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1. INTRODUCTION.

An empirical model to estimate soil moisture
over vegetated areas was developed. Sall
moisture exhibits spatial and temporal variability.
It has been noted that the temporal variability for a
given area exhibits long- and short-term variations
that can be expressed by an empirical model. The
major components of the empirical model are the
long-and short-term variability. The long-term
variability is mostly associated to long-term
climatology patterns and modeled by an artificial
neural network. The neural network was trained
by using the following variables: monthly soil
moisture (in-situ observations), monthly
accumulated  rainfall (NEXRAD), monthly
vegetation index (MODIS), monthly land surface
temperature (MODIS), soil texture, elevation, and
slope. The short-term memory model is a
stochastic transfer function that estimates the soil
moisture response in hourly basis for every grid (1
km). Estimation of soil moisture response requires
using the cumulative rainfall during the last week
(NEXRAD), the hourly rainfall (NEXRAD), the
hourly temperature estimated from MODIS and the
initial level of soil moisture estimated from the long
term-variability model.

The empirical model was applied to Puerto
Rico climate conditions, and it is expected that the
model can be implemented to a similar tropical
region. The proposed method can be used to
create the initial conditions of soil moisture for
running atmospheric and hydrological models
such as: the regional atmospheric modeling
system (RAMS), the mesoscale model (MM5), the
MIKE SHE and VFLOW hydrological models.
Cross-validation techniques show that the
proposed algorithm is a potential tool to estimate
soil moisture over densely vegetated areas.

1.1 Background

Soil moisture is a fundamental component of
the surface water and energy budget. The soail
moisture regulates the partition of latent and
sensible heat fluxes at the surface, affecting the
boundary layer. Therefore, incorrect soil-moisture
initial conditions may generate misleading
modeling results. For instance Balsamo, et al.,
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(2004) reported that erroneous estimation of total
soil moisture affected the quality of the forecast for
several days when using a numerical weather
prediction scheme. It is well known that soil
moisture plays an important role in detection and
attribution of global climate changes (Huang et al.,
1996).

Njoku and Entekhabi (1996) used a space
borne microwave remote sensing techniques to
estimate soil moisture at a spatial resolution of 10-
20 km. They pointed out that applications under
different conditions need to be investigated.
Wetzel and Woodward (1987) studied the
statistical relationships between soil moisture and
infrared surface temperature observations taken
from the visible Infrared Spin Scan Radiometer
(VISSR) at the Geostationary Operational
Environmental Satellites (GOES). They used
linear regression to relate soil moisture to surface
temperature, wind speed, vegetation cover, and
low-level temperature advection. Recently, soil
moisture has been retrieved from a passive
microwave radiometer known as the Advanced
Microwave Scanning Radiometer (AMSR-E). The
AMSR-E is an instrument that measures
brightness temperature at six frequencies: 6.925,
10.65, 18.7, 23.8, 36.5 and 80.0 GHz with vertical
and horizontal polarizations at each frequency for
a total of twelve channels. It has been shown that
the C and X band channels at 6.9 and 10.7 GHz
are strongly related to land surface soil moisture
and are used to generate the global land data
products (Njoku, and Li, 1999; and Njoku et al.,
2003). Daily products are available from the
National Snow and Ice Data Center (NSIDC) since
June 2002. Soil moisture estimation from AMSR-
E is still in the process of validation; however,
reasonable estimation for soil moisture over the
moderately vegetated areas is available. The
AMSR-E data is likely to be contaminated with
radio-frequency interference (RFI). It has been
detected interference with C band, especially over
the United States, Japan and the Middle East, and
the X band exhibited some interference on
England, Italy and Japan (Njoku et al. 2005). The
AMSR-E sensor has the limitation that the
brightness temperature does not provide any
information about the dielectric constant when the
area is densely vegetated. Issues associated to



RFI have diminished the utility of C-band
measurements in determining soil moisture over
large areas of the globe; however, McCabe et al.
(2005) have reported a successful application of
the AMSR-E (X band) to retrieve soil moisture
over some parts of United States.

