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Abstract-  Snow pack properties such as 
snow depth and snow water equivalent 
(SWE) have always attracted hydro-
meteorologists. The satellite borne 
microwave imagery has provided the option 
to produce spatial SWE distribution maps. 
This research focuses on application of 
passive microwave data to estimate SWE 
developing an algorithm to estimate 
snowpack properties in Great Lakes area 
based on a three-year of SSM/I dataset 
along with corresponding ground truth data. 
The study area is located between latitudes 
41N-49N and longitudes 87W-98W. The 
area is covered by 28*35 SSM/I EASE-Grid 
pixels with spatial resolution of 25km. 
Nineteen test sites were selected based on 
seasonal average snow depth, and land 
cover type. Each of the sites covers an area 
of 25km*25km with minimum of one snow 
reporting station inside. Two types of ground 
truth data were used: 1) point-based snow 
depth observations from NCDC; 2) grid 
based SNODAS-SWE dataset, produced by 
NOHRSC. To account for land cover 
variation in a quantitative way NDVI data 
were used. To do the analysis, three 
scattering signatures of GTVN (19V-37V), 
GTH (19H-37H), and SSI (22V-85V) were 
derived. The analysis shows that at lower 
latitudes of the study area there is no 
correlation between GTH and GTVN versus 
snow depth. On the other hand SSI shows 
an average correlation of 75 percent with 
snow depth in lower latitudes which makes it 
suitable for shallow snow identification. In 
the model development a non-linear 
algorithm was defined to estimate SWE 
using SSM/I signatures along with the NDVI 
values of the pixels. The results show up to 
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60 percent correlation between the 
estimated SWE and ground truth SWE. The 
results showed that the new algorithm 
improved the SWE estimation by more than 
20 percent for specific test sites. 
 

Introduction 

Understanding seasonal variation of 
snowcover and snowpack properties is of 
critical importance for effective management 
of water resources. Satellites operating in 
the optical wavelength have monitored 
snowcover over the Northern Hemisphere 
for more than thirty years (Grody et al. 
1996). Optical sensors can detect 
snowcover during daylight and under cloud-
free conditions. In contrast to visible bands, 
remote measurements operation in 
microwave region offers the potential of 
monitoring the SWE and snow wetness due 
to penetrating capability of absorption of the 
emitted radiation at microwave frequencies. 
Hallikainen et al. (1984) introduced an 
algorithm for estimating SWE using passive 
microwave Scanning Multi-channel 
Microwave Radiometer (SMMR) data. The 
process involved the subtraction of a fall 
image from a winter image in the vertical 
polarization of 18 and 37 GHz frequencies. 
The difference, ∆T, was used to define 
linear relationships between ∆T and SWE. 

Chang et al. (1987) related the 
difference between the SMMR brightness 
temperatures in 37 GHz and 18 GHz 
channels to derive snow depth – brightness 
temperature relationship for a uniform snow 
field SD=1.59(Tbh19-Tbh37). This equation 
assumes a constant density and grain size 
for the snowpack. Goodison and Walker 
(1995) introduced another algorithm to 
estimate SWE using SSM/I channels. They 
used vertical gradient (GTV) between 
brightness temperatures at 37GHz and 19 
GHz and defined a linear relationship 
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between SWE and GTV. This gradient value 
is obtained by subtracting the brightness 
temperature, Tb at frequencies of 37 and 19 
GHz and dividing it by a constant (Goodison, 
Walker 1995). Goodson-Walker algorithm 
has been used widely in North America over 
Great Plains and Canada. Derksen (2004) 
carried out a detailed evaluation of SWE and 
SCE derived using SMMR and SSM/I data 
over the south Central part of Canada. The 
new technique to infer SWE from satellite 
data incorporated different algorithms for 
open environments, deciduous, coniferous, 
and spars forest cover and calculated SWE 
as weighted average of all four estimates: 
SWE=FDSWED+FCSWEC+FSSWES+FOSWE
O, where (F) is the fraction of each land 
cover type within a pixel, D, C, S, and O 
correspondingly represent deciduous forest, 
coniferous forest, S sparse forest, and O 
open prairie environments. Passive 
microwave dataset and in situ SWE 
observation were compared and showed 
that the SMMR brightness temperature 
adjustments are required to produce SWE 
that fits SWE inferred from SSM/I. 

