 
100 mb level to 2 K at the surface. By analyzing a 
sample of size N , the error can be reduced by a 

factor of 1/ N ; thus we need 4N >  to make 
the error less than 1 K at all practicable altitudes. 
For Earth system and climate studies, extended 
time intervals (a season and longer) present the 
most interest; hence, we can accumulate samples 
large enough to attain the required accuracy of the 
reference. In practice, the assumption of 1/ N  
may not be always valid. Possible errors caused 
by a diurnal cycle and periodicity of the 
overpasses (Anderson et al., 2004, Kirk-Davidoff 
et al., 2005) will be addressed in future studies.  

The presented EDR Assessment Model is a useful 
tool for the evaluation of consistency between the 
data from different sources that is necessary for 
building coherent and uniform data sets for Earth 
system and climate studies. It also can be used for 
validation planning and the interpretation of the 
results. 
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