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1. INTRODUCTION AND SCOPE 

 
Multi-criteria methods have been useful in 

identifying realistic parameters sets that significantly 
improve model performance at specific locations. 
Hydrological synthesis is required to generalize findings 
obtained at data rich locations to regions that are data 
sparse or where no studies have been carried out.  
Under the hypothesis that land surface model 
parameters have strong relationships with physical 
characteristics that can be recognized by means of 
multi-objective optimization techniques, we evaluate the 
similarity of model sensitivity between locations that are 
physically similar and between optimal parameter sets. 
We expect to answer the following questions: 
 To what extent land-surface exchanges are 

adequately represented in different LSM across 
different dominant biomes in semi-arid environments? 

 Under what conditions can model parameters 
obtained at one site behave and have similar values 
to those obtained at a physically similar location?  

 Can an ‘optimal’ set of model parameters be obtained 
to represent regions with similar physical 
characteristics? 

This analysis of parameter behavior allows exploring 
site-to-site differences for two dominant biomes in the 
semi-arid environment: shrub and grass. We evaluate 
the extent to which distinct dominant vegetation types 
and model parameterizations affect the behavior of 
‘physically meaningful’ LSM parameters. We drive the 
Noah land-surface model (Ek et al., 2003) offline and 
perform several multi-criteria sensitivity analysis and 
parameter estimations using quality-controlled flux tower 
data from a grass and a shrub sites in Arizona (USDA 
Walnut Gulch Experimental Watershed) and two similar 
sites in New Mexico (Sevilleta, LTER). We cross-
validate estimated optimal parameter sets and their 
sensitivity by comparing parameters obtained at one site 
against those obtained at other sites.  

 
2. BACKGROUND 
 

LSM are simplified conceptual representations of a 
complex natural system into different soil-vegetation-
atmosphere transfer schemes, and each 
parameterization contains many functional coefficients 
that usually cannot be measured directly or extensively 
in time and space and therefore cannot be specified a  
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priori and have to be estimated by constraining the 
model with observations. The goal of this constraining 
process is to efficiently extract the information contained 
in the observational data, rendering a reduction in the 
modeling uncertainty. The information extraction 
process should result in identification of a smaller 
parameter region within the feasible parameter space.   
Due to the multi-output nature of LSMs, multi-criteria 
model sensitivity analysis and calibration methods have 
proven to be especially suitable to effectively provide 
optimal parameter estimates, which are consistent with 
actual land-surface characteristics (e.g. Gupta et al., 
1999; Bastidas et al., 2001; Demarty et al., 2004; Hogue 
et al, 2005, 2006; Bastidas et al., 2006a,b). Flux 
measurements embody an integrated response of the 
land surface providing with an objective way of examine 
model soundness at a specific location (Bastidas et al, 
2001). Bastidas et al. (2003) recognized the necessity 
to develop methodologies to transfer the knowledge 
gained by means of calibration to places were data is 
not available. Similarly, as a result of the MOPEX, Duan 
et al. (2005) concluded that “…much research has to be 
done to understand how model parameters relate to 
basin characteristic especially considering that modelers 
are not sure that ‘observable’ characteristics (mostly 
land surface) are the most relevant descriptors of the 
factors that control the hydrologic behavior” and 
recommend that the scientific community collects data 
from different climatic regions for much-needed 
transferability studies. 

This study is a pilot for one of the constituents of the 
PILPS Semi-arid experiment, also known as PILPS San 
Pedro (Bastidas et al., 2003). This experiment not only 
allows for assessing the ability of the models to 
reproduce the complex water and energy exchanges in 
semi-arid environments, but also provides with the 
opportunity to test two different vegetation covers (shrub 
and grass) under the ‘same’ climatic conditions but 
hundred of kilometers apart. 

 
 

3. SITES, MODELS AND DATA 
 
3.1. SAN PEDRO SITES: Lucky Hills and Kendall  

 
The experiment has been carried out at two sites 

within the Walnut Gulch Experimental Watershed in 
southeastern Arizona, a sub-basin of the Upper San 
Pedro River.  

