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Abstract- Snow pack properties such as
snow depth and snow water equivalent
(SWE) have always attracted hydro-
meteorologists. The  satellite borne
microwave imagery has provided the option
to produce spatial SWE distribution maps.
This research focuses on application of
passive microwave data to estimate SWE
developing an algorithm to estimate
snowpack properties in Great Lakes area
based on a three-year of SSM/I dataset
along with corresponding ground truth data.
The study area is located between latitudes
41N-49N and longitudes 87W-98W. The
area is covered by 28*35 SSM/I EASE-Grid
pixels with spatial resolution of 25km.
Nineteen test sites were selected based on
seasonal average snow depth, and land
cover type. Each of the sites covers an area
of 25km*25km with minimum of one snow
reporting station inside. Two types of ground
truth data were used: 1) point-based snow
depth observations from NCDC; 2) grid
based SNODAS-SWE dataset, produced by
NOHRSC. To account for land cover
variation in a quantitative way NDVI data
were used. To do the analysis, three
scattering signatures of GTVN (19V-37V),
GTH (19H-37H), and SSI (22V-85V) were
derived. The analysis shows that at lower
latitudes of the study area there is no
correlation between GTH and GTVN versus
snow depth. On the other hand SSI shows
an average correlation of 75 percent with
snow depth in lower latitudes which makes it
suitable for shallow snow identification. In
the model development a non-linear
algorithm was defined to estimate SWE
using SSM/I signatures along with the NDVI
values of the pixels. The results show up to
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60 percent correlation between the
estimated SWE and ground truth SWE. The
results showed that the new algorithm
improved the SWE estimation by more than
20 percent for specific test sites.

Introduction

Understanding  seasonal variation of
snowcover and snowpack properties is of
critical importance for effective management
of water resources. Satellites operating in
the optical wavelength have monitored
snowcover over the Northern Hemisphere
for more than thirty years (Grody et al.
1996). Optical sensors can detect
snowcover during daylight and under cloud-
free conditions. In contrast to visible bands,
remote  measurements  operation in
microwave region offers the potential of
monitoring the SWE and snow wetness due
to penetrating capability of absorption of the
emitted radiation at microwave frequencies.
Hallikainen et al. (1984) introduced an
algorithm for estimating SWE using passive
microwave Scanning Multi-channel
Microwave Radiometer (SMMR) data. The
process involved the subtraction of a fall
image from a winter image in the vertical
polarization of 18 and 37 GHz frequencies.
The difference, AT, was used to define
linear relationships between AT and SWE.

Chang et al. (1987) related the
difference between the SMMR brightness
temperatures in 37 GHz and 18 GHz
channels to derive snow depth — brightness
temperature relationship for a uniform snow
field SD=1.59(Tbh19-Tbh37). This equation
assumes a constant density and grain size
for the snowpack. Goodison and Walker
(1995) introduced another algorithm to
estimate SWE using SSM/I channels. They
used vertical gradient (GTV) between
brightness temperatures at 37GHz and 19
GHz and defined a linear relationship
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between SWE and GTV. This gradient value
is obtained by subtracting the brightness
temperature, Tb at frequencies of 37 and 19
GHz and dividing it by a constant (Goodison,
Walker 1995). Goodson-Walker algorithm
has been used widely in North America over
Great Plains and Canada. Derksen (2004)
carried out a detailed evaluation of SWE and
SCE derived using SMMR and SSM/I data
over the south Central part of Canada. The
new technique to infer SWE from satellite
data incorporated different algorithms for
open environments, deciduous, coniferous,
and spars forest cover and calculated SWE
as weighted average of all four estimates:
SWE=F,SWEp+F:SWE+FsSWEs+FoSWE
o, wWhere (F) is the fraction of each land
cover type within a pixel, D, C, S, and O
correspondingly represent deciduous forest,
coniferous forest, S sparse forest, and O
open  prairie  environments. Passive
microwave dataset and in situ SWE
observation were compared and showed
that the SMMR brightness temperature
adjustments are required to produce SWE
that fits SWE inferred from SSM/I.