The above algorithms used the spectral 
difference between microwave channels 
from various sensors to estimate SWE or 
snow depth. However other snow or land 
parameters such as snow grain size, land 
cover type, and snow conditions have 
effects on scattering in microwave. 
Although, some researchers have 
introduced  land cover type to their models, 
their algorithms were developed and 
validated regionally so those can not applied 
in other study areas. In addition, these 
algorithms use multi-regression approaches 
to account for the land cover type. 
Development of an algorithm which 
quantitatively considers variation of land 
cover for different areas is necessitated. The 
Normalized Difference Vegetation Index 
(NDVI) has been widely used to represent 
the health and greenness of the vegetation. 
In this study a non-linear algorithm is 
proposed, which estimates SWE using 
spectral difference between SSM/I channels 
along with NDVI. 

DATA USED 
 
SSM/I Data 

The SSM/I passive microwave 
radiometer has seven channels operating at 
five frequencies (19, 35, 22, 37.0, and 85.5 
GHz) and dual- polarization (except at 
22GHz which is vertical polarization only). 
The sensor spatial resolution varies for 
different channels frequencies. In this study 
the Scalable Equal Area Earth Grid EASE-
Grid SSM/I products distributed by National 
Snow and Ice Data Center (NSIDC) were 
used. EASE-Grid spatial resolution is slightly 
more than 25km (25.06km) for all the 
channels (NSIDC) however the spatial 
resolution of the microwave spectrum at 
longer wavelengths is more than 50km. This 
study employed a Northern Hemisphere 
Azimuthal Equal-Area (EASE-Grid) 
projection. 

 
Normalized Difference Vegetation Index 
(NDVI) 

Proposed by Rouse et al. (1973), NDVI 
was originally used to locate vegetation in 
Great Plains. NDVI is defined as a 
difference between reflectance in visible and 
near infrared spectral bands divided by their 
sum NDVI = (NIR-VIS)/(NIR+VIS). Live 
green plants appear relatively dark in the 
visible and relatively bright in the near-
infrared (Gates 1980). By contrast, clouds 
and snow tend to be rather bright in the 
visible and quite dark in the near-infrared. 
Then, highly vegetated lands such as forests 
tend to have higher NDVI while low 
vegetated areas such as grass lands have 
low NDVI. Soil and bare land have very low 
NDVI which even becomes negative if the 
land is covered by snow.  

The NDVI data for this study were 
obtained from the NOAA/NASA Pathfinder 
Advanced Very High Resolution Radiometer 
(AVHRR) dataset which is distributed by 
Goddard Space Flight Center (GSFC). The 
NDVI data are extracted from a global 10-
day composite image for January 21 to31 in 
1994. The composite images are derived 
from images in a 10-day period with 
minimum cloud coverage. To facilitate the 
comparison and matching of the two 
datasets (NDVI and SSM/I) NDVI data 
resampled and projected to the same EASE-
Grid projection at 25km spatial resolution.  
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NDVI has a seasonal pattern meaning 
that it increases during spring and summer 
and decreases during winter. The winter 
NDVI tend to be much lower than summer 
for all types of land cover. Also, NDVI 
variation during the winter season is very 
limited. Maximum winter NDVI is generally 
observed over evergreen needle-leaf 
forests. Winter NDVI tends to decrease over 
mixed forests and deciduous broad-leaf 
forests. Over grass land and bare land 
which is covered by snow NDVI becomes 
negative. One of the sources of error in 
estimating SWE from microwave data is 
attenuation of microwave scattering over the 
forested areas (evergreen and mixed 
forests).  By using winter NDVI data, the 
scattering attenuation effect can be 
minimized.  

Ground Truth Snow Measurements 

Point Gauge Measurements 
Surface observations of snow were 

obtained from National Climate Data Center 
(NCDC). US climate monitoring data center 
in NCDC provides daily snow depth data 
from all reposting station throughout US. For 
selected test sites (each site size of an 
EASE-Grid pixel, which will be discussed in 
the next section) the corresponding snow 
depth measurements were averaged to 
determine the snow depth. 