The Kendall site (109°56’28’’ W, 31°44’10’’ N) is in 
the eastern part of the watershed covered mainly by 
perennial C4 grasses. (see Fig.1). The elevation is 1526 
masl. Soils consist mainly of very gravelly sandy loams 



which contain limestone rock fragments. Canopy height 
is estimated 0.4 -0.7 m. Slopes are 4-9%. Average 
temperature is 19.3 °C. Average precipitation 340 
mm/year. 

The Lucky Hills site (110°03’05’’ W, 31°44’37’’ N) is 
located in the lower (1372 masl) shrub dominated part 
of the basin. (s.Fig.2). The vegetation consists mainly of 
the C3 species. Soils are mostly loamy sand or very 
gravelly sandy loams. Canopy height is estimated at 1 
m. Slopes are 3-8%. Average temperature is 18.6 °C. 

 

 
Figure.1  Kendall grassland site. 

 

 
Figure.2 Lucky Hills shrub site. 

 
 

3.2. SEVILLETA SITES: Lucky Hills and Kendall  
 
Data collected in the McKenzie Flats area of the 

Sevilleta National Wildlife Refuge, central New Mexico 
from two sites separated by 2 km are also used in this 
study. 

The Sevilleta grassland site (106°43’30’’ W, 
34°20’30’’ N) is dominated by black grama. (s. Fig.3). 
The elevation is 1730 masl. Slopes are less than 2%. 
Average temperature is 17.2 °C. 

The Sevilleta shrub site (106°44’39’’ W, 34°20’05’’ 
N) is covered by creosotebush. (s. Fig.4). The elevation 
is 1776 masl. Slopes are smaller than 2%. Average 
temperature is 16.9 °C. Average annual precipitation is 
270 mm. 
 

 
Figure.3  Sevilleta grassland site. 
 

 
Figure.4  Sevilleta shrubland site 

 
 

3.3. Data 
 
Precipitation and weather data (net radiation, ground 

heat flux, wind speed, wind direction, air temperature, 
and relative humidity) has been collected continuously 
by the USDA-ARS Tucson for the San Pedro Sites in 
20-minute intervals using a Bowen ratio system with a 
tower height of 3 m (Emmerich et al., 2003). It includes 
measurements of sensible and latent heat fluxes, and 
soil temperature. We use data from May to December 
2000.  The data at the Sevilleta sites was collected by 
Eric Small of the University of Colorado using tower with 
a 3m height at 30-minute intervals. Measurements 
include sensible and latent heat fluxes, and soil 
temperature at 2.5 cm. We use data from May to 
December 2001. 
 
 
 
 
 



3.4. Noah 2.5  Land-surface Model 
 

Near-surface atmospheric forcing data (e.g., 
precipitation, radiation, wind speed, temperature, 
humidity) is required as input for Noah in order to 
simulate soil moisture (both liquid and frozen), soil 
temperature, skin temperature, snowpack depth, 
snowpack water equivalent, canopy water content, and 
the energy flux and water flux terms of the surface 
energy balance and surface water balance. The model 
applies finite-difference spatial discretization methods 
and a Crank-Nicholson time integration scheme to 
numerically integrate the governing equations of the 
physical processes of the soil vegetation-snowpack 
medium, including the surface energy balance equation, 
Richards’ (1931) equation for soil hydraulics, the 
diffusion equation for soil heat transfer, the energy-mass 
balance equation for the snowpack, and the Jarvis 
(1976) equation for the conductance of canopy 
transpiration. 
 