The above algorithms used the spectral
difference between microwave channels
from various sensors to estimate SWE or
snow depth. However other snow or land
parameters such as snow grain size, land
cover type, and snow conditions have
effects on scattering in microwave.
Although, some researchers have
introduced land cover type to their models,
their algorithms were developed and
validated regionally so those can not applied
in other study areas. In addition, these
algorithms use multi-regression approaches
to account for the land cover type.
Development of an algorithm which
quantitatively considers variation of land
cover for different areas is necessitated. The
Normalized Difference Vegetation Index
(NDVI) has been widely used to represent
the health and greenness of the vegetation.
In this study a non-linear algorithm is
proposed, which estimates SWE using
spectral difference between SSM/I channels
along with NDVI.

DATA USED

SSM/I Data

The SSM/I passive microwave
radiometer has seven channels operating at
five frequencies (19, 35, 22, 37.0, and 85.5
GHz) and dual- polarization (except at
22GHz which is vertical polarization only).
The sensor spatial resolution varies for
different channels frequencies. In this study
the Scalable Equal Area Earth Grid EASE-
Grid SSM/I products distributed by National
Snow and Ice Data Center (NSIDC) were
used. EASE-Grid spatial resolution is slightly
more than 25km (25.06km) for all the
channels (NSIDC) however the spatial
resolution of the microwave spectrum at
longer wavelengths is more than 50km. This
study employed a Northern Hemisphere
Azimuthal Equal-Area (EASE-Grid)
projection.

Normalized Difference Vegetation Index
(NDVI)

Proposed by Rouse et al. (1973), NDVI
was originally used to locate vegetation in
Great Plains. NDVI is defined as a
difference between reflectance in visible and
near infrared spectral bands divided by their
sum NDVI = (NIR-VIS)/(NIR+VIS). Live
green plants appear relatively dark in the
visible and relatively bright in the near-
infrared (Gates 1980). By contrast, clouds
and snow tend to be rather bright in the
visible and quite dark in the near-infrared.
Then, highly vegetated lands such as forests
tend to have higher NDVI while low
vegetated areas such as grass lands have
low NDVI. Soil and bare land have very low
NDVI which even becomes negative if the
land is covered by snow.

The NDVI data for this study were
obtained from the NOAA/NASA Pathfinder
Advanced Very High Resolution Radiometer
(AVHRR) dataset which is distributed by
Goddard Space Flight Center (GSFC). The
NDVI data are extracted from a global 10-
day composite image for January 21 to31 in
1994. The composite images are derived
from images in a 10-day period with
minimum cloud coverage. To facilitate the
comparison and matching of the two
datasets (NDVI and SSM/I) NDVI data
resampled and projected to the same EASE-
Grid projection at 25km spatial resolution.
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NDVI has a seasonal pattern meaning
that it increases during spring and summer
and decreases during winter. The winter
NDVI tend to be much lower than summer
for all types of land cover. Also, NDVI
variation during the winter season is very
limited. Maximum winter NDVI is generally
observed over evergreen needle-leaf
forests. Winter NDVI tends to decrease over
mixed forests and deciduous broad-leaf
forests. Over grass land and bare land
which is covered by snow NDVI becomes
negative. One of the sources of error in
estimating SWE from microwave data is
attenuation of microwave scattering over the
forested areas (evergreen and mixed
forests). By using winter NDVI data, the
scattering attenuation effect can be
minimized.

Ground Truth Snow Measurements

Point Gauge Measurements

Surface observations of snow were
obtained from National Climate Data Center
(NCDC). US climate monitoring data center
in NCDC provides daily snow depth data
from all reposting station throughout US. For
selected test sites (each site size of an
EASE-Grid pixel, which will be discussed in
the next section) the corresponding snow
depth measurements were averaged to
determine the snow depth.

