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1. INTRODUCTION. 
 

An empirical model to estimate soil moisture 
over vegetated areas was developed.  Soil 
moisture exhibits spatial and temporal variability.  
It has been noted that the temporal variability for a 
given area exhibits long- and short-term variations 
that can be expressed by an empirical model. The 
major components of the empirical model are the 
long-and short-term variability.  The long-term 
variability is mostly associated to long-term 
climatology patterns and modeled by an artificial 
neural network.  The neural network was trained 
by using the following variables: monthly soil 
moisture (in-situ observations), monthly 
accumulated rainfall (NEXRAD), monthly 
vegetation index (MODIS), monthly land surface 
temperature (MODIS), soil texture, elevation, and 
slope.  The short-term memory model is a 
stochastic transfer function that estimates the soil 
moisture response in hourly basis for every grid (1 
km).  Estimation of soil moisture response requires 
using the cumulative rainfall during the last week 
(NEXRAD), the hourly rainfall (NEXRAD), the 
hourly temperature estimated from MODIS and the 
initial level of soil moisture estimated from the long 
term-variability model. 

The empirical model was applied to Puerto 
Rico climate conditions, and it is expected that the 
model can be implemented to a similar tropical 
region.  The proposed method can be used to 
create the initial conditions of soil moisture for 
running atmospheric and hydrological models 
such as: the regional atmospheric modeling 
system (RAMS), the mesoscale model (MM5), the 
MIKE SHE and VFLOW hydrological models.  
Cross-validation techniques show that the 
proposed algorithm is a potential tool to estimate 
soil moisture over densely vegetated areas. 

 
1.1 Background  

 
Soil moisture is a fundamental component of 

the surface water and energy budget.  The soil 
moisture regulates the partition of latent and 
sensible heat fluxes at the surface, affecting the 
boundary layer.  Therefore, incorrect soil-moisture 
initial conditions may generate misleading 
modeling results.  For instance Balsamo, et al., 

(2004) reported that erroneous estimation of total 
soil moisture affected the quality of the forecast for 
several days when using a numerical weather 
prediction scheme.  It is well known that soil 
moisture plays an important role in detection and 
attribution of global climate changes (Huang et al., 
1996). 

Njoku and Entekhabi (1996) used a space 
borne microwave remote sensing techniques to 
estimate soil moisture at a spatial resolution of 10-
20 km.  They pointed out that applications under 
different conditions need to be investigated.  
Wetzel and Woodward (1987) studied the 
statistical relationships between soil moisture and 
infrared surface temperature observations taken 
from the visible Infrared Spin Scan Radiometer 
(VISSR) at the Geostationary Operational 
Environmental Satellites (GOES).  They used 
linear regression to relate soil moisture to surface 
temperature, wind speed, vegetation cover, and 
low-level temperature advection.  Recently, soil 
moisture has been retrieved from a passive 
microwave radiometer known as the Advanced 
Microwave Scanning Radiometer (AMSR-E).  The 
AMSR-E is an instrument that measures 
brightness temperature at six frequencies: 6.925, 
10.65, 18.7, 23.8, 36.5 and 80.0 GHz with vertical 
and horizontal polarizations at each frequency for 
a total of twelve channels.  It has been shown that 
the C and X band channels at 6.9 and 10.7 GHz 
are strongly related to land surface soil moisture 
and are used to generate the global land data 
products (Njoku, and Li, 1999; and Njoku et al., 
2003).  Daily products are available from the 
National Snow and Ice Data Center (NSIDC) since 
June 2002.  Soil moisture estimation from AMSR-
E is still in the process of validation; however, 
reasonable estimation for soil moisture over the 
moderately vegetated areas is available.  The 
AMSR-E data is likely to be contaminated with 
radio-frequency interference (RFI).  It has been 
detected interference with C band, especially over 
the United States, Japan and the Middle East, and 
the X band exhibited some interference on 
England, Italy and Japan (Njoku et al. 2005).  The 
AMSR-E sensor has the limitation that the 
brightness temperature does not provide any 
information about the dielectric constant when the 
area is densely vegetated.  Issues associated to 
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RFI have diminished the utility of C-band 
measurements in determining soil moisture over 
large areas of the globe; however, McCabe et al. 
(2005) have reported a successful application of 
the AMSR-E (X band) to retrieve soil moisture 
over some parts of United States.  