 
4. METHODS 

 
The Multi-Objective Generalized Sensitivity Analysis 

Procedure serves to identify sensitive parameters that 
merit calibration. The MOGSA (Bastidas et al., 1999) 
algorithm is a multi-objective extension of the 
Generalized Sensitivity Analysis of Hornberger and 
Spear. It involves a Monte Carlo search of the feasible 
space and the notion of Pareto ranking for separating 
into behavioral and non-behavioral model outputs (as 
opposed to a single time series error function). The two 
sets, behavioral and non-behavioral, are then tested to 
check if the they are drawn from the same joint 
multivariate distribution using the Kolmogorov-Smirnov 
(K-S) statistic. If the two samples are statistically 
different, the parameters are considered to be sensitive, 
otherwise they are considered to be insensitive. 
Statistical robustness is ensured by means of 
bootstrapping (sampling with replacement) and the use 
of the median of the K-S. Further, the sample size is 
increased until the number of sensitive parameter 
stabilizes. Although this algorithm was originally 
developed to determine the model sensitivity to input 
parameters, it is also a useful tool for retrieving 
quantitative information about influential parameters. In 
this study, the MOGSA algorithm is also used to identify 
“reasonable ranges” for parameter estimation. 

The Multi-Objective Shuffled Complex Evolution 
Metropolis MOSCEM (Vrugt et al., 2003) is an 
automated method that uses a multi-objective 
optimization approach based on a Markov Chain/Monte 
Carlo Sampling strategy to evolve an initial population, 
randomly selected within a pre-established feasible 
range, towards a sample which approximates the 
optimal Pareto region. The goal is to identify a 
reasonable small parameter range, the most likely 
parameter set and its underlying posterior distribution, 
which guarantees “optimal” model performance in terms 
of reproducing observations.  

The algorithm evaluates a multi-objective vector in 
order to rank and sort each of the members of the initial 
population, using a fitness assignment after Zitzler and 
Thiele (1999). The population is partitioned into groups 
or complexes, within which parallel evolution sequences 
are launched to find new candidate points that depend 
on the sequence structure and the complex. In order to 
replace the worst point, acceptance or rejection of 
candidates is defined by the Metropolis-Hastings 
algorithm. After a number of iterations, the complexes 
are combined and through a process of shuffling new 
complexes are formed. Until the Gelman-Rubin (1992) 
convergence criteria is reached the process continues.  
 
 
5. ANALYSIS RESULTS AND DISCUSSION 
 
5.1. Sensitivity Analysis 
 

Using 20.000 Monte Carlo simulations at each site, 
MOGSA is used to identify the level of sensitivity of the 
26 model parameters and 8 initial states to sensible 
heat, latent heat, ground temperature and the global 
Pareto when considering simultaneously the 3 criteria. 
The error function of choice is root mean squared error 
(RMSE).The global sensitivity index for the vegetation 
and soil parameters is presented in Fig.5. for each of 
the sites: San Pedro grass in blue, San Pedro shrub in 
cyan, Sevilleta Grass red and Sevilleta Shrub in 
magenta. The farther away from the center, the more 
sensitive the parameter. The dotted and dashed circles 
represent the 0.05 and 0.01 significance levels, 
respectively, corresponding to the thresholds for 
moderate and high sensitivity.   

It is observed that some parameter sensitivities 
behave similarly by site and others do so by vegetation 
type. Parameters that fall in the same level according to 
site are: quartz, topt and z0.  Parameters that fall in the 
same level according to type of vegetation cover are: 
cfactr and psisat. Parameters that are sensitive in all 
sites are: sbet, rcmin, lai, fxexp, czil, and maxsmc. 
Insensitive parameters in all sites are: satdw, satdk, 
drysmc, rsmax, and hs. Parameters b and csoil present 
similar sensitivity for different vegetation types at distant 
locations.   

As a result of the sensitivity analysis, 20 parameters 
are chosen for estimation; thus reducing the 
dimensionality of the optimization problem. 