SNODAS SWE 
Snow products generated by the Snow 

Data Assimilation System (SNODAS) of 
NOAA National Weather Service's National 
Operational Hydrologic Remote Sensing 
Center (NOHRSC), are available beginning 
October 2003. SNODAS includes a 
procedure to assimilate airborne gamma 
radiation and ground-based observations of 
snow covered area and snow water 
equivalent, downscaled output from 
Numerical Weather Prediction (NWP) 
models combined in a physically based, 
spatially-distributed energy and mass 
balance model. The output products have 
1km spatial and hourly temporal resolution. 
In order to match the EASE-Grid pixels the 
SNODAS SWE data were averaged to 
25km. 

 
METHOD 

 

The study area is located in Great Lakes 
area between latitudes 41o N-49o N and 
longitudes 87o W-98o W covering parts of 
Minnesota, Wisconsin and Michigan. The 
area is covered by 980 (28 by 35) EASE-
Grid pixels. For the time series analysis 19 
test sites were selected. Each site, 25km x 
25km, represents an SSM/I pixel. The sites 
were selected based on their latitude and 
their land cover type along with the annual 
snow accumulation. Low standard 
deviations for NDVI in each test sites shows 
the limited variation of land cover type within 
each test site (Table 1). To avoid wet snow 
conditions only the period from December 1 
of each year to the February 28 of the 
following year are considered. Three 90-day 
of data sets were derived for each winter.  

 
Data Analysis 
 

Table 1 lists geographical location of the 
selected test sites and their NDVI 
characteristics including the mean value and 
standard deviation. The mean and standard 
deviation are derived based on difference 
between spatial resolution of EASE-Grid, 
25km x 25km, NDVI, 8km x 8km. 

Each test site is size of an EASE-Grid 
pixel (25km x 25km) while NOHRSC 
SNODAS SWE data are in 1km spatial 
resolution. To derive the SWE over each 
test site the NOHRSC SWE data was 
averaged to 25km resolution. Figure 1 
illustrates the mean and standard deviation 
of SWE for different days in test sites 2, 9, 
and 17.   

In this study the correlation between 
SSM/I channels and snow depth and SWE 
for different types of land cover located in 
different latitudes is used. Three years of  
(2002-2004) SSM/I channels versus snow 
depth and SWE for each of the selected 
sites were derived. The SSM/I data were 
obtained from the descending pass of 
Defense Meteorological Satellite Program 
(DMSP) satellites. There are three SSM/I 
scattering signatures used in this analysis. 
The first scattering signature, GTH (19H -
37H), is the difference between 19 and 
37GHz in horizontal polarization. The 
second signature, GTVN (19V-37V) shows 
the difference between vertically polarized 
19 and 37GHz. Finally, SSI (22V-85V) is the 
difference between 22 and 85 GHz in 
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vertical polarization. SSI can be used to 
identify shallow snowcover. A graphical 
representation of correlation coefficients of 

snow depth versus GTVN, GTH, and SSI for 
all the test sites is shown in Figure 2. 

               
 Table 1: Coordinates of selected pixels along with NDVI values, Each EASE-Grid pixel 

contains 3 x 3 NDVI Pixels    

 

SSM/I EASE-Grid Pixels NDVI  
Test Site 

Latitude Longitude Center Mean 
Standard 
Deviation 

1 42.33 -93.62 -0.040 -0.033 0.008 
2 42.89 -91.97 -0.040 -0.038 0.005 
3 43.63 -91.43 -0.032 -0.025 0.012 
4 44.14 -90.57 0.136 0.121 0.020 
5 44.39 -89.12 0.000 0.032 0.016 
6 45.12 -89.11 0.016 0.034 0.018 
7 46.07 -88.19 0.272 0.219 0.029 
8 45.59 -88.21 0.192 0.237 0.024 
9 46.09 -88.79 0.256 0.268 0.024 
10 46.80 -88.46 0.304 0.196 0.026 
11 46.80 -88.16 0.176 0.234 0.023 
12 46.83 -89.69 0.248 0.247 0.026 
13 45.36 -91.18 0.032 0.038 0.022 
14 45.56 -92.68 -0.024 0.023 0.015 
15 47.26 -92.78 0.168 0.123 0.018 
16 48.01 -91.88 0.160 0.212 0.025 
17 47.92 -94.08 0.056 0.079 0.020 
18 48.40 -95.99 0.056 0.035 0.017 
19 47.47 -97.47 -0.024 -0.026 0.007 
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Figure 1. Variation of SWE obtained from NOHRSC (1km x 1km) for Different Test  Sites 
(25kn x 25km), Winter 03-04             
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Figure 2. Correlations of snow depth vs. SSM/I signatures GTVN (19v-37v), GTH(19h-37h), and 
SSI(22v-85v) for various test sites (TS) for  winter seasons 01-02, 02-03, 03-04 