Satalino et al. (2002) study the feasibility of 
retrieving soil moisture content over smooth bare-
soil fields using European Remote Sensing 
synthetic aperture radar (ERS-SAR) data.  The 
retrieval approach consists on inverting the 
integral equation method by using an ANN.  The 
overall root mean square error in the retrieved 
volumetric soil moisture content was .  They 
reported that the major source of soil moisture 
estimation is the roughness conditions, which 
influence the relationship between soil moisture 
coefficient and the radar backscattering 
coefficient.  Jiang and Cotton (2004) implemented 
an artificial neural network (ANN) algorithm for soil 
moisture estimation.  They used daily precipitation, 
vegetation index, cloud-mask infrared skin 
temperature and soil moisture profile.  They found 
a high correlation between ANN estimates and the 
actual observations.  They claim that ANN based 
algorithm is capable of estimating soil moisture 
from remote sensed IR data with high spatial and 
temporal resolution.  They reported that the 
application of ANN exhibits some difficulties during 
the training process due to the need of high quality 
training data.  In this work we are using a self-
organized ANN for identifying spatial similarities 
among grids and a feedforward ANN for 
estimating the soil moisture at different depths.  
Guill, et al. (2006) recently implemented the 
support vector machines (SVM) to predict the soil 
moisture at Washita River experimental 
watershed.  They compare the SVM with the ANN 
algorithm and concluded that SVM autoperforms 
the ANN in the sense that it provides smaller 
prediction errors.  They also pointed out that the 
ANN is not stable since every time it is run it 
provides different results.  In this study we are 
using ANN and successful results were obtained.  
The instability problem was solved by running the 
algorithm n times and the central tendency of 
results was computed as the final result of the 
ANN, and this procedure always provides the 
same result.  An empirical and satisfactory result 
for the variable n was equal or grater than 5.  In 
the future we plan to implement the SVM to test 
whether or not this algorithm improves the ANN 
performances.  
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This paper is organized as follows: the second 
section presents the in-situ and remote sensing 
data used to build the soil moisture models.  The 
third section presents the proposed methodology.  
This section describes a neural network model to 
represents the long-term soil moisture response; 
describes the short-term memory model to 
express the hourly soil moisture response.  The 
third section also describes the algorithm to 
estimate the parameters of the transfer function 
mode, and illustrates the use of a self-organized 
neural network to identify similarities among grids 
to select the appropriate transfer function.  The 
fourth section presents preliminary results, and the 
last section introduces some conclusions. 
 

 
Figure 1. Location of soil moisture stations. 
 
2.  DATA. 
 

Essentially two types of data were used in this 
research: the in-situ measurements and remote 
sensing observations.  

  
2.1 In-situ measurements.   
 

In-situ soil moisture observations were 
obtained from a local soil moisture network.  
Figure 1 shows the location of the soil moisture 
stations used in this study.  The soil moisture 
network included 17 stations, twelve of which were 
owned and operated by the University of Puerto 
Rico-Mayagüez (UPRM) research project and to 
the remaining five were owned and operated by 
the Natural Resources Conservation Services 
(NRCS).  The UPRM stations collected soil 
moisture, air temperature and rainfall on an hourly 
basis. The NRCS stations collected the following 
parameters: soil moisture, soil temperature, 
rainfall, solar radiation, wind speed, wind direction, 
and other physical parameters.  Preliminary 
experimentation revealed that the most important 
parameters controlling the soil moisture response 
were soil texture, and precipitation, and therefore 
this study focused on these factors.  An 
experimental field campaign was conducted to 

  



 

collect undisturbed soil samples in the 
neighborhood of stations to measure volumetric 
water content and calibrate the soil moisture 
sensors. 