In order to evaluate whether the sensitivities found 
at a particular location are more similar to its 
corresponding vegetation site in the other location or to 
the closest one despite not sharing the same cover, we 
use the Hausdorff norm as similarity index. (Bastidas 
and Li, 2006) In Fig.6 the result of comparing the 
sensitivity of vegetation parameters when using global, 
H or LE against the one obtained at other locations is 
shown. On Fig. 7 the comparison of the sensitivity of soil 
parameters is presented. The smaller the Hausdorff 
value, the more similar the sensitivities.  
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Figure 5.  Parameter sensitivity using the multicriteria ‘global’ index (combined sensitivity to sensible heat, latent 

heat and ground temperature) for each of the sites. a) Soil Parameters b) Vegetation Parameters. The farther away 
from the center, the more sensitive the parameter. The dotted and dashed circles represent the 0.05 and 0.01 

significance levels, respectively, corresponding to the thresholds for moderate and high sensitivity. 
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Figure 6.  Intercomparison of sensitivity of vegetation parameters to multicriteria ‘global’ index, to latent heat and 
to sensible heat flux among fluxes and sites. The comparison uses the Hausdorff norm as a similarity index. 

 

 
Figure 7.  Intercomparison of sensitivity of soil parameters to multicriteria ‘global’ index, to latent heat and to 
sensible heat flux among fluxes and sites. The comparison uses the Hausdorff norm as a similarity index. 
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Figure 8.  Model performance in error function space. Each of the dots corresponds to a single parameter set. 
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Figure 9.  Normalized parameter space for each site. Each of the lines corresponds to a set of preferred solutions 
from the Pareto front. The black dashed lines represent a single ‘preferred’ set, chosen by using a L2 norm. Black 

dots represent the default parameter set.  
 
 



Parameter Optim
No. name Sev. Shrub Sev. Grass SP. shrub  SP. grass Lower Upper flag
1 rcmin 19.981 5.142 263.16 48.616 150 5 1000 OPT minimum stomatal resistance
2 rgl 100 30 150 FIX used in solar rad term of canopy resist. fnctn.
3 hs 36.35 30 54.53 FIX used in vapor pressure deficit term of canopy res. func.
4 z0 0.081 0.189 0.011 0.011 0.035 0.01 0.2 OPT roughness length 
5 lai 3.023 4.195 3.435 4.466 3 0.05 4.5 OPT leaf area index
6 cfactr 0.177 0.385 1.993 0.125 0.5 0.1 2 OPT canopy water parameter
7 cmcmax 0.864 1.319 1.010 1.059 0.5 0.1 2 OPT *E-3 second canopy water parameter [m]
8 sbeta -2.55 -3.94 -3.75 -1.0 -2 -4 -1 OPT to calculate vegetation effect on soil heat flux
9 rsmax 6945.5 9682.2 338.5 244.0 5000 200 10000 OPT max stomatal resistance