 

 

 

The scatter plots of SWE versus SSM/I 
scattering signature are shown in Figure 3. 
Different slopes of the regression lines 
indicate attenuation of the scattering due to 
the land cover variation. The land cover 

variation can be represented by NDVI value 
for each of the test sites. For the test sites 
with higher NDVI, the regression slope is 
larger and for lower NDVI values the 
regression slope is smaller (Fig 4). 
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Figure 3. SSM/I scattering signatures signature ((GTH (19H-37H), GTVN (19H-37V), and SSI 
(22H-85H)) vs. SWE (SNODAS) for winter 2003-2004 
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Figure 4. Variations of the slope of the regression lines in the scatter plots with NDVI for the 

test sites for winter 03-04, SWE vs. GTVN 
 
 
The scatter plot of the regression slopes 

versus NDVI is illustrated in Figure 5. It is 
shown that the regression slope and the 
NDVI are highly correlated represented by 
R2   and the regression line. As mentioned 
before each of the selected test sites are 
size of an EASE-Grid pixel (25km x 25km) 
and the study area consists of 980 pixels 
from which 19 were selected as test sites. 

As shown in Figure 5, by having the 
regression line and the NDVI for each 
EASE-Grid pixel the regression slope for 
that particular grid can be derived. In other 
words, higher NDVI of a grid results in 
higher factors in SWE estimating equations.  
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Figure 5. Scatter plots of the regression lines vs. NDVI 

 
 
 
Considering the facts mentioned above 

we propose a new algorithm which relates 
SWE and the SSM/I scattering signature 
GTVN (19v-37v) and accounts for possible 
variation of NDVI: 
 

SWE=F* (A* NDVI* + B)*GTVN,  
 While NDVI >= 0 
SWE=C*SSI+D    
 While NDVI <0 
 

Where SWE is the snow water 
equivalent in mm, GTVN (19v-37v), and SSI 
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(22v-85v) are SSM/I spectral scattering 
signatures. Winter time NDVI was obtained 
from a 10-day composite image for January 
1994. In the formula above F is a coefficient 
accounting for small variations on NDVI 
during the winter season. A and B are 
derived from the scatter plots of regression 
slope and NDVI. Coefficients C and D are 
determined from the scatter plots of SWE 
versus SSI using the average of the best 

fitted line to the scatter plots. The Values of 
coefficients A, B, C, and D entering the 
above formula were found equal to 35, 2, 
0.9, and -3 respectively. In the case of little 
or no vegetation protruding through the 
snow pack the NDVI value is close to zero 
and the formula above simplifies to 
Goodison-Walker algorithm.  Figure 6 
illustrates the behavior of the new algorithm 
for transition between NDVI<0 to NDVI>=0.  
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Figure 6. Comparison of SWE estimated by SSI and GTVN 
 
 

Algorithm Validation 
 

The new algorithm was examined over 
the whole dataset of matched satellite 
retrieval and SWE estimates in Great Lakes 
region. Figure 7 shows the results obtained 
with the new algorithm over test site 10 as 
compared to Goodison-walker and Chang 
algorithms. The tests site 10 is located in 
latitude 46.8N and longitude -88.46W in the 
area covered with mixed forest. Besides the 
temporal validation, the new algorithm was 
spatially validated for the whole study area 
(Latitudes: 41N to 49N & Longitudes: -87W 
to-98W). There were eleven days (3 days 
December, 4 days January, and 4 days 
February) in winter 2003-2004 selected. For 
those days the full coverage of the study 
area from SSM/I data was available. The 
ground truth data was obtained by averaging 
NOHRC SNODAS dataset. Figure 8 shows 
the ground truth and estimated SWE for 
January 25, 2004.  
 