  
2.2.  Remote Sensing data.  
  

Land surface temperature and vegetation 
index were obtained from Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensor.  The 
MODIS instruments are on board of the Terra and 
Aqua satellites and scan the entire Earth’s surface 
every 1 to 2 days.  The MODIS information was 
obtained at the NASA Goddard Distributed Active 
Archive Center (DAAC).  Weekly land surface 
temperature was provided at 1 km of spatial 
resolution.  Monthly surface temperatures were 
developed for the difference between the 
maximum and the minimum surface temperatures. 
In the remaining part of this paper this variable is 
called the difference surface temperature.  The 
monthly normalized difference vegetation index 
(NDVI) was also extracted from MODIS.  Total 
monthly rainfall data were obtained from the Next 
Generation Weather Radar (NEXRAD), Rainfall 
data were obtained by using the multisensor 
precipitation estimation (MPE) algorithm, which 
was developed by the Hydrologic Research 
Laboratory (Breidenbach and Bradberry, 2001).  
The XRMG is a MPE product that uses radar 
precipitation and rain gauge measurements to 
derive the best estimators of rainfall for specific 
area and time.  The XRMG rainfall data was 
obtained throughout the National Weather Service 
in about 4 Km spatial resolution and was 
interpolated to 1 km. 
 
2.3. Soil texture and topography data 
 

A soil texture map at 1 km resolution was 
developed based on irregular distribution of 118 
soil samples provided by the USDA/NRCS.  The 
map of percent silt was obtained by subtracting 
the percentages of sand and clay from 100, i.e., it 
is assumed that the percent soil organic matter is 
negligible, which may in fact not be the case at 
some locations and represents a potential source 
of error in the methodology.   

Puerto Rico (PR) digital elevation model 
(DEM) at 30 m resolution was obtained from the 
United States Geological Survey (USGS).  This 
map was interpolated to 1 km spatial resolution to 
obtain all the variables in the same spatial 
resolution.  A map of average surface slope at 1 
km was also developed based on the 30 m DEM 

for PR.  All the pixel elevations within a 1 km 
distance were pairwise selected, the angles 
between points were computed, and the average 
slope for every pixel determined.   

 
3.  METHODOLOGY 
 

One of the purposes of this work is to develop 
a soil moisture estimation model for tropical areas 
such as Puerto Rico, which has complex 
topography, vegetation, and persistent cloud 
cover.  The soil moisture exhibit long- and short-
term variability and it will be modeled by a long- 
and short-term memory models, respectively. 

Figure 2 shows the scheme of the soil 
moisture model algorithm in which the long- and 
short-term models are integrated.  This figure also 
shows the major source of information to derive 
the soil moisture estimates. 

 

 
 

Figure 2.  Soil moisture algorithm. 
 

3.1.  Long term memory model 
 

The formulation of the model is based on 
analysis of soil moisture observations.  Historical 
data show that the long-term response of the soil 
moisture is mostly related to soil texture, rainfall, 
vegetation and surface temperature.  These 
variables were used to train a neural network to 
model the soil moisture long-term response.  
Figure 3 shows an example of the long-term 
response and Figure 4 shows the short-term 
response of the soil moisture. 
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Figure 3.  Monthly soil moisture response. 
 

igure 4.  Hourly soil moisture response. 