10 topt 298.7 301.1 301.4 293.0 298 293 303 OPT optimum transpiration air temperature
11 maxsmc 0.364 0.379 0.548 0.545 0.464 0.33 0.55 OPT max soil moisture content (porosity)
12 drysmc 0.11 0.187 0.179 0.156 0.119 0.02 0.2 OPT air dry soil moist content limits
13 psisat 0.066 0.058 0.472 0.058 0.62 0.04 0.62 OPT saturated soil potential
14 satdk 2.306 1.673 1.119 1.650 0.2 0.05 3 OPT *E-5 saturated soil hydraulic conductivity
15 b 6.008 3.501 3.546 4.687 8.4 3.5 10.8 OPT the 'b' parameter
16 satdw 2.987 2.999 1.004 0.707 2.33 0.571 3 OPT *E-5 saturated soil diffusivity
17 quartz 0.312 0.068 0.172 0.539 0.1 0.05 0.82 OPT soil quartz content
18 nroot 4 2 4 FIX number of root layers < nsoil < nsold
19 refdk 0.255 1.626 0.210 0.152 0.2 0.05 3 OPT *E-5 Reference value for sat.hyd.cond. 
20 fxexp 0.924 0.417 0.754 0.763 2 0.2 4 OPT bare soil evaporation exponent used in DEVAP
21 refkdt 1.541 8.901 7.065 8.973 3 0.1 10 OPT Reference value for surface infiltration parameter
22 czil 0.613 0.228 0.772 0.798 0.2 0.05 0.8 OPT to calculate roughness length of heat
23 csoil 1.271 1.790 3.27 2.419 1.26 1.13 3.5 OPT *E+6 soil heat capacity for mineral soil component
24 zbot 8 3 20 FIX depth of lower boundary soil temp. [m]
25 frzk 0.15 0.1 0.25 FIX ice content threshold above which frozen soil is impemeable
26 snup 0.04 0.025 0.08 FIX threshold snowdepth - implies 100% snow cover [m]
27 snoalb 0.75 0.3 0.75 FIX max albedo over deep snow
28 salp 2.6 2.6 2.6 FIX shape of dist function of snow cover
29 slope 0.1 0.1 1 FIX slope
30 t1 299 265 265 FIX initial skin temperature
31 cmc 5.00E-04 0 0.001 FIX initial canopy water content [m]
32 snowh 0 0 0.1 FIX initial actual snow depth [m]
33 sneqv 0 0 0.1 FIX initial water equivalent snow depth [m]
34 sldpt1 0.05 0.05 0.05 0.05 0.1 0.1 0.1 FIX soil depth
35 sldpt2 0.2 0.2 0.2 FIX soil depth
36 sldpt3 0.6 0.6 0.6 FIX soil depth
37 sldpt4 1.1 1.1 1.1 FIX soil depth
38 stc1 294 294 294 294 297 260 290 FIX initial soil temp [K]
39 stc2 292.7 292.7 292.7 292.7 293.7 260 290 FIX initial soil temp [K]
40 stc3 291 291 291 291 291.5 260 290 FIX initial soil temp [K]
41 stc4 290 290 290 290 290.4 260 290 FIX initial soil temp [K]
42 smc1 0.05 0.025 0.56 OPT initial soil total moisture
43 smc2 0.05 0.025 0.56 OPT initial soil total moisture
44 smc3 0.05 0.025 0.56 OPT initial soil total moisture
45 smc4 0.05 0.025 0.56 OPT initial soil total moisture
46 sh2o1 0.05 0.025 0.56 OPT initial soil liquid moisture
47 sh2o2 0.05 0.025 0.56 OPT initial soil liquid moisture
48 sh2o3 0.05 0.025 0.56 OPT initial soil liquid moisture
49 sh2o4 0.05 0.025 0.56 OPT initial soil liquid moisture

Table 1.  Noah parameters, ranges, default and preferred optimal values for Sevilleta and San Pedro sites. 

Preferred optimal values RangeDefault   Description



 

5.2. Parameter Estimation 
 

The range of feasible model parameters (adjusted in 
the previous step) is sampled and residuals between 
simulations and observations of sensible heat, latent 
heat and ground temperature are evaluated using 
RMSE as the objective function. The optimization 
algorithm is designed to find parameter sets that 
simultaneously minimize all objective functions and 
therefore reduce the output residual.  By doing so, and 
due to measurement errors and deficiencies in the 
model physics (model errors), the methodology finds 
several compromise, non-dominated solutions when 
converges to a fair representation of the Pareto set, 
(Gupta et al., 1999; Vrugt et al., 2003) (see Fig.8) in 
which, each parameter set is no superior than other in a 
multi-objective sense despite of being better in a 
particular objective. In Fig. 8, site to site comparison in 
the bi-dimensional projection of the multidimensional 
objective space is presented. Each of the dots 
represents a parameter set. It is evident that the quality 
of the data from the Sevilleta Grassland site is inferior to 
the other sites, and therefore it is not considered in this 
analysis. The performance of the San Pedro sites is 
similar, obtaining the same residual. The Sevilleta Shrub 
site has the better performance. 