SNODAS SWE

Snow products generated by the Snow
Data Assimilation System (SNODAS) of
NOAA National Weather Service's National
Operational Hydrologic Remote Sensing
Center (NOHRSC), are available beginning
October 2003. SNODAS includes a
procedure to assimilate airborne gamma
radiation and ground-based observations of
snow covered area and snhow water
equivalent, downscaled output from
Numerical Weather Prediction (NWP)
models combined in a physically based,
spatially-distributed energy and mass
balance model. The output products have
1km spatial and hourly temporal resolution.
In order to match the EASE-Grid pixels the
SNODAS SWE data were averaged to
25km.

METHOD

The study area is located in Great Lakes
area between latitudes 41° N-49° N and
longitudes 87° W-98° W covering parts of
Minnesota, Wisconsin and Michigan. The
area is covered by 980 (28 by 35) EASE-
Grid pixels. For the time series analysis 19
test sites were selected. Each site, 25km x
25km, represents an SSM/I pixel. The sites
were selected based on their latitude and
their land cover type along with the annual
snow accumulation. Low standard
deviations for NDVI in each test sites shows
the limited variation of land cover type within
each test site (Table 1). To avoid wet snow
conditions only the period from December 1
of each year to the February 28 of the
following year are considered. Three 90-day
of data sets were derived for each winter.

Data Analysis

Table 1 lists geographical location of the
selected test sites and their NDVI
characteristics including the mean value and
standard deviation. The mean and standard
deviation are derived based on difference
between spatial resolution of EASE-Grid,
25km x 25km, NDVI, 8km x 8km.

Each test site is size of an EASE-Grid
pixel (25km x 25km) while NOHRSC
SNODAS SWE data are in 1km spatial
resolution. To derive the SWE over each
test site the NOHRSC SWE data was
averaged to 25km resolution. Figure 1
illustrates the mean and standard deviation
of SWE for different days in test sites 2, 9,
and 17.

In this study the correlation between
SSMI/I channels and snow depth and SWE
for different types of land cover located in
different latitudes is used. Three years of
(2002-2004) SSM/I channels versus snow
depth and SWE for each of the selected
sites were derived. The SSM/I data were
obtained from the descending pass of
Defense Meteorological Satellite Program
(DMSP) satellites. There are three SSM/I
scattering signatures used in this analysis.
The first scattering signature, GTH (19H -
37H), is the difference between 19 and
37GHz in horizontal polarization. The
second signature, GTVN (19V-37V) shows
the difference between vertically polarized
19 and 37GHz. Finally, SSI (22V-85V) is the
difference between 22 and 85 GHz in
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vertical polarization. SSI can be used to snow depth versus GTVN, GTH, and SSI for
identify shallow snowcover. A graphical all the test sites is shown in Figure 2.
representation of correlation coefficients of

Table 1: Coordinates of selected pixels along with NDVI values, Each EASE-Grid pixel
contains 3 x 3 NDVI Pixels

SSM/I EASE-Grid Pixels NDVI
Test Site Standard
Latitude Longitude Center Mean Deviation
1 42.33 -93.62 -0.040 -0.033 0.008
2 42.89 -91.97 -0.040 -0.038 0.005
3 43.63 -91.43 -0.032 -0.025 0.012
4 44.14 -90.57 0.136 0.121 0.020
5 44.39 -89.12 0.000 0.032 0.016
6 45.12 -89.11 0.016 0.034 0.018
7 46.07 -88.19 0.272 0.219 0.029
8 45.59 -88.21 0.192 0.237 0.024
9 46.09 -88.79 0.256 0.268 0.024
10 46.80 -88.46 0.304 0.196 0.026
" 46.80 -88.16 0.176 0.234 0.023
12 46.83 -89.69 0.248 0.247 0.026
13 45.36 -91.18 0.032 0.038 0.022
14 45.56 -92.68 -0.024 0.023 0.015
15 47.26 -92.78 0.168 0.123 0.018
16 48.01 -91.88 0.160 0.212 0.025
17 47.92 -94.08 0.056 0.079 0.020
18 48.40 -95.99 0.056 0.035 0.017
19 41.47 -97.47 -0.024 -0.026 0.007
Test site 2 _ Test site 9 Test site 17
E E -!f" g il
L T L 1 L {
5 [\ & I %
Dag/s (:Jaa 1:313;) _-; bayé (jar{"1-é1)} ) I-Da);s (Jan'h1-£’>1){