 feedforward artificial neural network (ANN) 
was
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A
 used to estimate soil moisture long-term 

response.  An ANN was selected because the 
dynamic water content of soil is a nonlinear 
process and the ANN has been proven to be and 
efficient approach when the variables of a system 
are related in a highly nonlinearly way.  The ANN 
algorithm is a general nonlinear modeling 
approach that is based on various characteristics 
of the brain functionality (Hagan et al., 1996).  An 
ANN determines an empirical relationship between 
the inputs and outputs of a given system.  
Therefore, it is important that the user has a good 
understanding of the science behind the 
underlying system to provide the appropriate 
inputs, and consequently to support the identified 
relationship.  Thus, a key issue to obtain a 
successful ANN application is to select the 
appropriate training variables and to identify a 
suitable ANN structure.  The structure of the ANN 
consists of determining the number of layers, the 

number of neurons in the hidden layers, and 
selecting the best activation function for each 
layer.  An efficient procedure to identify the 
appropriate structure of a neural network is 
provided by Ramirez-Beltran and Montes (2002). 

The training patterns of the neural network
 formed by the input and output vectors of 

monthly data that can be expressed as follows: 
 

[ ]jmjmjmjjjm dvrscP ,,,, =         (1) 

and                   (2) 

 
here P is the input vector and Q is the output 

In order to derive a stable and robust 
esti

The final estimates from the long-term 
mem

.2.  Short-term memory model. 

The short-term memory model represents the 
soil

 [ ]jmjm hQ ,, =

w
vector.  The output vector is also known as the 
target; the variable h is the monthly average of soil 
moisture measured at 20 cm depth, s, and c are 
the percentage of sand and clay at the given 
location, respectively; the variable r is the 
accumulative rainfall during a month, v is the 
monthly vegetation index; d is the difference of 
monthly surface temperatures, (max. – min.).  The 
subscripts m and j have been omitted to simplify 
notation and represent the thm month and the thj  
location respectively.  
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mation an ensemble procedure was used.  
Five members of the ensemble were generated 
with the best initial points that were obtained by a 
random search that minimizes the difference 
between the output of the neural network and the 
observed soil moisture. 
 

ory model will be soil moisture on a monthly 
basis, at 1 km spatial resolution and will be used 
as the initial conditions for the hourly soil moisture 
model.  
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 moisture response in an hourly basis. 
Experimental results were used to develop an 
empirical model of soil moisture.  It was observed 
that if the precipitation during consecutives days is 
not present and the soil is relatively dry a 
significant rainfall event will produce a relatively 
large increase in the soil moisture.  On the other 

  



 

hand if several rainfall events occurred frequently 
during the previous few days then the soil 
moisture response is relatively small due to the 
soil moisture already being near to the field 
capacity or possibly the saturation point.  
Therefore, the soil moisture response can be 
represented by two impulse response functions.  
The first impulse response function models the 
contribution of air temperature.  Essentially the air 
temperature controls the memory of the soil 
moisture response and introduces the diurnal 
seasonal behavior into the soil moisture response.  
The second impulse response function models the 
intervention event caused by the presence of the 
rainfall events. This impulse response function 
controls the soil moisture response according to 
instantaneous and accumulative rainfall events.  
Therefore, the proposed stochastic transfer 
function to model the soil moisture is: 
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here  is the soil moisture at hour t and at the 

 and at the  locati

w jth ,

thj  location,  is the instantaneous rainfall at 

t and at the thj  location,  is the air 

temperature at time on, the 

jtr ,

time jtT ,

t thj
ω ’s and δ ’s are the parameters of the impulse 

ponse nctions for a given location.  The 
variable jta ,  is a sequence of errors with zero 
mean and constant variance.   

 

res fu

3.3.  Parameter estimation.   

 transfer function model was fitted for a 
sing

 
A
le station and the remaining equations will be 

derived later, since this is an ongoing research 
project.  It should be noted that the coefficients of 
the impulse response function characterize the 
terrain properties for a given location.  Thus, it is 
assumed that ω ’s, and δ ’s, are coefficients that 
exhibit inherent terrain ch racteristics of a specific 
location, and consequently the spatial variability 
will be expressed by the coefficients of the impulse 
response function.  Thus, evaluating the transfer 
function in another location that exhibits similar 
terrain characteristics will estimate the response of 
the soil-moisture dynamics.  It should be noted 
that the self-organized neural network identifies 