To differentiate among parameter sets we follow 
Das, 1999, and rank the sets in a subdimensional 
space. The points that are simultaneously in the Pareto 
frontier in at least two of the projections are selected. 
Those sets are shown in Fig.9, using the normalized 
parameter range. The default parameter set for semi-
arid environments is also represented using black dots. 
The dashed line corresponds to a parameter set whose 
objective function value minimizes a L2 norm, called 
‘preferred’ set for each location. The values of the 
preferred optimal sets for each site, the optimization 
ranges used, the default values and the description of 
the parameters are presented in Tab. 1.  

A comparison of the similarity between ‘preferred’ 
optimal sets across the locations using the Hausdorff 
norm is presented in Tab. 2. We observe that the 
preferred sets are more similar between the San Pedro 
sites than between the shrub sites. The sets are less 
similar when comparing Sevilleta shrub against Kendall. 
 

 Sev. Grass SP. shrub SP. grass 
Sev. Shrub 1.537 1.994 2.347 
Sev. Grass 0.0 2.450 2.505 
SP. Shrub 2.450 0.0 1.964 

 
Table 2.  Hausdorff norm values for comparison 
between ‘preferred’ optimal parameter sets across sites. 

 
In order to establish whether the parameter sets 

found in the estimation procedure relate in any way 
among sites and/or vegetation covers, we compute 
cumulative densities and use the K-S test to determine if 
they come from the same underlying distribution. The 
distributions for several parameters for each site, 
including the preferred and default values are presented 

in Fig. 10. The result of that comparison is presented in 
Tab. 3. At significance level 0.05, the null hypothesis of 
both empirical distributions being equal or drawn from 
the same underlying distribution against the alternative 
of being unequal is rejected for 1 and not to be rejected 
for 0 (shaded).  
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Figure 10.  Cumulative distributions of parameter 
values for each site. The preferred values are shown as 
vertical lines for each site: Sevilleta Grass (red), 
Sevilleta Shrub (magenta), San Pedro grass (blue) and 
San Pedro shrub (cyan). Default value in black. 
 

From the 3 vegetation parameters shown above, 
rcmin and cmcmax are found to come from the same 
distribution for the San Pedro sites. The LAI of Sevilleta 
shrub shares the same distribution with both San Pedro 
sites, however those two do not fall within the same 
distribution. For the case of the soil parameters, 
maxsmc, satdk and fxexp in the San  Pedro sites have 
the same distribution. The shrub sites share the same 



distribution for satdw. For refdk no association has been 
found.  
 

 rcmin lai 
 SevS SPg SPs SevS SPg SPs 

SevG 1 1 1 0 1 0 
SevS  1 1  0 0 
SPg   0   1 

 cmcmax maxsmc 
 SevS SPg SPs SevS SPg SPs 

SevG 1 1 1 1 1 1 
SevS  1 1  1 1 
SPg   0   0 

 satdk satdw 
 SevS SPg SPs SevS SPg SPs 

SevG 1 1 1 1 1 1 
SevS  1 1  1 0 
SPg   0   1 

 refdk fxexp 
 SevS SPg SPs SevS SPg SPs 

SevG 1 1 1 1 1 1 
SevS  1 1  1 1 
SPg   1   0 

 
Table 3.  K-S test results. At significance level 0.05, the 

null hypothesis of both coming from the same 
distribution is rejected for 1 and not to be rejected for 0. 
 
 
6. SUMMARY AND CONCLUSIONS 
 

The work carried out here shows that semi-arid 
environments cannot be lumped into a single functional 
type classification, as is customary in the land surface 
community. It constitutes a preliminary step towards 
identifying parameter sets that can be safely transferred 
between locations with similar physical characteristics, 
thus providing parameter estimates that can be 
considered truly regional based on a consistent 
behavior across semi-arid biomes.  

Further cross validation studies are needed to 
establish which parameters can be transferable. We 
found that some parameters share similar 
characteristics by site while others do so by vegetation 
cover, being not always the vegetation parameters. It 
can be said that for some parameters geographical 
proximity is more important than functional type. 
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