Figure 1. Variation of SWE obtained from NOHRSC (1km x 1km) for Different Test Sites
(25kn x 25km), Winter 03-04
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Figure 2. Correlations of snow depth vs. SSM/I signatures GTVN (19v-37v), GTH(19h-37h), and
SSI(22v-85v) for various test sites (TS) for winter seasons 01-02, 02-03, 03-04

The scatter plots of SWE versus SSM/I
scattering signature are shown in Figure 3.
Different slopes of the regression lines
indicate attenuation of the scattering due to
the land cover variation. The land cover

variation can be represented by NDVI value
for each of the test sites. For the test sites
with higher NDVI, the regression slope is
larger and for lower NDVI values the
regression slope is smaller (Fig 4).
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Figure 3. SSM/I scattering signatures signature ((GTH (19H-37H), GTVN (19H-37V), and SSI
(22H-85H)) vs. SWE (SNODAS) for winter 2003-2004
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NDVI

Regression Slope

Test Sites

Figure 4. Variations of the slope of the regression lines in the scatter plots with NDVI for the
test sites for winter 03-04, SWE vs. GTVN

The scatter plot of the regression slopes
versus NDVI is illustrated in Figure 5. It is
shown that the regression slope and the
NDVI are highly correlated represented by
R?> and the regression line. As mentioned
before each of the selected test sites are
size of an EASE-Grid pixel (25km x 25km)
and the study area consists of 980 pixels
from which 19 were selected as test sites.

As shown in Figure 5, by having the
regression line and the NDVI for each
EASE-Grid pixel the regression slope for
that particular grid can be derived. In other
words, higher NDVI of a grid results in
higher factors in SWE estimating equations.

Winter 03-04 , SWE (mm)

Regression Slope

NDVI

Figure 5. Scatter plots of the regression lines vs. NDVI

Considering the facts mentioned above
we propose a new algorithm which relates
SWE and the SSM/I scattering signature
GTVN (19v-37v) and accounts for possible
variation of NDVI:

SWE=F* (A* NDVI* + B)*GTVN,
While NDVI >=0
SWE=C*SSI+D
While NDVI <0

Where SWE is the snow water
equivalent in mm, GTVN (19v-37v), and SSI
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(22v-85v) are SSM/I spectral scattering
signatures. Winter time NDVI was obtained
from a 10-day composite image for January
1994. In the formula above F is a coefficient
accounting for small variations on NDVI
during the winter season. A and B are
derived from the scatter plots of regression
slope and NDVI. Coefficients C and D are
determined from the scatter plots of SWE
versus SSI using the average of the best

Test Site 5 (NDVI=0.032)

y=04x+8
R?=0.45

from GTVN

SWE (mm), estimated

SWE (mm), estimated from SSI

SWE (mm), estimated

from GTVN

fitted line to the scatter plots. The Values of
coefficients A, B, C, and D entering the
above formula were found equal to 35, 2,
0.9, and -3 respectively. In the case of little
or no vegetation protruding through the
snow pack the NDVI value is close to zero
and the formula above simplifies to
Goodison-Walker algorithm. Figure 6
illustrates the behavior of the new algorithm
for transition between NDVI<0 to NDVI>=0.