The estimation of the transfer-function 
parameters is not a trivial task; 

a

those spatial terrain similarities. 

it requires a well 
plan

function to 
dete

ned procedure.  The proposed estimation 
procedure includes three main steps:   

1.  The first step consists of applying the 
periodgram and the autocorrelation 

rmine whether or not the soil moisture is a 
stationary process.  Typically, the soil moisture is 
a nonstationary process due to significant changes 
of the mean that have occurred over the time, due 
to rainfall long-term impact over the soil moisture 
response.  The process becomes stationary after 
the trend is removed.  This is accomplished by 
taking the first, thB)1( − , or the second, 

thB 2)1( − , differenc he process or by 
 function.   

 second step consists of performing a 
random search to determine the in

e to t
removing a parametric

2.  The
itial point for the 

stochastic transfer function.  The uniform 
probability distribution was used to generate 100 
points over specific range and the mean square 
error (MSE) was used to identify a suitable initial 
point, i.e., the one that exhibits a small MSE.  The 
empirical selected range that provides satisfactory 
results is given by two vectors:  
 

[ ]9.02 −−  29.022 −−−−=L
[ ]9.0229.022=U  

 
where L and U represent the mi mum and 
maximum value, respec vely, that can be 

 

3.  The third step consists of using the 
sequential quadratic programming (SQP) 
algo

nction of 
the soil moisture response can be controlled by 
the 

ni
ti

assigned to the parameters, organized as in the 
following vector:  

[ ],01,0 δωωδωω=par 1,12,11,11,02

rithm to estimate the parameters of the 
impulse response functions, (Reklaitis et al. 1983).  
This task was successfully accomplished by using 
the Matlab software (MathWorks, 2000).  

 
 It should be noted that the decay fu

δ  coefficient; the subscripts are eliminated to 
simplify the description.  If δ  is close to zero the 
rainfall effect on soil moisture will disappear very 
fast; on the other hand if the δ  coefficient is close 
to one the rainfall effect on soil moisture will last 
several time intervals.  If δ  is larger than one, the 
process becomes unstable and the estimates of 

  



 

soil moisture increase wi out control (Brockwell 
and Davis 2002).  Therefore, the values of delta 
must be limited to the following range: 

11 <<−

th

δ .  Table 1 shows the optimal parameter 
estimation for each station. 

3.4  Soil moisture estimati
 

 
on.   

transfer function 
ed 

with

ARY RESULTS 
 

under development, 
re presented here.  

The

Once the parameters of the 
models have been estimated, they will be appli

 radar and satellite data for a larger region.  A 
self-organized neural network (SONN) is used to 
identify a grid point that exhibits the similar terrain 
properties to a place where a soil-moisture station 
is located, and the identified station is called the 
similar station.  The variables used to identify the 
similar station were: the percentage of clay, the 
percentage of sand, elevation, vegetation index 
and the accumulated rainfall of the corresponding 
month.  Once the SONN identifies the similar 
station the corresponding TF model is evaluated 
using radar rainfall and satellite surface 
temperature data.  The soil moisture estimated 
from the long-term memory model is added to the 
estimated from the transfer function to obtain the 
final soil moisture for each grid. The final 
estimates from the stochastic transfer function are 
soil moisture in hourly basis at 1 km horizontal 
resolution.   
 
4. PRELIMIN

The proposed algorithm is 
i.e., only preliminary results a

 long-term memory model was applied to the 
climatic condition of Puerto Rico.  The neural 
network was trained with 2005 and validated with 
2006 data.  Since the available number of stations 
is small the leave 4 stations out was used to 
validate the neural network model.  

Figures 5 to 9 shows an example of the input 
data to train the artificial neural network.  Figure 5 
shows the percentage of clay, Figure 6 shows the 
percentage of sand, Figure 7 shows the rainfall 
form the NEXRAD data for March of 2006,  Figure 
8 shows the MODIS vegetation index for March 
2006. Figure 9 shows the MODIS difference of 
surface temperature for March 2006.   Figure 10 
shows the Puerto Rico soil moisture estimates for 
March 2006, and these estimates are used as the 
initial level for the transfer function model. Figure 
11 shows the comparison of the observed and 
estimated values for March 2006. 