The NDVI image of the study area (Fig 
9) shows higher values of NDVI around the 
lake. This is the area that both Chang and 

Goodison-Walker algorithms highly 
underestimate the SWE (Fig 10). In contrast, 
the new non-linear algorithm can estimate 
SWE in the area in the vicinity of the lake 
with much higher accuracy (Fig 11). The 
calculated RMSE and correlation coefficient 
(R2) are shown for all the three algorithms. 
The use of NDVI in the new algorithm 
results in a decrease of the RMSE and the 
increase of the correlation coefficient. It also 
increases the range for the estimated SWE. 
Figure 19 demonstrates a consistent 
improvement in the accuracy of the 
estimated SWE for the winter season of 
2003-2004. 

 For all days, application of the new 
developed algorithm results in the highest 
correlation coefficient between SSM/I and 
SWE. At the same time, the RMSE of SWE 
derived with the new algorithm is lower for 
all days but one. There is a decreasing trend 
of in correlations and increasing trend in 
SWE in February. The most probable 
reason for this trend is snow melt. In 
February, the study area and especially its 
southern part experienced several melt and 
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refreeze of snow. The higher brightness 
temperature and reported surface 
temperatures over the study area supports 
the existence of wet snow for those days.  

Estimates of snow depth and SWE with 
satellite observations in microwave become 
practically impossible when snow is wet. 
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Figure 7. Comparison of the results for different algorithms for test site 10 (Lat = 48.6N, Lon = -
88.46W, and NDVI = 0.2)
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Figure 8. Comparison of estimated SWE by various algorithms with ground truth data for January 
25, 2004 for the study area (Lat: 41N to 49N & Lon: -87W to-98W) 

 

NDVI Image New Algorithm Estimated SWE vs Ground 
Truth 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

    
0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

Estimated SWE (mm)

S
N

O
D

A
S

 S
W

E
 (m

m
)

AZAR Non-linear Algorithm

R=0.69786

RMSE=19mm

Bias= 0mm

Ave(E)=14mm

Ave(S)=15mm

MAX(E)=181mm

MAX(S)=177mm

   

 Figure 9. NDVI image and results of estimated SWE vs. ground truth for January 25, 2004 (left), 
Estimeted SWE by developed slgorithm vs. ground truth (right) 
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Figure 10. Results of estimated SWE using Chang and Goodison-Walker algorithm vs ground 
truth for January 25, 2004 
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Figure 11. Variations of RMSE and Correlation Coefficients for selected days in winter 2003-2004 

 

CONCLUSIONS 

A non-linear method was developed to 
estimate SWE using SSM/I scattering Signatures 
and NDVI over Great Lakes area of the United 
States. Current linear algorithms such as 
Goodison-Walker and Chang algorithms are not 
sufficient for accurate estimations of SWE in Great 
Lakes area. In order to resolve this problem three 
winter seasons were studied. SSM/I data with 
corresponding snow depth, and snow water 
equivalent (SWE) were used to examine the 
sensors response to the changes in snow pack 
properties. SSM/I response in GTVN (19V-37V), 
GTH (19H-37H), and SSI (22V-85V) to snow 
depth or water equivalent changes were analyzed. 
In low latitudes, more southerly areas, with 
shallow snow SSI has the highest correlation with 
SWE. In higher latitudes GTVN and GTH are 
better estimators of SWE. However the slope of 
the relationship between the spectral signature 

and SWE varies with location. This variation of the 
slope was found to be correlated to NDVI and was 
used to develop the new algorithm to estimate 
SWE using SSM/I and NDVI. Validation of the new 
algorithm shows that it reduces the error of SWE 
estimates by more than 20 percent as compared 
to earlier linear algorithms such as Goodison-
Walker or Chang algorithms. The analysis of 
derived SWE distributions over the study area also 
reveals a consistent improvement of retrieval 
accuracy of SWE by the new algorithm. 
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