Satalino et al. (2002) study the feasibility of
retrieving soil moisture content over smooth bare-
soil fields using European Remote Sensing
synthetic aperture radar (ERS-SAR) data. The
retrieval approach consists on inverting the
integral equation method by using an ANN. The
overall root mean square error in the retrieved
volumetric soil moisture content was 6% . They
reported that the major source of soil moisture
estimation is the roughness conditions, which
influence the relationship between soil moisture
coefficient and the radar backscattering
coefficient. Jiang and Cotton (2004) implemented
an artificial neural network (ANN) algorithm for soil
moisture estimation. They used daily precipitation,
vegetation index, cloud-mask infrared skin
temperature and soil moisture profile. They found
a high correlation between ANN estimates and the
actual observations. They claim that ANN based
algorithm is capable of estimating soil moisture
from remote sensed IR data with high spatial and
temporal resolution. They reported that the
application of ANN exhibits some difficulties during
the training process due to the need of high quality
training data. In this work we are using a self-
organized ANN for identifying spatial similarities
among grids and a feedforward ANN for
estimating the soil moisture at different depths.
Guill, et al. (2006) recently implemented the
support vector machines (SVM) to predict the soil
moisture at Washita River experimental
watershed. They compare the SVM with the ANN
algorithm and concluded that SVM autoperforms
the ANN in the sense that it provides smaller
prediction errors. They also pointed out that the
ANN is not stable since every time it is run it
provides different results. In this study we are
using ANN and successful results were obtained.
The instability problem was solved by running the
algorithm n times and the central tendency of
results was computed as the final result of the
ANN, and this procedure always provides the
same result. An empirical and satisfactory result
for the variable n was equal or grater than 5. In
the future we plan to implement the SVM to test
whether or not this algorithm improves the ANN
performances.

This paper is organized as follows: the second
section presents the in-situ and remote sensing
data used to build the soil moisture models. The
third section presents the proposed methodology.
This section describes a neural network model to
represents the long-term soil moisture response;
describes the short-term memory model to
express the hourly soil moisture response. The
third section also describes the algorithm to
estimate the parameters of the transfer function
mode, and illustrates the use of a self-organized
neural network to identify similarities among grids
to select the appropriate transfer function. The
fourth section presents preliminary results, and the
last section introduces some conclusions.
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Figure 1. Location of soil moisture stations.
2. DATA.

Essentially two types of data were used in this
research: the in-situ measurements and remote
sensing observations.

2.1 In-situ measurements.

In-situ  soil moisture observations were
obtained from a local soil moisture network.
Figure 1 shows the location of the soil moisture
stations used in this study. The soil moisture
network included 17 stations, twelve of which were
owned and operated by the University of Puerto
Rico-Mayaguez (UPRM) research project and to
the remaining five were owned and operated by
the Natural Resources Conservation Services
(NRCS). The UPRM stations collected soil
moisture, air temperature and rainfall on an hourly
basis. The NRCS stations collected the following
parameters: soil moisture, soil temperature,
rainfall, solar radiation, wind speed, wind direction,
and other physical parameters. Preliminary
experimentation revealed that the most important
parameters controlling the soil moisture response
were soil texture, and precipitation, and therefore
this study focused on these factors. An
experimental field campaign was conducted to



collect undisturbed soil samples in the
neighborhood of stations to measure volumetric
water content and calibrate the soil moisture
Sensors.

2.2. Remote Sensing data.

Land surface temperature and vegetation
index were obtained from Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor. The
MODIS instruments are on board of the Terra and
Aqua satellites and scan the entire Earth’s surface
every 1 to 2 days. The MODIS information was
obtained at the NASA Goddard Distributed Active
Archive Center (DAAC). Weekly land surface
temperature was provided at 1 km of spatial
resolution. Monthly surface temperatures were
developed for the difference between the
maximum and the minimum surface temperatures.
In the remaining part of this paper this variable is
called the difference surface temperature. The
monthly normalized difference vegetation index
(NDVI) was also extracted from MODIS. Total
monthly rainfall data were obtained from the Next
Generation Weather Radar (NEXRAD), Rainfall
data were obtained by using the multisensor
precipitation estimation (MPE) algorithm, which
was developed by the Hydrologic Research
Laboratory (Breidenbach and Bradberry, 2001).
The XRMG is a MPE product that uses radar
precipitation and rain gauge measurements to
derive the best estimators of rainfall for specific
area and time. The XRMG rainfall data was
obtained throughout the National Weather Service
in about 4 Km spatial resolution and was
interpolated to 1 km.