 

 
Figure 5  Percentage of clay. 
 

 
Figure 6.  Percentage of sand. 
 

 
Figure 7.  NEXRAD rainfall for March 2006 
 

 
Figure 8.  MODIS vegetation index for March 
2006. 
 

  



 

 
Figure 9.  MODIS difference of surface 
temperature March 2006. 
 

 
Figure 10.  Estimates of soil moisture for March 
2006. 
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Figure 11.  Comparison between the observed 
and estimated soil moisture for March 2006. 
 

For purposes of showing feasibility of the 
proposed methodology a TF model has been 
developed for the Colegio station.  Table 1 shows 
the parameter estimation results for the fitted TF 
model.  The TF model parameters depend on the 
soil type, vegetation, topography and the 
atmospheric conditions of a given area.  Thus, the 
value of the δ  parameter of equation (7) controls 
the length of the soil moisture, the i,0ω  coefficients 
control the soil moisture response due to air 

temperature values, and i,1ω  coefficients control 
the instantaneous soil moisture response to the 
current rainfall.  Figure 12 shows the observed 
and estimated soil moisture from the transfer 
function at Colegio station during March 2006.  
Hourly rainfall data was used to evaluate the TF 
model.  Approximately the first half of the soil 
moisture station data were used to build the model 
and the remaining observations were used to 
perform model validation.  This figure exhibits the 
performance of the transfer function model during 
the model fitting and validation process.  Model 
validation results at 20 cm depth are presented in 
Table 2.  The first column shows the name of the 
soil moisture station.  The second column shows 
the mean absolute error (MAE) of the percentage 
of volumetric water content.  The third column 
shows the mean square error (MSE) of the 
percentage volumetric water content.  

Table 1. Soil moisture parameter estimation 
results for Colegio station. 

Parameter 1,0ω  2,0ω  1,0δ  

Estimation 0.021544 0.068314 0.72695

Parameter 1,1ω  2,1ω  2,0δ  

Estimation 1.1883 0.72792 0.9 
 

Table 2.  Accuracy of soil moisture estimation at 
20 cm depth. 
 

Station 
Name 

MAE  
(% v w c) MSE  

Colegio 0.84677 2.2106 
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Figure 12.  Validation of soil moisture TF model 

 
Similarities of terrain characteristics for Puerto 

Rico were derived by using a self organized neural 
network.  The neural network used soil texture, 

  



 

monthly rainfall, vegetation index, and elevation to 
identify the regions with similar properties.  Figure 
13 shows the results of the self-organize neural 
network.  The similar regions will be used to 
evaluate the corresponding TF model to obtain the 
final soil moisture estimates. 

 
Figure 13.  Areas with similar terrain properties. 
 
5. CONCLUSIONS. 

 
A new method for estimating soil moisture 

over densely vegetated areas is proposed.  The 
estimation algorithm will include a short- and a 
long-term memory models.  

Soil moisture behavior show that the critical 
variables to estimate soil moisture are: rainfall, soil 
texture, vegetations index and surface 
temperature.  .  
The proposed stochastic TF model has the 
advantage of estimating soil moisture based on 
rainfall, and surface temperature; assuming that 
the initials conditions of soil moisture over the 
selected area are similar to a known location.  The 
TF model will be initialized with soil moisture 
information obtained from a known location that 
exhibits similar characteristics of the given grid.  
Similarities are identified by using a self-organized 
neural network with the following discriminate 
variables: accumulative precipitation of the current 
month, soil texture, vegetation index and 
elevation.  Once similarities of spatial variability 
are found the TF model is evaluated using rainfall 
from radar and surface temperature from satellite. 
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