Test site 6 (NDVI= 0.034)

120

y=0.74x-2
w0] R?=0.75

80
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20 4
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SWE (mm), estimated from SSI

Figure 6. Comparison of SWE estimated by SSI and GTVN

Algorithm Validation

The new algorithm was examined over
the whole dataset of matched satellite
retrieval and SWE estimates in Great Lakes
region. Figure 7 shows the results obtained
with the new algorithm over test site 10 as
compared to Goodison-walker and Chang
algorithms. The tests site 10 is located in
latitude 46.8N and longitude -88.46W in the
area covered with mixed forest. Besides the
temporal validation, the new algorithm was
spatially validated for the whole study area
(Latitudes: 41N to 49N & Longitudes: -87W
to-98W). There were eleven days (3 days
December, 4 days January, and 4 days
February) in winter 2003-2004 selected. For
those days the full coverage of the study
area from SSM/I data was available. The
ground truth data was obtained by averaging
NOHRC SNODAS dataset. Figure 8 shows
the ground truth and estimated SWE for
January 25, 2004.

The NDVI image of the study area (Fig
9) shows higher values of NDVI around the
lake. This is the area that both Chang and

Goodison-Walker algorithms highly
underestimate the SWE (Fig 10). In contrast,
the new non-linear algorithm can estimate
SWE in the area in the vicinity of the lake
with much higher accuracy (Fig 11). The
calculated RMSE and correlation coefficient
(R2) are shown for all the three algorithms.
The use of NDVI in the new algorithm
results in a decrease of the RMSE and the
increase of the correlation coefficient. It also
increases the range for the estimated SWE.
Figure 19 demonstrates a consistent
improvement in the accuracy of the
estimated SWE for the winter season of
2003-2004.

For all days, application of the new
developed algorithm results in the highest
correlation coefficient between SSM/I and
SWE. At the same time, the RMSE of SWE
derived with the new algorithm is lower for
all days but one. There is a decreasing trend
of in correlations and increasing trend in
SWE in February. The most probable
reason for this trend is snow melt. In
February, the study area and especially its
southern part experienced several melt and
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refreeze of snow. The higher brightness
temperature
temperatures over the study area supports

and

reported

surface

the existence of wet snow for those days.
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Figure 7. Comparison of the results for different algorithms for test site 10 (Lat = 48.6N, Lon = -
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Figure 8. Comparison of estimated SWE by various algorithms with ground truth data for January
25, 2004 for the study area (Lat: 41N to 49N & Lon: -87W to-98W)
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Figure 10. Results of estimated SWE using Chang and Goodison-Walker algorithm vs ground
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Figure 11. Variations of RMSE and Correlation Coefficients for selected days in winter 2003-2004

CONCLUSIONS

A non-linear method was developed to
estimate SWE using SSM/I scattering Signatures
and NDVI over Great Lakes area of the United
States. Current linear algorithms such as
Goodison-Walker and Chang algorithms are not
sufficient for accurate estimations of SWE in Great
Lakes area. In order to resolve this problem three
winter seasons were studied. SSM/I data with
corresponding snow depth, and snow water
equivalent (SWE) were used to examine the
sensors response to the changes in snow pack
properties. SSM/I response in GTVN (19V-37V),
GTH (19H-37H), and SSI (22V-85V) to snow
depth or water equivalent changes were analyzed.
In low latitudes, more southerly areas, with
shallow snow SSI has the highest correlation with
SWE. In higher latitudes GTVN and GTH are
better estimators of SWE. However the slope of
the relationship between the spectral signature

and SWE varies with location. This variation of the
slope was found to be correlated to NDVI and was
used to develop the new algorithm to estimate
SWE using SSM/I and NDVI. Validation of the new
algorithm shows that it reduces the error of SWE
estimates by more than 20 percent as compared
to earlier linear algorithms such as Goodison-
Walker or Chang algorithms. The analysis of
derived SWE distributions over the study area also
reveals a consistent improvement of retrieval
accuracy of SWE by the new algorithm.
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