2.3. Soil texture and topography data

A soil texture map at 1 km resolution was
developed based on irregular distribution of 118
soil samples provided by the USDA/NRCS. The
map of percent silt was obtained by subtracting
the percentages of sand and clay from 100, i.e., it
is assumed that the percent soil organic matter is
negligible, which may in fact not be the case at
some locations and represents a potential source
of error in the methodology.

Puerto Rico (PR) digital elevation model
(DEM) at 30 m resolution was obtained from the
United States Geological Survey (USGS). This
map was interpolated to 1 km spatial resolution to
obtain all the variables in the same spatial
resolution. A map of average surface slope at 1
km was also developed based on the 30 m DEM

for PR. All the pixel elevations within a 1 km
distance were pairwise selected, the angles
between points were computed, and the average
slope for every pixel determined.

3. METHODOLOGY

One of the purposes of this work is to develop
a soil moisture estimation model for tropical areas
such as Puerto Rico, which has complex
topography, vegetation, and persistent cloud
cover. The soil moisture exhibit long- and short-
term variability and it will be modeled by a long-
and short-term memory models, respectively.

Figure 2 shows the scheme of the sail
moisture model algorithm in which the long- and
short-term models are integrated. This figure also
shows the major source of information to derive
the soil moisture estimates.
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Figure 2. Soil moisture algorithm.

3.1. Long term memory model

The formulation of the model is based on
analysis of soil moisture observations. Historical
data show that the long-term response of the soil
moisture is mostly related to soil texture, rainfall,
vegetation and surface temperature.  These
variables were used to train a neural network to
model the soil moisture long-term response.
Figure 3 shows an example of the long-term
response and Figure 4 shows the short-term
response of the soil moisture.



Average of Volumetric Water Content for some stations in the first half
of the year 2006
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Figure 3. Monthly soil moisture response.
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Figure 4. Hourly soil moisture response.

A feedforward artificial neural network (ANN)
was used to estimate soil moisture long-term
response. An ANN was selected because the
dynamic water content of soil is a nonlinear
process and the ANN has been proven to be and
efficient approach when the variables of a system
are related in a highly nonlinearly way. The ANN
algorithm is a general nonlinear modeling
approach that is based on various characteristics
of the brain functionality (Hagan et al., 1996). An
ANN determines an empirical relationship between
the inputs and outputs of a given system.
Therefore, it is important that the user has a good
understanding of the science behind the
underlying system to provide the appropriate
inputs, and consequently to support the identified
relationship. Thus, a key issue to obtain a
successful ANN application is to select the
appropriate training variables and to identify a
suitable ANN structure. The structure of the ANN
consists of determining the number of layers, the

number of neurons in the hidden layers, and
selecting the best activation function for each
layer. An efficient procedure to identify the
appropriate structure of a neural network is
provided by Ramirez-Beltran and Montes (2002).
The training patterns of the neural networks
are formed by the input and output vectors of
monthly data that can be expressed as follows:
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where P is the input vector and Q is the output
vector. The output vector is also known as the

target; the variable h is the monthly average of soil
moisture measured at 20 cm depth, s, and ¢ are
the percentage of sand and clay at the given
location, respectively; the variable r is the
accumulative rainfall during a month, V is the

monthly vegetation index; d is the difference of
monthly surface temperatures, (max. — min.). The

subscripts m and j have been omitted to simplify

notation and represent the m™ month and the jth
location respectively.

In order to derive a stable and robust
estimation an ensemble procedure was used.
Five members of the ensemble were generated
with the best initial points that were obtained by a
random search that minimizes the difference
between the output of the neural network and the
observed soil moisture.

The final estimates from the long-term
memory model will be soil moisture on a monthly
basis, at 1 km spatial resolution and will be used
as the initial conditions for the hourly soil moisture
model.

3.2. Short-term memory model.

The short-term memory model represents the
soil moisture response in an hourly basis.
Experimental results were used to develop an
empirical model of soil moisture. It was observed
that if the precipitation during consecutives days is
not present and the soil is relatively dry a
significant rainfall event will produce a relatively
large increase in the soil moisture. On the other



hand if several rainfall events occurred frequently
during the previous few days then the soil
moisture response is relatively small due to the
soil moisture already being near to the field
capacity or possibly the saturation point.
Therefore, the soil moisture response can be
represented by two impulse response functions.
The first impulse response function models the
contribution of air temperature. Essentially the air
temperature controls the memory of the soll
moisture response and introduces the diurnal
seasonal behavior into the soil moisture response.
The second impulse response function models the
intervention event caused by the presence of the
rainfall events. This impulse response function
controls the soil moisture response according to
instantaneous and accumulative rainfall events.
Therefore, the proposed stochastic transfer
function to model the soil moisture is:
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where htyj is the soil moisture at hour t and at the

j™ location, I,; is the instantaneous rainfall at

time t and at the j" location, T,; is the air

temperature at time t and at the jth location, the

w’s and O's are the parameters of the impulse
response functions for a given location. The

variable @, ; is a sequence of errors with zero
mean and constant variance.

3.3. Parameter estimation.

A transfer function model was fitted for a
single station and the remaining equations will be
derived later, since this is an ongoing research
project. It should be noted that the coefficients of
the impulse response function characterize the
terrain properties for a given location. Thus, it is
assumed that @’s, and 0'’s, are coefficients that
exhibit inherent terrain characteristics of a specific
location, and consequently the spatial variability
will be expressed by the coefficients of the impulse
response function. Thus, evaluating the transfer
function in another location that exhibits similar
terrain characteristics will estimate the response of
the soil-moisture dynamics. It should be noted
that the self-organized neural network identifies
those spatial terrain similarities.

The estimation of the transfer-function
parameters is not a trivial task; it requires a well
planned procedure. The proposed estimation
procedure includes three main steps:

1. The first step consists of applying the
periodgram and the autocorrelation function to
determine whether or not the soil moisture is a
stationary process. Typically, the soil moisture is
a nonstationary process due to significant changes
of the mean that have occurred over the time, due
to rainfall long-term impact over the soil moisture
response. The process becomes stationary after
the trend is removed. This is accomplished by

taking the first, (1—B)h,, or the second,

(1-B)*h,, difference to the process or by

removing a parametric function.

2. The second step consists of performing a
random search to determine the initial point for the
stochastic transfer function. The uniform
probability distribution was used to generate 100
points over specific range and the mean square
error (MSE) was used to identify a suitable initial
point, i.e., the one that exhibits a small MSE. The
empirical selected range that provides satisfactory
results is given by two vectors:

L=[-2 -2 -09 -2 -2 -09]
U=[2 2 09 2 2 09]

where L and U represent the minimum and
maximum value, respectively, that can be
assigned to the parameters, organized as in the
following vector:

par:[a)o,l @y 5 50,1 @y, @, 51,1]

3. The third step consists of using the
sequential  quadratic  programming  (SQP)
algorithm to estimate the parameters of the
impulse response functions, (Reklaitis et al. 1983).
This task was successfully accomplished by using
the Matlab software (MathWorks, 2000).

It should be noted that the decay function of
the soil moisture response can be controlled by

the O coefficient; the subscripts are eliminated to
simplify the description. If 0 is close to zero the
rainfall effect on soil moisture will disappear very
fast; on the other hand if the ¢ coefficient is close
to one the rainfall effect on soil moisture will last
several time intervals. If O is larger than one, the
process becomes unstable and the estimates of



soil moisture increase without control (Brockwell
and Davis 2002). Therefore, the values of delta
must be limited to the following range:
—1< 6 <1. Table 1 shows the optimal parameter
estimation for each station.

3.4 Soil moisture estimation.

Once the parameters of the transfer function
models have been estimated, they will be applied
with radar and satellite data for a larger region. A
self-organized neural network (SONN) is used to
identify a grid point that exhibits the similar terrain
properties to a place where a soil-moisture station
is located, and the identified station is called the
similar station. The variables used to identify the
similar station were: the percentage of clay, the
percentage of sand, elevation, vegetation index
and the accumulated rainfall of the corresponding
month. Once the SONN identifies the similar
station the corresponding TF model is evaluated
using radar rainfall and satellite surface
temperature data. The soil moisture estimated
from the long-term memory model is added to the
estimated from the transfer function to obtain the
final soil moisture for each grid. The final
estimates from the stochastic transfer function are
soil moisture in hourly basis at 1 km horizontal
resolution.

4. PRELIMINARY RESULTS

The proposed algorithm is under development,
i.e., only preliminary results are presented here.
The long-term memory model was applied to the
climatic condition of Puerto Rico. The neural
network was trained with 2005 and validated with
2006 data. Since the available number of stations
is small the leave 4 stations out was used to
validate the neural network model.

Figures 5 to 9 shows an example of the input
data to train the artificial neural network. Figure 5
shows the percentage of clay, Figure 6 shows the
percentage of sand, Figure 7 shows the rainfall
form the NEXRAD data for March of 2006, Figure
8 shows the MODIS vegetation index for March
2006. Figure 9 shows the MODIS difference of
surface temperature for March 2006. Figure 10
shows the Puerto Rico soil moisture estimates for
March 2006, and these estimates are used as the
initial level for the transfer function model. Figure
11 shows the comparison of the observed and
estimated values for March 2006.

Figure 7. NEXRAD rainfall for March 2006

Figure
2006.
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Figure 10. Estimates of soil moisture for March
2006.
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Figure 11. Comparison between the observed
and estimated soil moisture for March 2006.

For purposes of showing feasibility of the
proposed methodology a TF model has been
developed for the Colegio station. Table 1 shows
the parameter estimation results for the fitted TF
model. The TF model parameters depend on the
soil type, vegetation, topography and the
atmospheric conditions of a given area. Thus, the
value of the ¢ parameter of equation (7) controls

the length of the soil moisture, the @, ; coefficients
control the soil moisture response due to air

temperature values, and @;; coefficients control

the instantaneous soil moisture response to the
current rainfall. Figure 12 shows the observed
and estimated soil moisture from the transfer
function at Colegio station during March 2006.
Hourly rainfall data was used to evaluate the TF
model. Approximately the first half of the soil
moisture station data were used to build the model
and the remaining observations were used to
perform model validation. This figure exhibits the
performance of the transfer function model during
the model fitting and validation process. Model
validation results at 20 cm depth are presented in
Table 2. The first column shows the name of the
soil moisture station. The second column shows
the mean absolute error (MAE) of the percentage
of volumetric water content. The third column
shows the mean square error (MSE) of the
percentage volumetric water content.

Table 1. Soil moisture parameter estimation
results for Colegio station.

Parameter @y @o > o4
Estimation | 0.021544 | 0.068314 | 0.72695
Parameter ) @, , 0.2
Estimation 1.1883 0.72792 0.9

Table 2. Accuracy of soil moisture estimation at
20 cm depth.

Station MAE
Name (% vwc) MSE
Colegio 0.84677 2.2106

Transfer Function of Soil Moisture (Obs=blue; Train=green; Est=red; Rainfall events=*)

VW C [%]

Time [Hour]

Figure 12. Validation of soil moisture TF model

Similarities of terrain characteristics for Puerto
Rico were derived by using a self organized neural
network. The neural network used soil texture,



monthly rainfall, vegetation index, and elevation to
identify the regions with similar properties. Figure
13 shows the results of the self-organize neural
network. The similar regions will be used to
evaluate the corresponding TF model to obtain the
final soil moisture estimates.

Figure 13. Areas with similar terrain properties.

5. CONCLUSIONS.

A new method for estimating soil moisture
over densely vegetated areas is proposed. The
estimation algorithm will include a short- and a
long-term memory models.

Soil moisture behavior show that the critical
variables to estimate soil moisture are: rainfall, soil

texture, vegetations index and surface
temperature. .
The proposed stochastic TF model has the

advantage of estimating soil moisture based on
rainfall, and surface temperature; assuming that
the initials conditions of soil moisture over the
selected area are similar to a known location. The
TF model will be initialized with soil moisture
information obtained from a known location that
exhibits similar characteristics of the given grid.
Similarities are identified by using a self-organized
neural network with the following discriminate
variables: accumulative precipitation of the current
month, soil texture, vegetation index and
elevation. Once similarities of spatial variability
are found the TF model is evaluated using rainfall
from radar and surface temperature from satellite.
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